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ABSTRACT 

The objective of the present article is to study the magnetohydrodynamic(MHD) unsteady flow and heat transfer 

of two immiscible micropolar and Newtonian fluids through horizontal channel occupied with porous medium. 

Initially, fluids in both regions as well as both plates are at rest. At an instant of time, the flow in both regions 

is generated by a constant pressure gradient. The governing non-linear and coupled partial differential equations 

of Eringen’s micropolar fluid and Newtonian fluid are solved subject to suitable initial, boundary and interface 

conditions. The numerical results for velocity, microrotation and temperature are obtained using Crank-

Nicolson finite difference approach. The results obtained for velocities, microrotation and temperatures are 

presented through figures. The analysis regarding volume flow rate, skin-friction co-efficient and Nusselt 

number is also done and is presented through tables. It is explored that, velocity, microrotation and temperature 

are increasing with time and accomplishing steady state at higher time level. Velocity is decreasing with 

micropolarity parameter and Hartmann number, and increasing with Darcy number. Temperature enhances with 

increasing Brinkmann number, and declines with Prandtl number and ratio of thermal conductivities. 

 

Keywords: Micropolar fluid; Immiscible fluid; Unsteady flow; MHD flow; Heat transfer; Porous medium. 

NOMENCLATURE 

 

Br Brinkmann number 

c component of microrotation 

Cf skin friction co-efficient 

Cp specific heat ratio 

1 2,P PC C  specific heats of fluids 

Da Darcy number 

F interface 

G constant pressure gradient 

h spatial step size 

2h1 distance between plates 

H0 magnetic field strength  

I subscript of distinct fluid regions  

J gyration parameter 

k* permeability of porous medium  

k temporal step size 

K thermal conductivity ratio  

K1,K2 thermal conductivities of fluids 

l number of mesh points in spatial domain 

m1 viscosity ratio 

M Hartmann number 

n1 micropolarity parameter 

Nu Nusselt number 

p fluid pressure 

Pr Prandtl number 

q  fluid velocity vector 

Q volume flow rate 

Re Reynolds number 

T0
* initial temperature of fluids 

T0 non-dimensional initial temperature of 

fluids 

T1,T2 fluid temperatures 

1 2,w wT T  temperatures of plates 

u1,u2 components of fluid velocities 

U maximum velocity in the channel 

 
  gyro-viscosity co-efficient 

  vortex viscosity coefficient 

1 2,   viscosity co-efficients 

  microrotation vector 

1 2ρ ,ρ  density of fluids 

  electrical conductivity of fluids 
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1 INTRODUCTION 

Researchers across the globe have been in search of a 

convincing model over classical Newtonian fluid model 

to explain the behaviour of real fluids like lubricating 

oil, blood, etc. In early sixties, Eringen (1966) has 

proposed a non-Newtonian fluid model, called 

micropolar fluid model, to describe fluids of different 

shape, which may shrink and expand, may rotate 

independently of the rotation and movement of the 

fluid. Micropolar fluid belongs to a family of fluids, 

where the stress tensor is not symmetric. These fluids 

exhibit couple stresses, and the particles of the fluids 

have independent rotation called microrotation in 

addition to translational and angular velocities. The 

applications of micropolar fluid flows (Allen and Kline 

1971) can be perceived in the design of thrust bearing, 

radial diffusers, transpiration drag reduction etc. The 

micropolar fluid posseses load carrying capacity better 

than the Newtonian fluid (2011). This fluid has also 

been used successfully to model the blood flow through 

blood vessels (Kang and Eringen 1976; Stokes 1971; 

Mekheimer and Kot 2008). Extensive work on the 

micropolar fluid theory and its applications have been 

documented in Ariman et al. (1973; 1974) and also in 

books written by Lukaszewicz (1999), Eringen (2000) 

and Stokes (1984). Due to its importance in 

engineering, numerous researchers showed 

attentiveness in the research on micropolar fluid flows. 

Cheng (2006) discussed the flow of micropolar fluid 

through vertical channel, where the fully developed 

flow was considered along with the free convective heat 

and mass transfer. Bataineh et al. (2009) explored 

homotopy analysis method and obtained the solution of 

free convective flow of micropolar fluid in a channel. In 

their work, Abdullaha and Amin (2010) discussed the 

blood flow through stenotic artery using micropolar 

fluid model. Recently, Mabood and Ibrahim (2016) 

studied the MHD convective flow over a stretching 

sheet in a micropolar fluid with radiation and Soret 

effects. 

Worldwide, the study of magnetohydrodynamic 

flows is being carried out at an enormous rate due to 

its importance and applications in crucial fields such 

as magnetic drug targeting, aerospace engineering, 

astrophysics etc. Plenty of research work on 

magnetohydrodynamic flows can be seen in 

literature. Ashraf et al. (2013) studied the MHD 

micropolar fluid flow and heat transfer in channel. 

Prasad et al. (2013) discussed the power law fluid 

flow with thermal radiation and 

magnetohydrodynamic effects. Ramesh and Devakar 

(2015a) carried out a theoretical study on the 

magnetohydrodynamic peristaltic couple stress fluid 

flow in an inclined channel with heat transfer. The 

flow through porous medium is of foundational 

importance in chemical engineering, biomechanics 

etc. The presence of porous medium is noted in 

applications like movement of underground water 

and oils, filtration of fluids, functioning of human 

lung etc. In view of these distinguished applications, 

the research on flow through porous medium is 

carried out extensively in several contexts (See 

Naduvinamani and Santosh (2011), Bhargava et al. 

(2003) and the references therein). 

The study of immiscible fluid flows is of practical 

importance in the petroleum extraction, crude oil 

transport, chemical industries, geophysics, plasma 

physics etc. Further, the evidences of these types of 

flows can be perceived in blood flow through arteries 

(Chaturani and Samy 1985). Bird et al. (1960) have 

given exact solutions of two immiscible Newtonian 

fluids. Later, Kapur and Shukla (1962) provided 

solutions of immiscible fluid flows between two 

parallel plates. Chamkha (2000) studied the flow of two 

viscous, incompressible, electrically conducting 

immiscible fluids in non-porous and porous channels 

under heat transfer effects. Singh (2005) has studied 

convective flow of two immiscible viscous fluids. 

Prathap Kumar et al. (2010) obtained the velocity and 

microrotation for natural-convective flow of micropolar 

and Newtonian fluids. Tetbirt et al.(2016) considered 

the micropolar and viscous fluids in vertical channel 

and numerically studied the velocity distribution, under 

magnetic effects. The fluid flow and heat transfer is 

widely used in functioning of thermoelectric cooler, 

thermal insulators, thermocouple etc. Further, this 

concept is prominently being used in heat exchanger 

which is widely used in refrigeration and air 

conditioning. The heat transfer aspect of immiscible 

fluid flows has been studied by various researchers in 

view of aforementioned applications. Zivojin et 

al.(2010) provided analytical solutions for a two-fluid 

flow between moving plates under MHD and heat 

transfer effects. Nikodijevic et al. (2011) discussed the 

MHD Couette flow for two-fluid case, in presence of 

heat transfer. Kumar and Gupta (2012) discussed the 

flow of immiscible micropolar and Newtonian fluids. 

They have considered natural convective flow with 

MHD effects. Ramana Murthy and Srinivas (2013) 

carried out thermodynamic analysis for immiscible 

micropolar fluid flows in a channel. Ramesh and 

Devakar (2015b) analysed the heat transfer 

characteristics for second grade fluid in a vertical 

channel. 

The immiscible fluid flow problems that have been 

cited above are time independent. However, many 

practical problems concerning immiscible fluid 

flows are time dependent in nature. The unsteady 

immiscible fluid flows are more appropriate for 

understanding the applications in biomechanics, 

hydrology, crude oil transportation etc. In spite of 

its significance, because of the inherent 

complexities, the unsteady flows of immiscible 

fluids are not much explored. Nevertheless, some 

researchers studied the immiscible fluids flows in 

unsteady circumstances. Sai (1990) studied time 

dependent flow of two Newtonian fluids over a 

porous bed. The unsteady flow of immiscible 

conducting fluids between porous beds is discussed 

by Vajravelu et al. (1995). Further, the unsteady 

flows of immiscible Newtonian fluids with heat 

transfer are studied by Umavathi et al.(2005) and 

Umavathi et al. (2012). In current investigation, the 

unsteady magnetohydrodynamic flow of 

immiscible micropolar and Newtonian fluids 

through a channel occupied with porous medium is 

studied considering heat transfer effects. The 

governing non-linear coupled differential equations 

with initial, boundary and interface conditions are 

solved for flow variables using Crank-Nicolson 
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(1947) finite difference approach. Further, the 

volume flow rate, skin friction co-efficient and 

Nusselt number at channel walls, are carried out 

numerically. 

2. MATHEMATICAL FORMULATION  

Consider the unsteady and unidirectional flow of two 

immiscible, incompressible micropolar and 

Newtonian fluids through a horizontal channel. The 

horizontal channel comprises of fixed upper and 

lower plates separated by a distance 2h1 apart 

extending in x and z directions. The lower plate y = 

−h1 is kept at constant temperature Tw1 and the upper 

plate y = h1 is kept at constant temperature Tw2. The 

channel is occupied with homogeneous porous 

medium of permeability k∗. Both fluids are assumed 

electrically conductive having electrical conductivity 

σ, and a constant transverse magnetic field of 

strength H0 is applied to both the plates as shown in 

Fig. 1. As the fluids are assumed to be immiscible 

they constitute two fluid flow regions. The 

micropolar fluid is considered in lower region (−h1 ≤ 

y ≤ 0), having density ρ1, viscosity µ1, vortex 

viscosity κ, thermal conductivity K1, specific heat 

capacity CP1 and, the Newtonian fluid is considered 

in upper region (0 < y ≤ h1), having density ρ2, 

viscosity µ2, thermal conductivity K2, specific heat 

capacity CP2. Body forces and body couples are 

neglected. The flow is set in by an applied pressure 

gradient in x-direction. The fluid velocities are taken 

as   , ,0,0 ,I Iq u y t  where I = 1,2. This choice of 

velocities satisfies the equation of continuity. As the 

fluid velocity is unidirectional, the microrotation 

vector of region-I is assumed to be 

  0,0, , .c y t   The fluid temperatures in both 

fluid regions are taken in the form TI = TI (y,t), where 

I = 1,2. 

 

 
Fig. 1. Geometrical configuration of the problem. 

 

Under the aforesaid circumstances, the equations 

governing the two-fluid flow are (Lukaszewicz 

(1999)). 

Region-I: Micropolar fluid region (−h1 ≤ y ≤ 0) 

 
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Region-II: Newtonian fluid region (0 < y ≤ h1) 

2
22 2 2

2 2 0 2 22
ρ ,

*

u u p
H u u

t x ky


 
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   
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ρ .P

T T u
C K

t yy

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   

   
                (5) 

It is to be mentioned here that, in the above, the last 

two terms of linear momentum Eqs. (1) and (4) are 

due to the appearance of magnetic field and the 

porous medium. 

As the plates are stationary, in view of no-slip and 

hyperstick conditions at the boundary, velocities and 

microrotation are vanishing at the solid boundaries. 

By the virtue of coupling of fluid layers at the fluid-

fluid interface through momentum transfer, we have 

continuous fluid velocities and continuous shear 

stresses at the interface. 

Initially, fluids and plates are at fixed temperatures. 

The temperatures both the plates are taken as 

constant values Tw1 and Tw2 respectively, and the 

initial temperature of fluids is T0∗. Further, the 

temperature and heat flux are assumed to be 

continuous at interface of the fluids. Mathematically, 

the conditions are given as, 

Initial Conditions: 

u1(y,0) = 0 for − h1 ≤ y ≤ 0,   (6) 

u2(y,0) = 0 for 0 < y ≤ h1,    (7) 

c(y,0) = 0 for − h1 ≤ y ≤ 0,    (8) 

T1(y,0) = T0* for − h1 ≤ y ≤ 0,    (9) 

T2(y,0) = T0* for 0 < y ≤ h1,  (10) 

Boundary and Interface Conditions: At t > 0, 

u1(−h1,t) = 0 = u2(h1,t),                                        (11) 

c(−h1,t) = 0,                                                         (12) 

u1(y,t) = u2(y,t) at y = 0,                                       (13) 

  1 2
1 2κ κ

u u
c

y y
 

 
  

 
 at y=0,                    (14) 

  11
,

2

du
c y t

dy
   at y=0,                                    (15) 

 
11 1, ,wT h t T                                                    (16) 

 
22 1, ,wT h t T                                                    (17) 
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   1 2, ,T y t T y t  at y=0,                                   (18) 

1 2
1 2

dT dT
K K

dy dy
  at y=0.                                    (19) 

Using the non-dimensional parameters, 

 

1 2 1
1 2

1 1 1

1 2 2 2
1 22

1 2 1 21

, , , , , ,

1
, , ,

ρ
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w w w w

x y u u h U
x y u u c c t t

h h U U U h

T T T T
p p T T

T T T TU

     

 
  

 

(20) 

and assuming 1

κ
γ= ,

2
J

 
 

 
  with 2

1J h   

(Ahmadi 1976), the governing Eqs. (1)-(5), after 

removing bars, come out to be, 

Region-I: Micropolar fluid region (−1 ≤ y ≤ 0) 
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Region-II: Newtonian fluid region (0 < y ≤ 1) 
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1
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Uh p
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x 


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
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Ignoring bars, the dimensionless conditions are 

Initial conditions: 

u1(y,0) = 0 for −1≤y≤0,                                        (26) 

u2(y,0) = 0 for 0 < y≤1,                                        (27) 

c(y,0) = 0 for −1≤y≤0,                                         (28) 

T1(y,0) = T0 for −1≤y≤0,                                      (29) 

T2(y,0) = T0 for 0 < y≤1.                                      (30) 

where 0 2
0

1 2

* w

w w

T T
T

T T





 

Boundary and Interface conditions: At t > 0, 

u1(−1,t) = 0 = u2(1,t),                                           (31) 

c(−1,t) = 0,                                                           (32) 

u1(0,t) = u2(0,t),                                                   (33) 

  1 2
1 1 11

u u
n n c m

y y

 
  

 
 at y=0,                     (34) 

  11
,

2

du
c y t

dy
   at y=0,                                    (35) 

T1(−1,t) = 1,                                                         (36) 

T2(1,t) = 0,                                                           (37) 

T1(y,t) = T2(y,t) at y = 0,                                      (38) 

1 2dT dT
K

dy dy
  at y=0.                                          (39) 

3. NUMERICAL SOLUTION 

The system of differential Eqs. (21)-(39) that 

governs the two-fluid flow situation is coupled and 

non-linear in nature, which makes the problem 

difficult for exact solution. Therefore, we implement 

an approach which finds numerical solution for the 

flow problem. One can identify that, the differential 

Eqs. (21), (22) and (24) are not coupled with the 

temperature; thus, once the flow characteristics i.e. 

velocities and microrotation are found from Eqs. 

(21),(22) and (24), the heat transfer characteristics 

can be obtained later on from Eqs. (23) and (25). 

3.1  Velocity and Microrotation 

Distributions 

A numerical approach based on Crank-Nicolson 

method is used to solve the PDEs (21),(22) and (24) 

subject to conditions (26)-(28) and (31)-(35). The 

domain [-1,1] is discretized uniformly with step sizes 

h and k in spatial and temporal directions 

respectively. Let (yi,tj) be a point in the considered 

domain, where i and j denote the spatial and temporal 

discretization parameters respectively. After 

discretization, the spatial domain for each time level 

is represented as i = 0,1,2,3..F − 1,F,F + 1,F + 2...l − 

1,l, where 
2

l
h

 
 
 

 is total number of mesh points in 

the discretized domain and 
2

l
F
 
 
 

 is the interface 
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of two fluids. Note that, the boundary conditions 

(Eqs. (31)-(32)) are to be used at boundaries i = 0 and 

i = l, and, the interface conditions (Eqs. (33)-(35)) are 

to be used at interface i = F. 

The finite difference approximations are used in the 

PDEs (21, 22, 24) and the Crank-Nicolson approach 

is followed. After simplifications, the finite 

difference schemes for distinct regions are found to 

be, 

Region-I: Micropolar fluid region  
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Region-II: Newtonian fluid region 

(i = F +1,F +2,.....l−1) 
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The conditions (26)-(28) and (31)-(35), in 

discretized form, take the form, 

Initial conditions: 

u1i,j = 0, for j = 0 and 0≤i≤F,                               (43) 

u2i,j = 0, for j = 0 and F < i≤l,                              (44) 

ci,j = 0, for j = 0 and 0≤i≤F,                                 (45) 

Boundary and Interface conditions:  

u1i,j = 0 for i = 0 and for all j,                               (46) 

u2i,j = 0 for i = l and for all j,                                (47) 

ci,j = 0 for i = 0 and for all j,                                (48) 

1 1, 1 1 , 1 2 1, 1

, 1

 

   0, 

F j F j F j

F j

Ru Su Tu

Lc

    



  

 
                (49) 

1 1, 1 1 , 1 , 1  0,F j F j F jVu Vu c                       (50) 

where, 

   1 1 1

1
   ,    1  ,   1    ,

2
V R n S n m

h
       

1 1  ,    .T m L n h   

The difference Eqs. (40), (41) and (42) contain 

unknowns of current time level in LHS and the 

known values of previous time level in RHS. After 

imposing the boundary conditions (46)-(48), out of 

total (l + 1) mesh points, we now are left with (l − 1) 

mesh points, where the numerical solution is aimed 

at. 

For each time level j, for i = 1,2,....,l − 1, the Eqs. 

(40)-(42) along with boundary and interface 

conditions Eqs. (46)-(50) compose a linear system of 

order (l +F −1). In the matrix form, this system is 

written as, 

1   ,j jZX YX b    j=0,1,2,…                           (51) 

where X0 is given by initial conditions. 

Here, Z and Y are matrices of banded sparse type. Xj 

is the solution of (l+ F − 1) values at jth time level 

and b = 

(A3, A3, ...A3, 0, 0,...0, 0, A11, A11,...A11)T (3F−1)×1 is the 

known column vector in which middle (F + 1) entries 

are zero. 

The linear system (51) is solved for each time level j 

to obtain the fluid fluid flow characteristics. 

3.2   Rate of Volumetric Flow 

The rate of volumetric flow is given in non-

dimensional form as, 

1 0 1

1 21 1 0
( , ) ( , ) ( , ) .Q u y t dy u y t dy u y t dy

 
       (52) 

Making use of the obtained numerical values of 

velocities u1(y,t) and u2(y,t), the volumetric flow rate 

across the channel is obtained by evaluating the 

integral (52) numerically. 

3.3   Skin-Friction Coefficient 

The expressions for skin friction coefficient at both 

plates are given by (2012), 

at lower plate, 

    1
1 1

1
1

2
1 ,

Re
f

y
y

du
C n n c

dy


 
   

 
 

at upper plate. 
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 
12

21

1

2
,

Re
f

y
y

dum

m
C

dy


 
 





 

Making use of the already obtained values of flow 

characteristics, the skin-friction co-efficient at both 

plates is computed from above expressions. 

3.4   Temperature Distribution 

This section aims at obtaining the numerical solution 

for temperature profiles for the considered two-fluid 

problem from Eqs. (23) and (25) using initial, 

boundary and interface conditions(29, 30, 36, 37, 38, 

39). 

The procedure in section (3.1) is followed for 

temperatures. The difference schemes for 

temperatures in respective flow regions, after 

simplification are given as 

Region-I: Micropolar fluid region 

(i = 1,2,3,.....F − 1) 

 

 

 

 

1 1 1, 1 1 1 , 1 1 1 1, 1

1 1 1, 1 1 , 1 1 1,

2

2 1 1, 1 1,

2

1 1, 1 1 1, 1

2
1 1, 1 1,

3 ,

2
1 1, 1 1 1, 1

, 1

4

1 2

1 2

2
2

2
2

i j i j i j

i j i j i j

i j i j

i j i j

i j i j
i j

i j i j
i j

i

C T C T C T

C T C T C T

C u u

u u

u u
C c

h

u u
c

h

C c

    

 

 

   

 

   




   

   


 




  



  
  

 

  
   
  

  

 

2

1, 1,

2

1, 1 1, 1 ,

j i j

i j i j

c

c c



   







  



        (53) 

Region-II: Newtonian fluid region (i = F + 1,F + 

2,.....l − 1) 

 

 

 

 

5 2 1, 1 5 2 , 1 5 2 1, 1

5 2 1, 5 2 , 5 2 1,

2

6 2 1, 2 1,

2

2 1, 1 2 1, 1

1 2

1 2

,

i j i j i j

i j i j i j

i j i j

i j i j

C T C T C T

C T C T C T

C u u

u u

    

 

 

   

   

   


 




  



      (54) 

  

 

The conditions for temperature, in discretized 

version, are expressed as, 

Initial conditions: 

1 ,0 0iT T  for 0 ,i F                                       (55) 

2 ,0 0iT T  for ,F i l                                        (56) 

Boundary conditions: 

10,   1jT   for all j,                                              (57) 

2 ,   0l jT   for all j,                                             (58) 

Interface condition: for all j, 

 1 1, 1 1 , 1 2 1, 11    0.F j F j F jT K T KT         (59) 

Proceeding similarly as in case of section(3.1), after 

imposing initial, boundary and interface conditions, 

we arrive at the linear system, 

1   ,j jT T    for all j                              (60) 

where Θ and Ξ are matrices of tri-diagonal type of 

order (l − 1), and ϒ is a known vector of (l − 1) 

quantities of fluid flow characteristics. For obtaining 

numerical values of fluid temperatures, the system 

(60) is solved at each time level. 

3.5   Nusselt Number 

The Nusselt number at lower and upper plate are 

respectively given by Ramana Murthy and Srinivas 

(2013), 

  1
1

1
y

y

T
Nu

y


 
  

 
 and 

  2
1

1

.
y

y

T
Nu

y


 
  

 
 

A finite difference approximation has been used to 

compute Nusselt number and its variation with 

pertinent flow parameters is presented through table 

3. 

4. RESULTS AND DISCUSSION 

The model of time dependent two-fluid (Micropolar 

and Newtonian) flow is studied in presence of heat 

transfer effects through a porous channel. The 

magnetohydrodynamic effects are also considered 

while studying the problem. The system of 

differential equations that governs the aforesaid 

model is coupled and nonlinear. Hence, a numerical 

procedure based on Crank-Nicolson method is used 

to obtain the solution. The velocity and microrotation 

are obtained considering the spatial mesh-size to be 

0.005, i.e. taking 401 × 401 grid, whereas, the 

temperature profiles are obtained considering 201 × 

201 grid. The step size in time levels is taken to be 

0.01. Figures 3-22 display the flow and heat transfer 

profiles for different sets of parameters arising in the 

considered fluid flow model. The study concerning 

volume flow rate, skin-friction and Nusselt number 

is displayed by means of tables (1), (2) and (3) 

respectively. Following is the set of fixed values of 

all parameters, while studying the flow and heat 

transfer. t = 0.5, n1 = 0.5, Re = 1, Da = 0.2, M = 2, 

m1 = 0:5, Br = 0:4, K = 2, Pr = 0:4, Cp = 4, G = 5, d 

= 2. The obtained numerical results are validated by 

comparing them in the limiting case of non-MHD, 

non-porous and single Newtonian fluid (M = 0, Da = 

∞, m1 = 1, m2 = 1,n1 = 0) with the exact solutions of 
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Poiseuille flow of Newtonian fluid through a 

horizontal channel (Appendix). It is reported from 

Fig. 2 that a good agreement is seen between the 

limiting solution and the exact solution. 
 

 
Fig. 2. Comparison of the present results with 

the exact solution 

 

 
Fig. 3. Velocity profiles with varying time. 

 

 
Fig. 4. Velocity profiles with varying 

micropolarity parameter. 

 

 
Fig. 5. Velocity profiles with varying Darcy 

number. 

 
Fig. 6. Velocity profiles with varying Reynolds 

number. 

 

 
Fig. 7. Velocity profiles with varying Hartmann 

number. 

 

 
Fig. 8. Velocity profiles with varying viscosity 

ratio. 
 

The impact of micropolarity parameter n1, Reynolds 

number Re, Darcy number Da, Hartmann number M 

and ratio of viscosities m1 on linear velocity is shown 

through Figs. 3-8. Figure 3 presents that, the fluid 

velocities are increasing with time and eventually for 

higher values of time, the flow is attaining steady 

state. The parameter n1 is the micropolarity 

parameter, which represents measure of 

micropolarity effects in the fluid. It is noticed from 

Fig. 4 that, velocity in both regions is decreasing with 

increment of n1. As 
1

1n




 
  
 

 increases, the vortex 

viscosity κ increases which decreases the fluid 

velocity. Though n1 is the feature of micropolar fluid 

alone, nevertheless, n1 is affecting Newtonian fluid 

too in view of continuous fluid velocities and shear 

stresses. This is due to the coupling across the fluid-

fluid interface. However, velocity decays slower in 
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Newtonian fluid region as compared to that of 

micropolar fluid region. The effect of uniform 

porous media is measured by a non-dimensional 

parameter called Darcy number 

*

2
1

,
k

Da
h

 
 
 
 

 

increasing of which leads to porous medium to clear 

medium. Figure 5 displays the increment in fluid 

velocities with the growing values of Darcy number 

Da. The reason being, the higher the Darcy number, 

the more the value of permeability parameter k∗, and 

evidently more permeable porous medium will 

provide a little restriction to the flow causing the 

fluid velocity to increase. As Darcy number goes 

higher and higher, the fluid medium becomes non-

porous. The non-dimensional parameter 1 1

1

Uh
Re




  

is known as Reynolds number which is the ratio of 

inertial to viscous forces. Higher values of Reynolds 

number Re corresponds to lesser viscous forces in the 

fluid medium. As Reynolds number increases, there 

is a reduction in the viscous forces and hence 

increasing trend is seen in fluid velocities (see Fig. 

6). The parameter 

2 2
0 1

1

H h
M




  is known as 

Hartmann number and it measures the effects of 

applied transverse magnetic field. Figure 7 suggests 

that, increase of Hartmann number causes the 

velocity fields to decrease. This may be be due to the 

presence of applied transverse magnetic field acting 

on both plates, creating resistance to the fluid flow 

by means of the Lorentz force, which tend to pull the 

fluid velocities back. The increasing values of 

viscosity ratio cause a decline in velocities of fluids 

(see Fig. 8). 

The behaviour of microrotation is shown through 

Figs. 9-14. Microrotation is also increasing with time 

and reaching steady state after a higher time level 

(see Fig. 9). It is depicted from Fig. 10 that, increase 

of micropolarity parameter n1 causes a decrease in 

microrotation. It is evident from Figs. 11 and 13 that, 

increasing Darcy number leads to significant 

increase in microrotation, while increase in 

Hartmann number reduces the same. It is noted from 

Fig. 12 that, microrotation is increasing function of 

Reynolds number. Figure 14 presents that, 

incrementing of ratio of viscosities increases the 

microrotational velocity. However, the increase is 

much lower in magnitude. 

 
Fig. 9. Microrotation profiles with varying time. 

 
Fig. 10. Microrotation profiles with varying 

micropolarity parameter. 

 

 
Fig. 11. Microrotation profiles with varying 

Darcy number. 

 

 
Fig. 12. Microrotation profiles with varying 

Reynolds number. 

 

 
Fig. 13. Microrotation profiles with varying 

Hartmann number. 
 

Figures 15-22 depict the effects of several 

parameters on heat transfer profiles. The viscous 

dissipation terms, which are nonlinear and dependent 

on the flow characteristics are not ignored during the 
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study. It is found from Fig. 15 that, temperature is 

growing with time in both fluid regions and is 

entering into a steady state. Figure 16 suggests that, 

the increasing micropolarity parameter n1 is found to 

promote the temperature. However, the rate of this 

promotion is much leisure. Since the fluid velocities 

and microrotation are decreasing with increasing n1, 

the energy dissipation from this flow fields 

decreases, and hence the temperature increases. 

Darcy number promotes the temperature fields (see 

Fig. 17). On the other hand, Hartmann number shows 

exactly opposite nature as that of Darcy number, i.e. 

temperature in both fluid regions got diminished by 

growing Hartmann number (see Fig. 19). Figure 18 

depicts the effect of Re on heat transfer. In both flow 

regions, increase of Reynolds number causes the 

temperature profiles to increase. 

 

 
Fig. 14. Microrotation profiles with varying ratio 

of viscosities. 

 

 
Fig. 15. Temperature profiles with varying time. 

 

 
Fig. 16. Temperature profiles with varying 

micropolarity parameter. 

 
Fig. 17. Temperature profiles with varying 

Darcy number. 

 

 
Fig. 18. Temperature profiles with varying 

Reynolds number. 

 

 
Fig. 19. Temperature profiles with varying 

Hartmann number. 

 

 
Fig. 20. Temperature profiles with varying 

Prandtl number. 

 

Fluid temperatures are found to be increasing with 

Brinkmann number. Brinkman number Br is the ratio 

of heat produced by viscous dissipation and heat 

transported by molecular conduction. The  
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Table 1 Volume flow rate for various values of fluid parameters 

n1 Q  Re Q  Da Q 

0.3 0.7261  0.5 0.3538  0.1 0.5558 

0.5 0.7075  1 0.7075  0.2 0.7075 

0.7 0.6909  1.5 1.0585  0.3 0.7792 

0.9 0.6759  2 1.3982  0.4 0.8210 
 

M Q  M1 Q  t Q 

1 0.9331  0.3 0.8335  0.3 0.7041 

2 0.7075  0.5 0.7075  0.5 0.7075 

3 0.5065  0.7 0.6343  1 0.7076 

4 0.3638  0.9 0.5863  1.2 0.7076 

 

 

greater its value of Br, the larger the rise in 

temperature. The same can be witnessed from Fig. 

21. Figure 22 shows that, the thermal conductivity 

ratio is having a declining influence on temperature 

fields in both flow regions. Fluid temperatures with 

diverse values of Prandtl number can be noted from 

Fig. 20. The Prandtl number Pr is the non-

dimensional number which quantifies the relative 

importance of viscosity and thermal conductivity. It 

is defined as the ratio of momentum to thermal 

diffusivity. Thus, as Pr increases, the viscous forces 

dominates over thermal forces resulting a decline in 

temperature. The same is evident from Fig. 20. 

 

 
Fig. 21. Temperature profiles with varying 

Brinkmann number. 

 

 
Fig. 22. Temperature profiles with varying ratio 

of thermal conductivities. 

 

Table 1 unveil the numerical values for volume flow 

rate. It is observed that, volume flow rate falls down 

with the increasing n1. As n1 increases, velocity is 

decreasing, which lead to the noticed fall in the 

volume flow rate. A significant increase can be noted 

in volume flow rate with the increasing values of 

Reynolds number. The velocity fields are increasing 

with increasing values of Reynolds number, and 

hence there is a rise in volume flow rate. Hartmann 

number and Darcy number are having opposite 

impact on volume flow rate, which is quite obvious 

because increasing Hartmann number resists the 

flow and increasing Darcy number promotes the 

flow. Volume flow rate grows as time progresses and 

becomes constant after certain time value which 

confirms the fact that the fluid flow reaches steady 

state after certain time level. 

As the fluid flows over plates, it applies frictional 

force on the surface of the plates which works to 

impede forward movement of the plates, hence 

imparting skin friction drag on the object. This drag 

is measured by skin-friction co-efficient. Table 2 

depicts that, at lower plate of the channel, skin 

friction increases with micropolarity parameter and 

Darcy number whereas it decreases with the 

increasing values of Reynolds number, Hartmann 

number and viscosity ratio. At upper plate, 

increasing values of n1, Re, M and m1 are responsible 

for the increase of skin friction co-efficient. Darcy 

number reduces the same at upper plate. Skin friction 

co-efficient when varied with time, at lower plate, it 

got enhanced, and at upper plate, got reduced, and 

become constant eventually at both the plates. 

Table 3 displays the behaviour of Nusselt number at 

the channel plates. At lower plate, Nusselt number is 

enhanced by the enhancement of micropolarity 

parameter, Hartmann number, ratio of viscosities and 

time, while Nusselt number is reduced with 

Reynolds number, Brinkmann number, Darcy 

number, Prandtl number and ratio of specific heats. 

On the other hand, at upper plate, Nusselt number 

grows with the increase of micropolarity parameter, 

Reynolds number, Brinkmann number and Darcy 

number. Further, Hartmann number, ratio of 

viscosities and time are having reducing impact on 

Nusselt number at upper plate. 

5. CONCLUSIONS 

The unsteady MHD flow and heat transfer of 

immiscible micropolar and Newtonian fluids  
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Table 2 Skin friction co-efficient for various values of fluid parameters 

n1  
1

C f
y=-

  
1

C f
y=

 Re  
1

C f
y=-

  
1

C f
y=

 

0.3 3.3694 -4.8868 0.5 3.6008 -4.8819 

0.5 3.5999 -4.8817 1 3.5999 -4.8817 

0.7 3.8043 -4.8769 1.5 3.5875 -4.8764 

0.9 3.9872 -4.8726 2 3.5510 -4.8566 
 

Da  
1

C f
y=-

  
1

C f
y=

 M  
1

C f
y=-

  
1

C f
y=

 

0.1 2.9553 -4.1564 1 4.2031 -6.3228 

0.2 3.5999 -4.8817 2 3.5999 -4.8817 

0.3 3.9065 -5.2057 3 2.9554 -3.6641 

0.4 4.0859 -5.3899 4 2.4159 -2.8192 
 

m1  
1

C f
y=-

  
1

C f
y=

 t  
1

C f
y=-

  
1

C f
y=

 

0.3 3.6090 -4.1085 0.3 3.5783 -4.8718 

0.5 3.5999 -4.8817 0.5 3.5999 -4.8817 

0.7 3.5952 -5.3696 1 3.6009 -4.8819 

0.9 3.5923 -5.7221 1.2 3.6009 -4.8819 

 
Table 3 Nusselt number for various values of fluid parameters 

n1  
1y=-

Nu   
1y=

Nu   Re  
1y=-

Nu   
1y=

Nu   Br  
1y=-

Nu   
1y=

Nu  

0.3 0.1891 0.4578  0.5 0.5549 0.3650  0.2 0.4281 0.4033 

0.5 0.2042 0.4584  1 0.2042 0.4584  0.4 0.2042 0.4584 

0.7 0.2199 0.4588  1.5 -0.3526 0.5992  0.6 -0.0197 0.5135 

0.9 0.2356 0.4590  2 -1.0544 0.7582  0.8 -0.2436 0.5687 
 

Da  
1y=-

Nu   
1y=

Nu   M  
1y=-

Nu   
1y=

Nu   Pr  
1y=-

Nu   
1y=

Nu  

0.1 0.3900 0.4188  1 -0.0370 0.5571  0.2 0.2151 0.4516 

0.2 0.2042 0.4584  2 0.2042 0.4584  0.4 0.2042 0.4584 

0.3 0.0961 0.4795  3 0.3954 0.4004  0.6 0.1854 0.4778 

0.4 0.0269 0.4925  4 0.5085 0.3737  0.8 0.1675 0.5006 

 

m1  
1y=-

Nu   
1y=

Nu   t  
1y=-

Nu   
1y=

Nu   CP  
1y=-

Nu   
1y=

Nu  

0.3 0.1778 0.4671  0.3 0.188 0.4856  2 0.2137 0.4511 

0.5 0.2042 0.4584  0.5 0.2042 0.4585  4 0.2042 0.4584 

0.7 0.2197 0.4481  1 0.2129 0.4496  6 0.1868 0.4814 

0.9 0.2299 0.4395  1.2 0.2131 0.4493  8 0.1669 0.5122 

 

 

through a channel filed with porous medium has 

been investigated. The Crank-Nicolson finite 

difference technique has been employed to acquire 

the numerical solution. 

The main outcomes of the current work are presented 

hereunder: 

• The obtained numerical results are found 

to be in good agreement, in the limiting case, with 

the exact solution of Newtonian fluid flow. 

• After increasing with time initially, the 

fluid velocities, microrotation and fluid temperatures 

are increasing with time and attaining steady state at 

certain higher time level. 

• The presence of micropolarity effects are 

reducing fluid velocities. 

• The fluid temperatures are promoted by 

increasing micropolarity parameter. 

• The Brinkmann number is increasing the 

temperature profiles while the Prandtl number is 

lessening it. 
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APPENDIX 

The governing equations for the steady flow of single 

Newtonian fluid through the horizontal channel (Fig. 

1) are simplified as 

2

2
0

dp d u

dx dy
                                                  (61) 

with the boundary conditions, 

 1 0.u h                                                           (62) 

Using the non-dimensional scheme (20), the Eqs. 

(61) and (62) become 

2

2
0

d u
ReG

dy
                                                    (63) 

with  1 0.u                                                              (64) 

The exact solution of the boundary value problem 

Eqs. (63)-(64) is obtained as 

  21 .
2

ReG
u y y  

 
                                         (65) 

 


