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ABSTRACT 

Three dimensional flows of complex non-Newtonian fluids in sudden expending pipes are numerically 
investigated in this paper. The distribution channels have one or multiple inlet pipes and one outlet pipe. The 
working fluids have a shear thinning behavior modeled by the Ostwald De Waele law. The effects of different 
parameters on the flow fields and pressure drop are explored. It concerns the effect of Reynolds number Re 
(from 0.1 to 600), power law index n (from 0.4 to 1), number of branching channels (nb = 1, 2, 3 and 4), 
spacing between the branching channels (l/D = 0.1, 0.2, 0.3 and 0.4) and the expansion ratio (d/D = 0.2, 0.35, 
0.5, 0.6 and 0.8). Three-dimensional complex flows were observed in the downstream expansion for such 
multiple branching systems, especially when the spacing l/D is small, where an asymmetry of flows is 
observed and a third recirculation loop is formed. A considerable increase in pressure drop is found with the 
rise of Reynolds number, with increased power law index and decreased expansion ratio. However, only a 
slight increase is observed with decreased spacing ratio and it remained almost the same with increased 
number of branching channels. 

Keywords: Branching channels; Sudden expansion; Shear thinning fluids; Pressure drop; Vortex. 

1. INTRODUCTION

The flows of bio-medical, chemical and other 
industrial fluids in ducts and pipelines are highly 
encountered in industrial machines. The distribution 
of these liquids from a position to another is 
achieved for various objectives, such as in air 
conditioning systems, heat exchangers, pulmonary 
and cardiovascular flow systems, hydraulic 
controls, etc. In delivering systems, the pipes are 
usually connected at junctions with sudden 
expansion or contraction for network distribution 
(Joseph and Allen, 1996). The sudden abrupt 
geometrical expansions have been also used as a 
model of flow in arterial stenoses in biomedical 
applications (Peterson and Plesniak, 2008; Vétel et 
al., 2008 ; Griffith et al., 2008; Mao et al., 2011; 
Casas et al., 2016; Petersson et al., 2016). 

�he flows through a symmetric pipe deflect to one
side along the longitudinal direction (i.e. the
symmetric axis of pipe) (Yamaguchi et al., 2006).
This deflection is characterized by the flow rate
ratio cross outlet branch pipes, and it is generally
considered as an instability problem of flow
described by the bifurcation theorem (Mizushima
and Shiotani, 2000).

Many experimental studies revealed the presence of 
oscillations and unsteadiness of flows in pipes with 
sudden expansion. But, there is no agreement 
concerning the value of Reynolds number at which 
the unsteadiness occurs and the main reason of this 
discrepancy is the effect of the inlet profile 
(Cantwell et al., 2010). Drikakis (1997) investigated 
by numerical computations the effects of expansion 
ratio on the planar expansion flows of Newtonian 
fluids. They found a reduction of the critical 
Reynolds number for the symmetry-breaking 
bifurcation with the increase of the expansion ratio. 
Mullin et al. (2009) pointed out in their 
experimental study on the Newtonian fluid flow 
through a 1:2 expanding-pipe that the steady-state 
breaking of axisymmetry occurs at Re = 1139 ± 10. 
This symmetry breaking of flow is the rotational 
analog of that remarked in the symmetric planar 
expansion (Drikakis, 1997). For a Newtonian fluid, 
Battaglia and Papadopoulos (2006) explored the 3D 
influence on the bifurcation characteristics at low 
Reynolds number (from 150 to 600) flows in 
rectangular sudden expansions. Praveen and 
Eswaran (2017) predicted the bifurcation 
characteristics of an incompressible Newtonian 
fluid in a 2-D symmetric sudden expansion at low 
Reynolds number (smaller than 100). They 
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determined the critical Reynolds number by using a 
temporal measure of asymmetry which is found to 
be more efficient than the existing steady-state 
techniques. They reported that the streamwise 
magnetic field delay the flow transition to 
asymmetry situation.  

The reattachment length decreases with the rise of 
swirling flows in abrupt expanding pipes 
(Vanierschot and Van den Bulck, 2008). Cantwell 
et al. (2010) performed a numerical investigation of 
the transient growth experienced by infinitesimal 
perturbations to a Newtonian fluid flow through a 
circular pipe with 1:2 sudden expansions. Under 
steady state laminar conditions, they determined the 
downstream reattachment point vs. Reynolds 
number and they reported that the flow is linearly 
stable at least up to Re = 1400. 

Kaushik et al. (2012) explored by CFD method the 
core annular flow of water and lubricating oil in a 
sudden contraction and expansion. Liou and Lin 
(2014) conducted numerical computations of the 
pressure-driven rarefied gas flow in channels with a 
sudden contraction–expansion of 2:1:2. Paik and 
Sotiropoulos (2010) explored numerically the 
turbulent swirling flow of a Newtonian fluid in a 
sudden expansion. 

In fact, the fluids encountered through flow devices 
have a complex non-Newtonian behavior in many 
realistic situations. Therefore, it is relevant to assess 
the effect of specific rheological features upon the 
flow details in branching channels with abrupt 
expansion. If the concentration of non-Newtonian 
liquids is low, the Reynolds numbers tend to be 
high and may be lead to turbulent regime. 

Interested to the viscous fluids described by Casson 
and power-law models and flowing through a 1:2 
planar sudden expansion, Neofytou (2006) studied 
the effect of Reynolds number and the flow behavior 
index (n ranging from 0.3 to 3) on the hydrodynamic 
behavior and they explored the transition from 
symmetric to asymmetric flow. Using CFD 
simulations, Manica and De Bortoli (2004) 
investigated the flow characteristics of shear-thinning 
and shear thickening fluids (n = 0.5, 1 and 1.5) 
through a 1:3 planar sudden expansion. For a 
Reynolds number ranging between 30 and 125, their 
results revealed that the critical Reynolds number for 
the flow bifurcation of Newtonian fluids is lower 
than that for shear-thinning fluids, and that for shear-
thickening fluids is the lowest. By experiments and 
numerical simulations, Mishra and Jayaraman (2002) 
explored the asymmetric steady flow of shear-
thinning fluids in planar sudden expansions having a 
wide expansion ratio (ER = 16). 

By using CFD simulations, Pinho et al. (2003) 
interested to inelastic shear thinning fluids through 
abrupt expansions channels with a diameter ratio 
varying from 1 to 2.6. When changing the flow 
behavior index from 1 to 0.2, they found an increase 
in local friction coefficient by about 100% at low 
Reynolds number and an increase by more than 
50% at high Re. For a 1:3 planar symmetric 
expansion, Ternik et al. (2006) compared the results 
of power-law and quadratic viscosity models for 

shear-thickening fluids with those of Newtonian 
liquids and they showed the great impact of the 
shear-thickening behavior on the flow asymmetry. 
For a 1:3 planar sudden expansion and by using 
computational method, Ternik (2009), studied the 
flow of shear-thinning fluids with two values of 
flow behavior index n = 0.6 and 0.8. They reported 
that from a symmetric to asymmetric flow and after 
the first bifurcation, a second flow bifurcation 
marking the appearance of a third vortex occurs 
with the rise of Reynolds number. In another paper 
and by numerical simulations, Ternik (2010) 
studied the flows of shear thinning fluids with a 
power index varying between 0.6 and 1.4 through a 
1:3 sudden expansion. They focused here on the 
low Reynolds number flow (in the range of Re 
between 10-4 and 10). For a 1:3 planar sudden 
expansion, Dhinakaran et al. (2013) studied 
numerically the flow of power law fluids with 
power-law indices varying in the range from 0.2 to 
4 and Reynolds number between 0.01 and 600. 
They determined the values of the critical Reynolds 
number for the transition to asymmetry flow and the 
appearance of a third main vortex. They pointed out 
a decrease in the critical Re with the shear 
thickening behavior, and an opposite influence of 
the shear thinning behavior. Small recirculation 
regions, typical of creeping flow are formed for 
shear-thinning fluids, resulting thus in a reduction 
of intensity and size of the secondary flow. 

For a polymer melt modeled by the cross 
constitutive relation, Zdanski and Vaz Jr (2009) 
studied numerically the non-isothermal flow 
through abrupt expansions and they observed a 
complex 3D flow structures characterized by a 
spiral motion close to the expansion section. They 
found also a limited effect caused by the viscous 
dissipation on the temperature increase and changes 
in viscosity which is strongly affected by the shear 
rate. Mendes et al. (2007) explored numerically and 
by experiments the viscoplastic fluid flow through a 
sudden expansion followed by a sudden contraction. 
They found a strong dependence of the size of the 
unyielded zone upon the rheological and 
geometrical parameters. This unyielded zone is 
positioned in the section of channel with wide 
diameter close to the wall. Naccache and Barbosa 
(2007) studied the creeping flow of viscoelastic 
fluids in a planar expansion followed by a 
contraction. Poole et al. (2007) studied numerically 
the creeping flow of viscoelastic fluids in a 1:3 
planar abrupt expansion and they found a reduction 
in the length and intensity of the recirculation 
region downstream of the expansion caused by the 
fluid elasticity. They observed also the existence of 
a significant recirculation zone for these fluids even 
at high Deborah number. For Newtonian fluids, it is 
known that the asymmetric flows in abrupt 
expansion pipes appear at a diameter ratio greater 
than 1.5. However and for the viscoelastic fluids, 
this asymmetry has been found by Poole and 
Escudier (2003) to be reduced initially at (x/d < 6) 
but not eliminated and the flow remain three-
dimensional and highly complex. 

Concerning the branching channels, there are only 
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few papers available in the literature. Liepsch 
(2002) studied the case of branching geometry in 
vascular flows. Yamaguchi et al. (2006) studied 
numerically and by experiments the deflection 
characteristics of Newtonian fluid flows in a 
manifold distribution channel with one inlet and 
two outlet pipes. Their results revealed a large 
dependency of the defection characteristics upon the 
net contribution of the swirl component in the 
expanded pipe part before entering each delivering 
outlet channel. In another study (Yamaguchi et al., 
2005) for an incompressible Newtonian fluid, they 
observed the existence of two distinct domains of 
strong asymmetric flow distribution from the outlet 
branch channels, which are dependent upon 
Reynolds numbers. They observed also a time 
periodicity of flow with the rise of Reynolds 
number. 

For complex non-Newtonian fluids and especially 
for power-law fluids, different pictures of the 
occurrence of flows of such fluids in branching 
channels may be encountered in many processes (in 
medical, cosmetic, paint industries, etc.) such as the 
flow of blood in vascular, the flow of paint mixture 
and other cases. 

Our search in literature showed that there is no 
published paper regarding the flows in branching 
channels with complex fluids. View their great 
importance in fluid engineering and in practical 
uses, we explore here the characteristics of shear 
thinning fluid flows through a cylindrical 
distribution channel with one or multiple inlet pipes 
and one outlet pipe. The connecting section is 
characterized by an abrupt expansion. Effects of the 
following parameters on the flow fields and 
pressure drop are examined: the number of 
branching channels (nb = 1, 2, 3 and 4), spacing 
between the branching channels (l/D = 0.1, 0.2, 0.3 
and 0.4) and the expansion ratio (d/D = 0.2, 0.35, 
0.5, 0.6 and 0.8), Reynolds number Re (from 0.1 to 
600) and rheological properties of fluids (power law 
index n is varied from 0.4 to 1). Such an effort is 
expected to provide a physical insight into the 
phenomenon for a wide range of geometric, 
physical and operating parameters. 

2. PRESENTATION OF THE 

PROBLEM 

Geometry of the problem studied is shown in Fig. 1. 
It concerns a cylindrical pipe with abrupt expansion. 
In the upstream region of abrupt expansion, there is 
a pipe of sufficient length L1 and diameter d to 
ensure the fully developed inlet flow. L1 is taken 
equal to 30 times the diameter d and it not changes 
with Reynolds number. This value was taken by 
many authors for studying the flows through pipes. 
Also, in the downstream region of the abrupt 
expansion, there is a pipe sufficiently long (length 
L2, diameter D) to permit the reattachment and fully 
redevelopment of flow again. Inelastic shear 
thinning fluids are used as working fluids. Effects 
of power law index (n) are examined (n = 0.4, 0.6, 
0.8 and 1). 

Also, effects of the diameter ratio (d/D), number 
(nb) of branching channels (Fig. 2) and spacing 
between them (l/D) are investigated. The required 
details on all realized geometrical configurations are 
summarized in Table 1. 

 
Fig. 1. An example of sudden expanded piping 

systems studied 

 

 
nb = 1 nb = 2 

 
nb = 3 nb = 4 

Fig. 2. Schematic view of sudden expanded 
piping systems with different numbers (nb) of 

branching channels 

Table 1. Geometrical parameters of all cases 
studied 

d/D l/D nb 

0.2 0.2 

1 
2 
3 
4 

0.2 

0.1 

2 
0.2 
0.3 
0.4 

0.2 

0 1 
0.35 
0.5 

0.65 
0.8 

3. MATHEMATICAL FORMULATION 

The three-dimensional flows of complex fluids were 
simulated by using the computer code CFX 16.0. 
For an incompressible and isothermal flow, and a 
purely viscous shear thinning fluid, the equations of 
continuity (Eq. (1)) and momentum (Eq. (2)) are 
given by: 

0i

i

u

x





                                                                  (1) 
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where ρ is the fluid density, p is the pressure,

 

is 

the shear rate and η is the apparent viscosity given 
by: 

1n

k  
  

 
                                                       (3) 

where n is the power index and k is the consistency 
index of the Ostwald de Waele power law. 

The shear rate   is related to the second invariant 

of the deformation rate tensor (Dij) as: 

2 ij ijD D  with 1
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          (4) 

The friction factor (f) is calculated using the 
following equation (Pinho et al., 2003): 

2
in

4
1 2
2

w d
f

rV




                                                       (5) 

where r is the radial coordinate, τw is the wall shear 
stress. The Reynolds number (Re) for a circular pipe 
is given by: 

in

a

V d
Re




                                                           (6) 

where μa is the apparent viscosity. For the power 
law fluids studied here, we used the generalized 
Reynolds number given by Metzner and Reed 
(1955), which is defined in terms of upstream 
channel characteristics: 

in

2-
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nn nV d n
Re
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                               (7) 

The diameter (d) and the velocity (Vin) at the inlet 
pipe are used to write the dimensionless form of 
coordinates and velocity (Eq. (8)).

 
* X

X
d

  ; *

in

V
V

V
                                                 (8) 

where V = (u, v, w) is the velocity vector and X = (x, 
r, θ) is the coordinate. 

The friction coefficient on the wall permits to 
determine the point of reattachment flow. It is 
defined as:  

  2  
   

f

wall

u
C x

Re y
                                               (9) 

4. NUMERICAL DETAILS 

The geometry and mesh are created by the computer 
tool ANSYS ICEM CFD (version 16.0). The 

computational domain was discretized by 
tetrahedral mesh elements (Fig. 3). A refined mesh 
near the walls and the abrupt section was created in 
order to capture the flow details. Grid dependency 
was performed by changing the number of elements 
from 100,000 to 1,300,000. From a grid with 
1,212,564 elements, the velocity with high 
magnitude, the reattachment length and the 
deflection rate did not change by more than 2%. 
Therefore, this number was selected to achieve all 
computations. The second order central difference 
scheme was used to approximate the diffusion term 
in the momentum and energy equations. This 
scheme is known by its stable solution. For the 
discretization of convection terms, a second-order 
upwind scheme was used. The Navier-Stockes 
governing equations were solved by a segregated 
implicit iterative scheme. 

The SIMPLE (Semi-Implicit Pressure Linked 
Equation) algorithm was used to deal with the 
pressure–velocity coupling (Issa and Oliveira, 
1994). Conjugate gradient methods were employed 
to solve the linear equations (preconditioned bi-
conjugate solver for u and v, symmetric conjugate 
solver for p). 

Boundary conditions of the computational domain 
are as follows: 

 Before the entrance of the sudden expanded 
section, the flow is assumed to be fully 
developed, since the length L1 is sufficient (L1 = 
30*d). The Dirichlet conditions in this case are: 
 u* = Vin, v* = 0, w* = 0 

 At the exit of pipe, the flow is considered as fully 
developed and the following Neumann condition 
is defined (∂V*/∂x* = 0). Also, a pressure outlet 
boundary condition (set to zero) was used in the 
numerical scheme. 

 At every wall of the computational domain, the 
non-slip flow condition is given by the following 
Dirichlet conditions: u* = 0, v* = 0, w* = 0 

Many researchers studied numerically the power 
law-fluids flows through abrupt expended pipes by 
using open source or commercial computer codes. 
The convergence of solution was found to be a 
major limitation with small or great values of flow 
behavior index (n). For example, Pool and Ridley 
(2007) did not obtained converged solution with a 
flow behavior index smaller than 0.4. With the 
OpenFOAM code, Ternik (2009) found a continue 
increase in the number of iterations and 
computational time with the decrease of the flow 
behavior index and no convergence has been 
obtained for n smaller than 0.6. In this paper, values 
of n are varied from 0.4 to 1 and no problem of 
convergence has been encountered for this range 
when using the computer code CFX. However, the 
computational time and iterative convergence has 
been raised with the reduction of n. 

The residual target for the continuity, momentum 
and energy equations was 10-7. Most simulations 
required about 500-900 iterations and about 2-3 h 
on a computer machine with Intel Core i7 CPU, 8.0 
GB of RAM and a clock speed of 2.20 GHz. 
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Fig. 3. Discretized of the computational domain 

with tetrahedral mesh elements. 

5. VALIDATION OF THE PREDICTED 
RESULTS 

Mesh resolutions, machine limitations, computer 
code and numerical method accuracy may cause 
severe errors in predictions. Therefore, it is strongly 
required to check the validity of the obtained 
results. In our study, we referred to several studies 
dealing with inelastic power law fluids.  

First, the geometrical and rheological conditions as 
those chosen by Kahine et al. (1997) were 
undertaken. Variations of the axial velocity for a 
power law index n = 0.6 and an expansion ratio d/D = 
0.112 vs. axial distance (X*) are presented on Fig. 4. 
Both our predicted results and the experimental data 
of Kahine and his co-worker follow the same profile 
with a satisfactory agreement. 

In other figures, we present the vortex length (Fig. 
5) and vortex height (Fig. 6) for different power law 
indices. The results predicted by our computer code 
and those calculated by the correlations of 
Dhinakaran et al. (2013) and Ternik (2010) are 
depicted on the same figures for sake of 
comparison. The developed correlations are: 

 0.382 0.414 tanh 1.142 0.775aX
n

d
      

(Dhinakaran et al., 2013) 

20.1463 0.6702 0.0035aX
n n

d
  

  
 

(Ternik, 2010) 

 1.03 0.49 tanh 1.72 1.13aY
n

d
   

   
(Dhinakaran et al., 2013) 

20.449 1.5058 1.8345aY
n n

d
  

     
(Ternik, 2010) 

In another framework, we present the friction factor 
at the inlet pipe vs. generalized Reynolds number 
(Fig. 7). Our numerical results by using Eq. (5) and 
those obtained by theoretically (f = 64/Reg) are 
showed on the same figure. As observed on these 
figures, a good agreement qualifies the performance 
of the utilized computer tool. 
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Fig. 4. Axial velocity for n = 0.6, d/D = 0.112 
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Fig. 5. Vortex length vs. power law index. 
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Fig. 6. Vortex height vs. power law index. 
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Fig. 7. Friction factor at the inlet pipe vs. 

Reynolds number. 

6. RESULTS AND DISCUSSION 

Understanding the flows in abrupt expansion pipes 
is of a keen interest from the view-point of practical 
uses. These devices have a widespread presence in 
various applications of fluid mechanics such as in 
combustors, heat exchangers, nuclear reactors as 
well as in biological systems. The flow in an 
axisymmetric abrupt expansion is three-dimensional 
and complex and characterized by the presence of 
separating and reattaching flows. 

6.1 Effect of Reynolds Number 

In this section, we examine the effect of flow rate, 
by changing the Reynolds number from 0.1 up to 
order 600. Figure 8a presents the dimensionless 
axial velocity along the pipe radius for different 
values of Reynolds number, in the downstream of 
the expansion section at X* = 27.5. Velocities with 
high magnitude are located at the centerline of each 
inlet pipe (here nb = 2), and negative velocities are 
observed near the wall of channel, which indicate 
the presence of opposite flow. Figure 8b shows the 
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profiles of dimensionless axial velocity near the 
channel wall in the downstream of expansion. As 
observed, the intensity of opposite flow increases 
with increased Reynolds number. The size of 
recirculation loops and their strength increase with 
the rise of flow rate, as confirmed by the 
streamlines of Fig. 9. These vortices are 
characterized by high pressure gradients and strong 
shear stresses (τ*), which increase with increased 
Reynolds number, as illustrated by Fig. 10 where 
values of τ* near the pipe wall and past the 
expansion are presented. 
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Fig. 8. Axial velocity for n = 0.75, nb = 2, 
 d/D = 0.2, l/D = 0.2 

 

 

 

 

 

 

Reg = 50 

 

 

Reg= 100 

 

 

Reg= 200 

 

 

Reg= 300 

Fig. 9. Streamlines of the dimensionless axial 
velocity U* for n = 0.75, nb = 2, d/D = 0.2, l/D = 0.2 
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Fig. 10. Shear tress for n = 0.75, nb = 2, d/D = 0.2, 

l/D = 0.2, R* = 0.99 

6.2 Effect of the flow behavior index 

Another validation of our predicted results is 
available in Fig. 11, where the dimensionless 
recirculation length is presented for various 
Reynolds numbers. As shown on this figure, our 
results agree well with the experimental data of 
Ponthieu (1991) and the numerical results of 
Nguyen et al. (1999). 

Both numerical (Hammad et al., 1999; Furuichi et 
al., 2003; Mullin et al., 2009) and experimental 
(Badekas and Knight, 1992) works pointed out that 
there is a linear change in the reattachment length 
vs. Reynolds number in the steady state, with a 
dependence proportionality on whether the profile 
of inlet flow is fully developed Hagen–Poiseuille or 
flat (Cantwell et al., 2010). The finding provided in 
Fig. 12 confirms the linear increase of recirculation 
length vs. Reynolds number, which is also raised 
with the increase in power law index. The strength 
of vortices and their size decrease with the raise of 
shear thinning, which is due to the increased local 
viscosity caused by low shear rates inside these 
vortices.  

This phenomenon may be also explained by the 
velocity profiles plotted on Fig. 13 at X* = 27.5 
(i.e. in the downstream expansion). With 
increased power law index, high viscous forces 
characterize the powerful jet of fluid (in the 
center of redeveloping flow downstream the 
expansion) and in the zone of recirculation. The 
increase of viscosity inside these eddies is also 
responsible for the increase in pressure drop (Fig. 
14). 
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Fig. 11. Reattachment length for n = 0.5,  

d/D = 0.112, nb = 1 
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Fig. 12. Reattachment length for d/D = 0.35, nb = 1 
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Fig. 13. Axial velocity for Reg = 50, nb = 4,  

d/D = 0.2, X* = 27.5 
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Fig. 14. Pressure drop for Reg = 50, nb = 4,  

d/D = 0.2, X* = 27.5 

6.3 Effect of the Distance L 

When a viscous fluid flowing in a pipe encounters 
an abrupt expansion, the separation of flow occurs, 
resulting thus in the formation of a pair of 
symmetric recirculation loops near the downstream 
walls. This symmetry will be loosed above a critical 
value of Reynolds number, and a third eddy will 
appear downstream of the two main eddies with the 
further rise of Re. The transition of flow from 
symmetric to asymmetric situation, which is known 
as bifurcation phenomenon, depends on the 
geometrical parameters of channel and rheological 
properties of fluid. In this part of paper, we 
investigate the effect of the space ratio (l/D) 
between branching channels by realizing four 
geometries, which are: l/D = 0.1, 0.2, 0.3 and 0.4. 

For the four geometries having the same diameter 
ratio d/D = 0.2, the recirculation size and its 
strength are clearly illustrated in Fig. 15 on two 
different planes (XY plane on left and XZ plane on 
right). When the spacing l/D between the two 
branching channels is very low (l/D = 0.1), an 
asymmetry of recirculation loops happens and 
three-dimensional complex flows are formed in the 
downstream region of expanding system. In this 
case, the interaction between fluid particles is very 
strong, leading to the formation of third 
recirculation loop before the reattachment of the 
main flow. 

This asymmetry in flow will be loosed with the 
increased spacing ratio (for l/D = 0.2), which allows 
less interaction between the jet flows at the exit of 
branching channels. Also, the further rise in l/D 
reduces the length of vortex and increases their 
height. Furthermore, when the spacing l/D is 
increased again (l/D = 0.4), fair vortices are present 
at the exit region of branching pipes and very small 
eddies at the corner of expansion. 

For further explanation, we present on Fig. 16 the 
dimensionless axial velocity along the pipe radius at 
X* = 27.5 (i.e. near the downstream expansion). The 
increase of l/D yields weak flows in the region 
between the exit of branching channels and 
intensifies the fluid movement near the channel 
walls, which eliminates the vortices in the corners 
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Fig. 15. Streamlines for Reg = 200, n = 0.75, nb = 2, d/D = 0.2 
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of expansion. On the other hand, the pressure drop 
increases considerably with the rise of Reynolds 
number and only slight increase is observed with 
the rise of spacing ratio (Fig. 17). 

6.4 Effect of nb 

In this section, we explore the influence of the 
number (nb) of branching channels. Four cases are 
considered, nb = 1, 2, 3 and 4 with an expansion 
ratio d/D = 0.2 of each branching channel. 

Distribution of the axial velocity is presented 
under different forms: contours on Fig. 18 and 
streamlines on Fig. 19. As shown on Figs. 18 and 
20a, the increase of the number of branching 
channels yields a powerful jet of fluid, resulting 
thus in further interaction of fluid particles in the 
downstream expansion. The height of vortex 
becomes smaller (Fig. 20b), but the reattachment 
length increases with increased nb, as observed on 
Fig. 19. 

The pressure losses are calculated for the four 
geometrical cases and presented on Fig. 21. The 
interesting finding is that the different in pressure 
drop between the cases studied is very slight. The 
flow rate increases with the increasing number of 
branching channels, so the different in pressure drop 
between the inlet and outlet sections of the device 
remains almost the same for all geometrical 
configurations. This finding confirms that the main 
responsible parameter in energy losses in such 
channel configurations is the sudden expansion in 
diameter. 
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Fig. 16. Axial velocity for Reg = 200, n = 0.75,  

nb = 2, d/D = 0.2, X* = 27.5 
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Fig. 17. Pressure drop for n = 0.75, nb = 2,  

d/D = 0.2 
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Fig. 18. Axial velocity for Reg = 200, n = 0.75, 
d/D = 0.2 
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Fig. 19. Streamlines for Reg = 200, n = 0.75,  
d/D = 0.2 
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Fig. 20. Axial velocity for Reg = 200, n = 0.75, 
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Fig. 21. Pressure drop for n = 0.75, d/D = 0.2 
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6.5 Effect of d/D 

The effect of expansion ratio (d/D) is examined in 
this section. Five geometrical configurations are 
realized to achieve this purpose, which are: 
 d/D = 0.2, 0.35, 0.5 and 0.65. For one branching 
channel (nb = 1) and a shear thinning fluid with a 
power law index n = 0.75 and flow Reynolds 
number Reg = 200, the velocity streamlines are 
presented on Fig. 22 for four geometries on 
horizontal plane XY. This figure allows a clear 
visualization of recirculation loops developed 
downstream the expansion, which decrease in size 
and strength with the increase of expansion ratio. 
For further details, values of the reattachment length 
corresponding to each geometrical configuration are 
given on Fig. 23 for different power law indices. 
The decrease in power law index yields a decrease 
of reattachment length. However, the expansion 
ratio has an opposite effect, which results in 
increasing pressure drop as observed on Fig. 24. 
The interesting remark is that the discrepancy in 
pressure drop between the five geometrical cases 
becomes greater with the rise of Reynolds number. 
For instance, at Reg = 200, the pressure drop has 
been increased by about 14 times, 4 times, 1.8 and 
1.2 times for the expansion ratio d/D = 0.2, 0.35, 
0.5 and 0.5, respectively, when compared to the 
case d/D = 0.8.  
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Fig. 22. Streamlines for n = 0.75, nb = 1,  
Reg = 200, α = 90° 
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7. CONCLUSION 

Three-dimensional flows of power law fluids 
through branching channels with sudden expansion 
were numerically investigated. Velocity 
distribution, vortex size, reattachment length and 
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Fig. 24. Pressure drop for n = 0.75, nb = 1 

pressure drop were determined for various operating 
conditions. After the expansion section, a longer 
axial distance was considered aiming to capture the 
entire redevelopment of flow after reattachment. 
Effect of Reynolds number, shear thinning 
behavior, expansion ratio, number of branching 
channels and spacing between them were assessed. 
The main findings are summarized as follows: 

 The shear thinning reduced the recirculation 
length and weakened the strength of eddies. 

 The pressure drop is increased with the rise of 
Reynolds number and power law index. 

 A third vortex is observed near the downstream 
expansion when the spacing ratio l/D is very 
small. 

 The increase of spacing ratio l/D weakened the 
intensity of flows in the region between the exit of 
branching channels and intensified the movement 
of fluid particles near the channel walls.  

 The excessive increase of spacing ratio l/D 
eliminated the vortices in the corners of 
expansion. 

 The vortex size rose with the increased Reynolds 
number and decreased expansion ratio 

 A considerable increase in pressure drop is found 
with decreased expansion ratio. However, only a 
slight increase in observed with decreased spacing 
ratio and it remained almost the same with 
increased number of branching channels. 
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