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ABSTRACT 

This paper seeks to make a study on flow control in two-dimensional square cavities having obstacles on their 

walls. The goal of using these passive controllers is to enhance mixing in an enclosed space. Lattice Boltzmann 

method is used to simulate the problem. Results are presented for various Reynolds numbers, 400 ≤ 𝑅𝑒 ≤
4000 and different arrangements of tiny-obstacles with different heights. To give a perspective on the physics 

of this problem, time evolution of the flow is studied at 𝑅𝑒 =  1000. Then, the flow structure is studied for 

different Reynolds numbers. Findings show that the interaction of the main vortex with the tiny-obstacles 

inserted on the wall cavity changes the flow pattern at higher Reynolds numbers totally which is of high 

importance for mixing, such that the main primary vortex turns into a scooplike vortex along the upper wall. 

Also, merging the two bottom corner vortices forms a main secondary vortex which fills the cavity. Results 

show that obstacles heights and the gap between the upper wall and the upper obstacle are key parameters from 

flow control and mixing viewpoint. Also, the number of tiny-obstacles can be considered as another tool in this 

regard. The spaces between the obstacles don’t have much influence on the flow behavior. Obstacles with 𝛿 ≤
2% don’t change the flow field and can’t be considered as a flow control tool. 

Keywords: Flow control; Mixing enhancement; Lid-driven cavity; Tiny-obstacle; Scooplike vortex; Lattice 

boltzmann method. 

NOMENCLATURE 

𝑐 basic speed on the lattice 

𝑒𝛼 discrete lattice velocities 

𝑓𝛼 distribution function 

𝑓𝛼
𝑒𝑞

equilibrium distribution function 

𝐿 width of square cavity 

𝑃 pressure 

𝑅𝑒 Reynolds number 

𝑡 time 

𝑈 velocity of the cavity upper wall 

𝑢 velocity in 𝑥 − direction 

𝑣 velocity in 𝑦 − direction 

𝑤𝛼 weight factor in the 𝛼 direction 

𝛼 direction of the link 

𝛿 percentage of the obstacle height based on 

the cavity length 

𝜈 kinematic viscosity 

𝜌 density 

𝜏 relaxation time 

Ω𝛼 collision operator 

1. INTRODUCTION

The lid-driven cavity flow and heat transfer within it 

are topics of great interest due to their frequent use 

in many applications. The understanding of the 

recirculating flow within the cavity is one of the 

fundamental challenges of flow control field, mixing 

and computational fluid dynamics (CFD) research. 

This problem is often experienced in many 

engineering and industrial applications, such as solar 

ponds, cooling of electronic devices, heat 

exchangers, ventilation and air conditioning 

(HVAC) systems, materials processing, crystal 

growth, dynamics of lakes and metal coating and 

casting and therefore has been studied extensively 

(Chang and Chen 1999; Siegel and Nazaroff 2003; 

Saha et al. 2008; Sidik and Rahman 2009; 

Mustafizur et al. 2011). The first major researches of 

two-dimensional lid-driven cavity flows are done by 

Burggraf (1996) for the square cavity and by Pan and 

Acrivos (1967) for other geometrical aspect ratios. 

Their findings were extended by Goodrich et al. 
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1990; Shen (1991); Miller (1995) who numerically 

calculated the time-dependent two-dimensional 

cavity flows.  

Many studies are directed to steady solution of the 

driven cavity and have presented the numerical 

solution of steady incompressible Navier-Stokes 

equations. Benjamin & Denny (1979); Ghia et al. 

(1982); Schreiber and Keller (1983); Liao & Zhu 

(1996); Barragy and Carey (1997); Erturk et al. 

(2005); Erturk and Gokcol (2006) have presented 

solutions of steady 2-D incompressible flow in a 

driven cavity for 𝑅𝑒 ≤ 10000 . Also, researches 

carried out by Fortin et al. (1997); Gervais et al. 

(1997); Sahin and Owens (2003); Abouhamza and 

Pierre (2003) are examples of two-dimensional 

hydrodynamic stability studies on driven cavity 

flows. 

There are very few experimental studies in the 

literature on the driven cavity flow. Koseff & Street 

(1984a, 1984b, 1984c) Prasad & Koseff (1989); 

Znaien et al. (2012); Fernado et al. (2014) have done 

several experiments on three dimensional driven 

cavity. 

In engineering applications, the geometries that exist are 

more complicated than a simple enclosure filled with a 

fluid. The geometric configuration of interest is with the 

presence of bodies set within the enclosure (Lacroix 

1992; Ghaddar and Thiele 1994; Saha 2000). Numerous 

investigations applying different methods of solution on 

lid-driven cavity flow involving various combinations 

of cavity configurations and various fluids have been 

published in the literature. Mercan and Atalık (2009) 

studied high-Reynolds number lid-driven flow in arc-

shape cavities with different cross sections up to Re = 

8000. Yang et al. (2014) analyzed the flow pattern in a 

two-dimensional lid-driven semi-circular cavity based 

on multiple relaxation time lattice Boltzmann method 

(MRT LBM). Kalita and Gogoi (2014) carried out a 

global stability analysis of the flow inside a two sided 

staggered lid-driven cavity for both the parallel and anti-

parallel motions of the lids. Vicente et al. (2011) studied 

spanwise-periodic double-sided lid-driven cavity flows 

with complex cross-sectional profiles. Montessori et al. 

(2014) studied the exactness and performance of the 

regularized version of the single-relaxation-time lattice 

Boltzmann equation for the case of two- and three-

dimensional lid-driven cavities. The regularized version 

showed to provide a considerable gain in stability over 

the standard single-relaxation time, at a moderate 

computational overhead.  

One of the most important applications of this 

problem is in heat transfer engineering. In this 

Regard, several investigators have dealt with 

conjugate heat transfer inside an enclosure with the 

presence of a body. Nikfar and Mahmoodi (2012) 

investigated laminar natural convection of Al2O3–

water nanofluid in a cavity with wavy side walls. 

House et al. (1990) numerically examined the effect 

of a centered, square, heat conducting body on 

natural convection in a vertical square enclosure. 

Lacroix and Joyeux (1995); Oh et al. (1997); Shuja 

et al. (2000); Mustafizur Rahman et al. (2008); 

Zheng et al. (2013); Yapicia and Obut (2015) are 

those who studied mixed convection heat transfer in 

cavities with different conditions. 

 Previous researches show that although lid-driven 

cavities have been studied in a great deal, but most 

of them include physical phenomena study for 

different shapes and geometries. So, studying this 

problem from flow control and mixing augmentation 

viewpoint has been less notified, by now. Therefore, 

the main purpose of the current research is to study 

the problem from practical aspects and analyze the 

flow physics and heat transfer in cavities with details 

in order to find effective flow control parameters 

which lead to mixing augmentation. To this end, the 

findings are presented in two parts. In the first part 

which is performed in this paper, the flow physics 

along with different flow control parameters are 

studied, while the second part focuses on the of 

effects of tiny-obstacles on mixing enhancement and 

heat transfer in an enclosed cavity.  

In continuance, section 2 presents the problem and 

the governing equations. In section 3, the lattice 

Boltzmann method and boundary conditions are 

performed. In section 4, the results are validated and 

then, physics in time evolution and effects of 

Reynolds number on the flow dynamics are studied. 

Additionally, effects of different control parameters 

are explained completely.   

 

 
Fig. 1. A schematic configuration of a square 

cavity with obstacles on three walls. 
 

2. PROBLEM DESCRIPTION 

Fig. 1 shows a schematic configuration of a two-

dimensional square cavity with obstacles on three 

walls which are stationary. The top wall has no 

obstacle and experiences a constant velocity of 

magnitude 𝑈. It is assumed that the fluid in the cavity 

is isothermal, Newtonian and incompressible with 

constant properties.  

The equations governing the fluid flow are the 

Navier-Stokes equations. These equations are as 

follow in Cartesian-coordinates (Mendu and Das 

2013): 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                           (1)     

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2),          (2)    
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𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
),             (3)  

in which, 𝑢  and 𝑣  are the velocities in 𝑥 −  and 

𝑦 − directions, respectively, 𝜈  is the kinematic 

viscosity, 𝜌 is the density and p is the pressure.  

3. NUMERICAL METHOD 

3.1.   LBM with BGK Approximation   

The lattice Boltzmann method (LBM) has achieved 

much success in simulating hydrodynamic problems. 

Unlike conventional computational fluid dynamics 

(CFD) methods which are based on macroscopic 

continuum equations, the LBM solves mesoscopic 

kinetic equations that include the essential physics to 

determine macroscopic fluid flow properties. The 

LBM uses only local data communication to update 

a particle distribution function 𝑓𝛼(𝑥, 𝑡) at each time 

step. In the LBM, particle density distribution 

functions 𝑓𝛼(𝑥, 𝑡)  at point 𝑥 at time 𝑡 are confined 

to move synchronously on a regular lattice, where 𝛼 

denotes the direction of the lattice link. The 

distribution functions interact on the lattice in a way 

that conserves mass, momentum, isotropy, and 

Galilean invariance (Mendu and Das 2013). Here, we 

assume a two-dimensional and nine-velocity (D2Q9) 

lattice for simulation which is illustrated in Fig. 2. 

 

 
Fig. 2. Two-dimensional and nine velocity D2Q9 

model. 

 

In terms of the distribution function, the general 

discrete Boltzmann equation (Chen and Doolen 

1998) is: 

𝑓𝛼(𝑥 + 𝑒𝛼∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝛼(𝑥, 𝑡) + 𝛺𝛼(𝑥, 𝑡),         (4) 

where, 𝑒𝛼 represents discrete lattice velocities in the 

direction of link 𝛼. In addition,  

𝑒𝛼 = (0,0)        𝛼 = 0,                                                   (5)  

𝑒𝛼 = [𝑐𝑜𝑠 (
𝜋

2
(𝛼 − 1)) , 𝑠𝑖𝑛 (

𝜋

2
(𝛼 − 1))] ,     𝛼 =

1, 2, 3, 4                                                                          (6)  

𝑒𝛼 = √2 [𝑐𝑜𝑠 (
𝜋

2
(𝛼 − 1) +

𝜋

4
) , 𝑠𝑖𝑛 (

𝜋

2
(𝛼 − 1) +

𝜋

4
)] , 𝛼 = 5, 6, 7,                                                                     (7) 

where, 𝑓𝛼(𝑥, 𝑡)  is the particle density distribution 

function and 𝛺𝛼(𝑥, 𝑡) is the collision operator (Chen 

and Doolen 1998; Succi 2001) as 

𝛺𝛼(𝑥, 𝑡) = −
1

𝜏
[𝑓𝛼(𝑥, 𝑡) − 𝑓𝛼

𝑒𝑞(𝑥, 𝑡)],                       (8)    

in which, 𝜏 is the relaxation time. The equilibrium 

distribution function for D2Q9 lattice model is given 

by   

𝑓𝛼
𝑒𝑞(𝑥, 𝑡) = 𝑤𝛼𝜌 (1 + 3

𝑒𝛼𝑢

𝑐2
+

9

2

(𝑒𝛼𝑢)2

𝑐4
−

3

2

𝑢2

𝑐2
),      (9)  

in which, 𝑤𝛼 is the weight factor in the 𝛼 direction. 

The weight factors for the D2Q9 model are 4/9 for 

particles at rest (𝛼 = 0), 1/9 for particles streaming 

to face-connected neighbors (𝛼 =  1, 2, 3, 4) , and 

1/36  for particles streaming to edge-connected 

neighbors (𝛼 =  5, 6, 7, 8); 𝑐 is the basic speed on the 

lattice. 

Macroscopic variables such as density and velocity 

can be obtained from the momentum integration of 

the particle density distribution functions as  

𝜌 = ∑ 𝑓𝛼 ,8
𝛼=0                                                               (10a) 

𝑢 =
1

𝜌
∑ 𝑓𝛼𝑒𝛼 .8

𝛼=0                                                        (10b) 

The pressure can be calculated from 𝑝 = 𝜌𝑐𝑠
2  and 

𝑐𝑠 = 1/√3. The kinematic viscosity in relation to the 

relaxation factor is given by 

𝜈 =
2𝜏−1

6
.                                                                      (11)  

 

 
Fig. 3. Known and unknown particle density 

distributions for the boundaries of the cavity. 

 

3.2. Boundary Conditions 

Performance of the LBM boundary conditions is simple 

compared to conventional CFD techniques. To perform 

boundary conditions, we have to calculate suitable 

unknown distribution functions from known 

distribution functions (Mendu and Das 2013). Fig. 3 

illustrates the known (solid lines) and unknown (dotted 

lines) particle density distribution functions on all walls 

of the cavity. We performed the standard bounceback 

boundary conditions (Hou et al. 1995) on all fixed solid 

walls to calculate the unknown particle distribution 

functions. The particle density distribution functions on 

the left wall of the cavity are (Mendu and Das 2013): 

𝑓1 = 𝑓3,       𝑓5 = 𝑓7,      𝑓8 = 𝑓6.                                   (12) 
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       (a)                              (b) 

Fig. 4. Comparison of velocity profiles for different grid sizes: a) normalized of 𝒖- velocity component 

along vertical line through geometric center, b) normalized of 𝒗_ velocity component along horizontal 

line through geometric center in a cavity with two obstacles on the walls; 𝑹𝒆 = 𝟒𝟎𝟎𝟎 and 𝜹 = 𝟑%. 

 

The particle distribution functions on the right wall 

of the cavity are (Mendu and Das 2013): 

𝑓3 = 𝑓1,       𝑓6 = 𝑓8,      𝑓7 = 𝑓5.                                   (13) 

The particle distribution functions on the bottom wall 

of the cavity are (Mendu and Das 2013): 

𝑓2 = 𝑓4,       𝑓5 = 𝑓7,      𝑓6 = 𝑓8.                                   (14) 

On the moving wall, the equilibrium distribution 

functions are used to compute the unknown particle 

distribution functions. The particle density 

distribution functions on the moving wall are 

(Mendu and Das 2013): 

𝑓4 =
1

9
𝜌 [1 − 3𝑣 +

9

2
𝑣2 −

3

2
(𝑢2 + 𝑣2)],                (15)  

𝑓7 =
1

36
𝜌 [1 + 3(−𝑢 − 𝑣) +

9

2
(𝑢 + 𝑣)2 −

3

2
(𝑢2 +

𝑣2)],                                                                      (16) 

𝑓8 =
1

36
𝜌[1 + 3(𝑢 − 𝑣) +

9

2
(𝑢 − 𝑣)2 −

3

2
(𝑢2 +

𝑣2)].                                                                                      (17)      

4. RESULTS AND DISCUSSIONS 

In this section, findings of the present study are 

illustrated. First, the results are validated with the 

results related to standard cavity reported by other 

researchers. In continuance, physics of flow in time 

evolution is studied. In the later sections, effects of 

Reynolds number, obstacles heights, numbers of 

obstacles, the space between upper wall and the 

upper obstacle and the space between obstacles are 

investigated. 

4.1. Verification and Validation of LBM 

Code 

Grid resolution study was performed to check grid 

independency of the results. In this regard, the cavity 

with two obstacles on the walls and 𝛿 = 3% (δ is the 

percentage of the obstacles height based on the 

cavity length) was chosen.  To show grid indecency 

of the results, the centerline 𝑢 −  and 𝑣 −  velocity 

profiles were examined over four different grid sizes 

of 75×75, 100×100, 150×150 and 175×175 as 

illustrated in Fig. 4. The cavity Reynolds 

number  𝑅𝑒 =
𝑈𝐿

𝜈
= 4000, where 𝐿  is the width of 

the square cavity, 𝑈 is the velocity of upper wall and 

𝜈  is the kinematic viscosity. Comparison of the 

profiles demonstrates that the grid size of 100×100 

is appropriate to simulate the flow structure.  

In addition, observation is directed toward lid-driven 

flows in square cavities. Simulations are first applied 

for a standard cavity with different Reynolds 

numbers. In order to examine the results, the 

centerline 𝑢 −  and 𝑣 −  velocity profiles for two 

different values of Reynolds number are compared 

with the results by Ghia et al. (1982) in Fig. 5a and 

Fig. 5b. Comparison between present results and 

those reported by Ghia et al. (1982) shows excellent 

consistency which demonstrates the precision of the 

results. In addition, Fig. 5c and Fig. 5d illustrate flow 

patterns in standard cavities in two mentioned 

different Reynolds numbers. 

4. 2.  Physics of the Flow in Time Evolution 

To give a perspective of flow pattern, Error! 

Reference source not found. illustrates time 

evolution of flow behavior in a cavity when it has 

two obstacles on each wall with the 𝛿 = 5% (𝛿 is the 

percentage of the obstacles height based on the 

cavity length). As it can be seen, in the first seconds, 

the movement of the upper wall affects the fluid in 

its neighbor and creates a small vortex there. By 

increasing the time, 𝑡 =  0.3𝑠, a separation bubble is 

appeared between two obstacles in the right hand 

side. The core of this separation bubble is near the 

upper obstacle. At time 𝑡 =  0.4𝑠, this bubble has 

grown toward the lower part of the obstacle and at 

𝑡 =  0.5𝑠, this bubble grows and is drawn to the left 

hand side which creates a rotational zone that 

contains all the back area of the main vortex. The 

separated area grows by time and has tendency to 

merge with the right corner vortex of the bottom and 

then gradually, moves to the center of the cavity. At 

𝑡 =  0.6𝑠 , this merged vortex unites with the left 

corner vortex and contains all the lower part of the  
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(a)                                                                      (b) 

 

 

                
(c)                                                                     (d) 

Fig. 5. Comparison of velocity profiles of a standard cavity with the results reported by Ghia et al. 

(1982) for various Reynolds numbers: a) normalized of 𝐮- velocity component along vertical line 

through geometric center, b) normalized of 𝒗_ velocity component along horizontal line through 

geometric center, c) flow pattern in standard cavity for 𝑹𝒆 = 𝟒𝟎𝟎, d) flow pattern in standard cavity; 

𝑹𝒆 = 𝟏𝟎𝟎𝟎. 
 

 

cavity. As can be seen clearly, there is a saddle point 

at left where these two vortices meet each other. At 

𝑡 =  0.7𝑠 , the saddle point has disappeared. By 

increasing time, the new created vortex has grown 

more and its core will move to the left hand side, 

gradually. At 𝑡 =  1.2𝑠, a vortex appears in the right 

corner of the bottom. By passing time, two vortices 

are organized in the corners of the bottom which can 

be seen at 𝑡 = 1.5𝑠. The secondary vortex will grow 

more by time and its core will move toward the upper 

wall. Finally, at 𝑡 =  20𝑠, this process will cause to 

have two vortices in the cavity, one scooplike vortex 

in the upper part of the cavity which is driven by the 

lid surface and another in the lower part in a counter 

direction driven by the upper vortex. The scooplike 

vortex which is in the space between the upper wall 

and upper obstacle has high frequency and 

exchanges its momentum to the secondary vortex. 

During this process, the position of the center of the 

upper vortex is fixed up to t = 4s, approximately. 

4. 3.   Effect of Reynolds Number 

To have a better understanding of the flow field, 

effects of Reynolds number on flow pattern are 

investigated. For this purpose, the cavities with the 

same arrangement and having two obstacles on each 

wall are considered. Fig. 6 shows that when 𝑅𝑒 =
400, two corner vortices of the bottom have merged 

into a unit vortex and it has a saddle point in the left 

hand side. This new vortex has two cores; one in the 

right hand and the other in the left hand side of the 

cavity. When Reynolds number increases to 600 , 

this created vortex has grown in size, has one core in 

the right hand and its saddle point is disappeared. 

Also, a small vortex can be seen in the right bottom 

corner. Increasing Reynolds number more, causes 

the secondary vortex to grow more and its core 

moves to the left. Finally, in 𝑅𝑒 =  1000 , the 

primary vortex is moved to the top right and lay in 

the space between the upper wall and the upper 

obstacle. This vortex has high frequency and 

exchanges its momentum to the secondary vortex 

which rotates in a counter direction. For 𝑅𝑒 ≥ 900, 

two vortices can be seen in the bottom corners, too.  

4. 4.   Effect of Obstacles 

This section underlines the effects of obstacles on the 

flow pattern in cavities having obstacles on their  
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𝑅𝑒 =  400                                                                             𝑅𝑒 =  600 

 

                  
𝑅𝑒 =  900                                                                              𝑅𝑒 =  1000 

Fig. 6. Effects of Reynolds number on the flow field in cavities with two obstacles on each 

wall with 𝜹 = 𝟓%. 

 

walls. So, in part (a), cavities with 𝛿 = 2%  and 

different numbers of obstacles are considered. Part 

(b) regards obstacles with 𝛿 ≥ 3%  and various 

arrangements. 

Part a) Obstacles with  𝜹 = 𝟐% 

Streamline patterns of the flow in cavities with one and 

two obstacles on each wall are illustrated in Fig. 7a to 

Fig. 7f. In these cases, flow pattern is similar to the 

standard cavity (having no obstacles). It is implied from 

these figures that by increasing the Reynolds number, a 

small vortex would appear on the top left corner and two 

corner vortices of the bottom grow, as was expected 

(Fig. 7c and Fig. 7f). Consequently, obstacles with 𝛿 =
2% don’t have considerable effect on the flow pattern 

in comparison with the standard cavity. In other words, 

the flow can’t sense the obstacles in the cavity. 

Therefore, the obstacles with 𝛿 ≤ 2%  can’t be 

considered as a flow control tool in such cavities and 

cannot alter the heat transfer coefficients or mixing 

characteristics effectively. For this reason, the cavities 

having obstacles with 𝛿 ≥ 3% are investigated. 

Part b) Obstacles with 𝜹 ≥ 𝟑% 

In this part, effects of different parameters such as 

obstacle heights, obstacle numbers and the space 

between the obstacles are studied. To investigate the 

effects of the obstacles height on the flow pattern, 

two cases of cavities,  δ = 3%  and δ = 5% , are 

considered. 

Flow patterns in cavities with one obstacle arranged, 

irregularly on each wall are illustrated in Fig. 8. As 

demonstrated in this figure, for 𝛿 = 3% , the global 

flow pattern is like standard cavity. However, 

enlargement of the obstacles height controls the flow 

pattern, such that when 𝑅𝑒 = 400 , the two corner 

vortices of the bottom merge into a secondary vortex 

and a saddle point forms in the left hand side (compare 

Fig. 8a and Fig. 8d). As the Reynolds number increases 

further by enlarging the height of the obstacles, the left 

vortex of the merged vortices grows in size and the 

saddle point moves toward up right hand side. Finally, 

for 𝛿 = 5%  when Reynolds number increases from 

1000 to 4000, the structure of the flow pattern will 

change drastically as illustrated in Fig. 8f. In this case, 

the saddle point disappears and a main secondary vortex 

is created which fills the whole cavity. In addition, two 

vortices appear in bottom corners and the main primary 

vortex moves to the top right hand side and forms a 

scooplike one. Another important point that should be 

considered is that two bottom corner vortices in Fig. 8f 

are mirror in shape and opposite direction with two 

bottom corner vortices in Fig. 8c. As a consequence, 

enlargement of the obstacles height has a great effect on 

the control of the flow in such cavities and can be 

considered as a key parameters in heat transfer and 

mixing problems.   

To continue, effects of obstacles numbers on the flow 

control in the cavity is investigated. In this regard,  
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   (a)                                                          (b)                                                          (c) 

 

      
                    (d)                                                       (e)                                                       (f)  

                  𝑅𝑒 =  400                                                𝑅𝑒 =  1000                                              𝑅𝑒 =  4000 

Fig. 7. Flow patterns for condition of one (top) and two obstacles (bottom) on each wall of a square 

cavity with 𝜹 = 𝟐%. 

 

       
(a)                                                         (b)                                                      (c)  

𝛿 = 3% 

 

       
(d)                                                               (e)                                                               (f) 

𝛿 = 5% 

𝑅𝑒 =  400                                          𝑅𝑒 =  1000                                                    𝑅𝑒 =  4000 

Fig. 8. Flow patterns for condition of irregular arrangement of three obstacles in a square cavity with 

𝜹 = 𝟑% and 𝜹 = 𝟓%. 
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(a)                                                      (b)                                                        (c)  

𝛿 = 3% 

 

     
(d)                                                     (e)                                                              (f) 

𝛿 = 5% 
𝑅𝑒 =  400                                               𝑅𝑒 =  1000                                                      𝑅𝑒 =  4000 

Fig. 9. Flow patterns for condition of two obstacles on each wall of a square cavity with 𝜹 = 𝟑% and 

𝜹 = 𝟓%. 

 

 
                        (a)                                                       (b)                                                        (c) 

Fig. 10. Flow patterns for condition of cavities with obstacles with 𝜹 = 𝟓% and 𝑹𝒆 =  𝟏𝟎𝟎𝟎, a) one 

obstacle b) two obstacles and c) three obstacles on each wall. 

 

flow patterns in cavities with one, two and five 

obstacles on each wall are considered which will be 

discussed as follow. 

Fig. 9 presents the flow pattern in cavities with two 

obstacles on each wall. Comparison of Fig. 8 and 

Fig. 9 shows that in 𝑅𝑒 = 400, there is no difference 

between the flow patterns for δ = 3%  and 5% . 

However for higher Reynolds numbers this is not the 

case. As can be seen from Fig. 8 and Fig. 9, for 𝛿 =
3% the flow structure for 𝑅𝑒 = 1000 are the same 

(compare Fig. 8b and Fig. 9b). While for 𝑅𝑒 =
4000 , the flow pattern is completely different 

(compare Fig. 8c and Fig. 9c). This is vice versa for 

𝛿 = 5% (compare Fig. 8e and Fig. 9e, Fig. 8f and 

Fig. 9f).  

The flow pattern in Fig. 9c exhibits that two corner 

vortices of the bottom have merged into a unit vortex 

with a saddle point near center and two cores in both 

sides. Also, a vortex is observed in the bottom left 

hand side. 

To study the effects of numbers of obstacles on the 

flow pattern in such cavities, three different cases are 

investigated in Fig. 10. In case (a) there is one 

obstacle on each wall. The two corner vortices of the 

bottom are merged into a unit vortex with two cores 

in the right and left hand sides and a saddle point near 

the center. In case (b) the space between the upper 

wall and the upper obstacle is equal to the 

corresponding space in case (a) but the number of 

obstacles is increased to two. In this case, the corner  
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(a)                                                         (b)                                                      (c)  

𝛿 = 3% 
 

       
(d)                                                        (e)                                                            (f) 

𝛿 = 5% 

𝑅𝑒 =  400                                                𝑅𝑒 =  1000                                                       𝑅𝑒 =  4000 
Fig. 11. Flow patterns for condition of five obstacles on each wall of a square cavity with 𝜹 = 𝟑% and 

𝜹 = 𝟓%. 

 

vortices of the bottom are merged completely with a 

core in the right hand side and no saddle point. Also, 

a vortex is formed in the right bottom of the cavity. 

In case (c), number of obstacles equals to five and 

the space between the upper wall and the upper 

obstacle is equal to the corresponding space in 

previous cases (a) and (b). Flow pattern in this case 

is the same as the flow pattern in standard cavities. 

Additionally, the flow is trapped between the 

obstacles and behaves like a micro closed cavity.In 

Fig. 11, number of obstacles is increased to five on 

each wall. Visualization of the flow pattern in Fig. 11 

shows that cases a, b, d and e are like standard 

cavities. But flow structures in Fig. 11c and f change. 

In these two cases, the primary main vortex appears 

in the area between the upper wall and the upper 

obstacle, scooplike vortex, the main secondary 

vortex is formed and two corner vortices are 

appeared in the bottom. On the other hand, 

comparison of Fig. 11e and Fig. 9e shows that for 

𝑅𝑒 = 1000 and 𝛿 = 5%, increasing the number of 

obstacles leads to changes in the flow pattern due to 

the increase of the obstacles numbers and decrease 

of the distance between the upper wall and the upper 

obstacle (Fig. 11e). Another finding in Fig. 11 is that 

in 𝑅𝑒 = 4000, enlargement of the obstacle height 

causes the scooplike vortex to be smaller and grow 

less in comparison to the case with 𝛿 = 3%.  

Consequently, as illustrated in Fig. 10 and Fig. 11, 

increasing the number of obstacles alone without 

considering other parameters doesn't have always 

positive effects on mixing augmentation or heat 

transfer improvement in all flow regimes.   

The space between the obstacles is another point 

which should be investigated. Fig. 12 studies the 

flow pattern in three cases. In case (b) in comparison 

to case (a), the upper obstacle is in its previous 

position and the lower obstacle is moved downward. 

So, the space between obstacles is increased. The 

global flow patterns in these two cases are the same. 

The difference is that in case (b), the secondary 

vortex has grown more in size and a corner vortex is 

created in the left bottom. 

In case (c) in comparison to case (a), the upper 

obstacle is moved downward and the lower obstacle 

is in its previous position. So, the space between 

obstacles is decreased. Flow structure in case (c) is 

changed drastically. The reason of these changes is 

not the decrease of the space between obstacles. The 

main reason is the increase of the space between the 

upper wall and the upper obstacle.  

Findings show that the space between the obstacles 

can’t be an effective parameter in controlling the 

flow in cavities.    

4. 5.  Effects of the Space between upper 

Wall and the upper Obstacle 

As mentioned before, an important point about the 

flow pattern in such cavities is the distance between 

the upper wall and the upper obstacle. In Fig. 13a, 

there is no space in the mentioned area. So, the flow 

pattern is like the case of a standard square cavity  
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(a)                                                          (b)                                                             (c) 

Fig. 12. Flow patterns for condition of two obstacles on each wall of a square cavity with two different 

distances between the obstacles, 𝜹 = 𝟓% and 𝑹𝒆 =  𝟏𝟎𝟎𝟎. 

 

          
                                   (a)                                                        (b)                                                            (c) 

Fig. 13. Flow patterns in a square cavity a) when there is no space between the upper obstacle and the 

upper wall, b) the space between the upper obstacle and the upper wall is 8% and c) the space between 

the upper obstacle and the upper wall is 9% of the cavity length, 𝑹𝒆 =  𝟒𝟎𝟎𝟎 and 𝜹 = 𝟓%. 

 

with no obstacles. In this case, the obstacle on the 

lower wall prevents two corner vortices of the 

bottom from merging and forming a saddle point in 

this area. Also, it is seen that two open cavities are 

formed in the space between two obstacles at right 

and left walls. Fig. 13b and Fig. 13c compare two 

different cases. In case b, the distance between the 

upper obstacle and the upper wall is 8% of the 

cavity length and in case c, this distance is 9%. It 

can be seen that flow in case (b) behaves like the 

flow in case (a) but, in case (c), the primary vortex 

is stretched, turned into a slender vortex laying in a 

thin layer along the moving upper wall and the 

secondary vortex fills the whole cavity. In addition, 

two bottom corner vortices in Fig. 13c are mirror in 

shape and opposite direction with two 

corresponding vortices in cases (a) and (b).  

As a result, flow field is so sensitive to the space 

between the upper wall and the upper obstacle. This 

gap plays a major role on the flow control in cavities 

and can be considered as a key parameter for this 

problem. 

5. CONCLUSIONS 

This paper gives a detailed study on the flow 

physics in two-dimensional lid-driven cavities with 

the presence of obstacles on the walls in order to 

make a parametric study from the flow control 

viewpoint. Lattice Boltzmann method (BGK 

approximation) is applied to simulate the problem. 

In this regard, results are presented for various 

Reynolds numbers, 400 ≤ 𝑅𝑒 ≤ 4000 , different 

arrangements of obstacles, different obstacle 

heights, different obstacles numbers, different 

spaces between obstacles and different gap sizes 

between the upper obstacle and the moving wall 

which are summarized as:  

Time evolution of the fluid flow for the cavities 

with 𝛿 = 5%  at 𝑅𝑒 = 1000   shows that at first 

seconds, a small vortex is generated at top right 

corner due to the momentum exchanges between 

the moving wall and the neighbor fluid. With 

increasing time, the momentum of the upper layers 

diffuses to the lower layers and after a while, the 

whole cavity fluid turns to move in a closed path.  

By passing time, due to the interaction of the 

moving fluid with inserted obstacles on the walls, 

the created separation bubble at the right hand side 

is merged with the secondary bottom corner 

vortices and the big secondary vortex is formed 

filling all most the entire cavity. Finally, the 

process reaches a steady sate situation which 

includes one scooplike vortex in the upper part, a 

main secondary vortex rotating in a counter 

direction respect to the scooplik vortex and two 

bottom corner vortices. 
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Obstacles with 𝛿 ≤ 2%  don't influence the flow 

filed and are not recommended to be used as the flow 

control tools. However, further increasing of 𝛿 

creates considerable changes in the flow pattern, 

particularly at high Reynolds numbers. Therefore, 

for a fixed Reynolds number, this is an effective 

parameter in controlling the flow in cavities.  

Numbers of obstacles along with the Reynolds 

number effects are other parameters that should be 

regarded as a tool for the control of the flow field. 

For a fixed Reynolds number, combined effects of 

obstacles numbers and the spaces between them are 

the factors that specify whether the two bottom 

corner vortices merge and grow up or not. 

The distance between the upper wall and the upper 

obstacle has a great effect on flow pattern. If there is 

no distance between the upper wall and the upper 

obstacle, the flow pattern in the cavity is like a 

standard cavity. While, increasing this distance 

enough, causes significant changes in the flow field. 

This gap is determinant to have a main clock-wise 

rotating vortex (such as standard cavity), either to 

have a clock-wise rotating scoop-like vortex in the 

top zone of the cavity and a main secondary counter 

clockwise vortex below it, or to have a clock-wise 

rotating stretched slender vortex laying along the 

moving wall and a main secondary counter 

clockwise vortex below it. Accordingly, this factor is 

highly recommended to be used as a flow control 

mean in such cavities. 

The spaces between the obstacles don’t change flow 

features significantly. Hence, it is of minor 

importance from flow control point of view.   

Briefly, results demonstrate that interaction of the 

flow with wall obstacles creates a scooplike vortex 

along the upper wall.  The obstacles heights and the 

gap between the upper wall and the upper obstacle 

are two factors that play a major role from flow 

control aspect in the cavity.  Obstacles numbers is 

another parameter that should be regarded as a tool 

for flow control field. On the other hand, the 

influence of the space between the obstacles isn’t as 

much effective as previous parameters. Also, 

obstacles with δ ≤ 2% can’t influence the flow field 

in the cavity.  
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