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ABSTRACT 

The absence of characteristic material length in the Navier-Stokes equations has led to the development of 
different couple stress theories. In the present study, for the first time, the relations of a couple stress theory 
are extended to power-law fluids. Moreover, considering the significance of the length scale in nano- and 
micromechanics, the relations of the extended theory were applied to Newtonian and power-law fluids in tape 
casting of ceramics. The obtained velocity was used to calculate the volumetric flow rate as well as the 
thickness of the ceramic tape. A comparison between the results of the Newtonian fluid and the analytical and 
experimental results indicated a close agreement between the present results and the results of other studies. 
Moreover, the tape thickness was obtained for different length scales (L) by numerically solving the velocity 
relations obtained for the non-Newtonian fluid. Also, the impact of casting speed on the tape thickness was 
shown for four power-law fluids assuming L=0.35. 

Keywords: Couple stress tensor; Characteristic material length; Non-Newtoinian fluid; Tape thickness.  

NOMENCLATURE 

ijD symmetric part of the velocity gradient tensor 

0h  the height of the slurry channel 

H the height of the slurry in the reservoir  
k  apparent viscosity 

iK mean curvature rate vector  

l characteristic material length
L  length scale 

0L length of slurry channel 

ijM coupe stress tensor 

n power law exponent 
P pressure 
Q slurry flow rate 

t time 

ijT force stress tensor 

v velocity 
  the correction factor for tape width 

accounting for side flow  
  the correction factor for weight loss 

aging of the tape  
  tape thickness 
  Newtonian fluid viscosity 

eff
power law viscosity 

     density 

1. INTRODUCTION

The concept of tensile forces applied to a volume 
element was first proposed by Cauchy (1829). He 
presented a continuum theory in which only central 
forces were used. This theory was later expanded by 
other scholars. Navier-Stokes equations in fluid 
mechanics were also developed ignoring the effect 
of couple stress. For instance, Stokes (1966) 
proposed the simplest generalization of the fluid 

mechanics by taking the couple stress into account. 
Basically, the problem with the Stokes theory is a 
large number of the unknown parameters in the 
equations which makes the theory hard to use. 
Unlike the case for larger scales, the classical theory 
fails to provide accurate solutions at small scales 
(i.e. nano- and microscale), where the presence of 
size and couple stresses become more effective. The 
reason is the lack of a characteristic material length, 
which has consequently led to the development of 
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different couple stress theories. The effects of size 
on physical and mechanical properties in small 
scale problems were explained by some 
experimental researches (Li et al. 2016; Zienert et 
al. 2010).  

By showing the antisymmetric characteristic of the 
couple stress tensor and the relationship between 
volumetric couples and forces in solids, 
Hadjesfandiari and Dargush (2011) reduced the 
number of unknown components in couple stress 
equations. In another study (Hadjesfandiari and 
Dargush 2014), they investigated different 
generalized couple stress theories, including the 
original Cosserat theory (Cosserat 1909), Mindlin-
Tiersten theory (Tiersten, 1962), Koiter couple 
stress theory (Koiter 1969), Yang modified couple 
stress theory (Yang et al. 2002) and strain gradient 
theories (Mindlin and Mindlin and Eshel (Mindlin 
1965; Mindlin and Eshel 1968)), such as the 
micropolar, micro-Couette, and micromorphic 
theories, and discussed their degrees of freedom, 
excess deformations, and stated their 
incompatibilities. Li et al. (2014) used this theory to 
investigate a micro-tri-layer beam subject to 
electromagnetic torque. Micro-beams such as 
sensors, amplifiers, and activators are extensively 
applied in electromechanical systems. 

Recently, Hajesfandiari et al. (2016) used this 
adaptable, size-dependent theory to investigate 
piezoelectric panels and proposed the relations of 
the boundary value problem as well as their integral 
forms for a two-dimensional specimen, 
implementing the size-dependent boundary value 
numerical method. They also addressed the 
interesting behavior of the size-dependent 
piezoelectric medium through a few numerical 
examples. Then, applying the same relations as the 
fluid equations, Hadjesfandiari et al. (2014) 
introduced a new couple stress theory which 
resolves the problems and incompatibilities of the 
Stokes couple stress theory. They extended the 
Newtonian fluid equations based on that theory and 
obtained an analytical solution for flow inside a 
straight pipe. Later, they used the theory to solve 
the lid-driven cavity flow (Hajesfandiari et al. 
2015) inside a straight pipe.  

The couple stress theories were applied in the study 
of lubrication, microfluidics, blood flow and multi-
physics couplings. For example, numerous studies 
were conducted to investigate micropipes, 
microchannels and microshells applied in 
microfluidic devices based on the couple stress 
theories (Ansari et al. 2015; Zhou and Wang 2012). 
However, fluid flow in many of these problems 
does not follow Newtonian rheology such as 
biofluids (Chakraborty 2007) or polymer solutions 
(Bryce and Freeman 2010). Furthermore, the 
effectiveness of couple stresses on lubrication 
systems and non-Newtonian behavior of lubricants 
have been demonstrated in many researches 
(Jacobson 1991; Lin 1997; Ramanaiah and Sarkar 
1979). Therefore, considering the different 
applications of non-Newtonian fluids, such as in 
biomechanics, lubrication, and electromechanical 
systems, the extension of couple stress theories to 

non-Newtonian fluids seems to be necessary. Tape 
casting is an economical method for mass 
production of thin ceramic films. These films are 
applied for substrates, also in electrical packages 
and as the dielectric in capacitors. The ceramic film 
thickness is around 100 μm , which is precisely 
specified and controlled. Therefore, many studies 
have been conducted aiming to determine the 
thickness of the ceramic film based on casting 
speed and flow rate. For example, Chou et al. 
(1987) calculated the behavior of a ceramic slurry 
during tape casting based on the principles of fluid 
dynamics. They managed to propose a relation for 
film thickness as a function of viscosity, pressure 
gradient, velocity, and the casting head geometry 
and modified the relation using experimental 
results. Pitchumani and Karbhari (1995) also 
studied the ceramic slurry as a non-Newtonian 
power-law fluid. They investigated the effect of the 
pressure gradient resulting from the height of the 
slurry in the casting head and the drag force 
resulting from movement on the bed by modeling 
the extended planar Couette flow and proposed an 
analytical relation for film thickness as a function of 
the slurry type and the geometrical and physical 
parameters involved in the process. Joshi et al. 
(2002) studied the power-law and the Bingham 
plastic flow in ceramic tape casting based on the 
classical theory and calculated the speed and the 
flow rate. Loest et al. (1994) addressed the 
numerical solution of the Bingham flow in tape 
casting and calculated the speed and flow rate using 
the finite element method (FEM), through which 
the thickness of the ceramic tape could be 
calculated.   

In this paper, first, the relations of the couple stress 
theory are extended for the power-law fluids, after 
which they are used to solve the couple stress fluid 
flow in ceramic tape casting. 

2. GOVERNING EQUATIONS 

The continuity, and the linear and angular 
momentum equations are stated in indicial notation 
as follows based on the couple stress theory by 
Hajesfandiari et al. (2014): 

(1)  , 0i i

D
v

Dt

    

(2)  ,
i

ji j i

Dv
T b

Dt
    

(3)     ,ji i jT M   

where the comma denotes differentiation with 
respect to the spatial (Eulerian) coordinates;   

represents fluid density; iv  is the velocity 

components; 
D

Dt
 denotes the material derivative; 

jiT  are the components of the force stress tensor; 

ib  represents the volumetric force components; 

iM  are the vector components of the couple stress 
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tensor, and the    sign indicates the antisymmetric 

part of the tensor. 

For an incompressible power-law fluid, the 
symmetric part of the force stress tensor is obtained 
from the following relation: 

(4)  
  eff2ij ijjiT P D     

(5)   , ,

1

2ij i j j iD v v   

(6)    1

, ,

n

eff i j j ik v v


   

where  jiT  represents the symmetric part of the 

force stress tensor, P shows the pressure, ij is the 

Kronecker delta, and eff  is the viscosity of the 

power-law fluid. According to Eq. (3), a couple 
stress vector should also be defined for the 
antisymmetric part of the force stress tensor. 
Neglecting the changes in temperature and density, 
the couple stress vector for an incompressible fluid 
is expressed as follows: 

(7)  8i iM K   

(8)   , ,

1

4i k ki i kkK v v   

iK shows the curvature rate vector and   represents 

the second coefficient of viscosity that takes into 
account the effect of the length scale in the couple 
stress equations and is related to fluid viscosity: 

(9)  2l


  

where l represents the material characteristic length 
which is not taken into account in classical fluid 
mechanics. It depends on the type of fluid and 
geometry, and can be calculated through either 
experimental methods or molecular dynamics 
simulation. Therefore, because of the existence of 
different effective conditions on molecular 
dynamics simulation, the results are represented for 
some arbitrary values of l. The second coefficient of 
viscosity ( ) for the power-law fluid can be 
calculated from Eq. (6): 

(10)    12
, ,

n

i j j il k v v


   

,i jM  can be found using Eqs. (7) and (8): 

(11)  

   22
, , ,2 1

n

i j i j j iM l k n v v
   

 

  
   

, , , ,

1

, , , ,

i jj j ij k ki i kk

n

i j j i k kij i kkj

v v v v

v v v v


  

  

 

Therefore, the antisymmetric part of the force stress 
tensor is obtained according to Eq. (3): 

(12)  

   

  
  
   
  

  
   

, ,,

2

, ,

, , , ,

1

, , , ,2

2

, ,

, , , ,

1

, , , ,

1

2

1

1

i j j iji i j

n

i j j i

i jj j ij k ki i kk

n

i j j i k kij i kkj

n

i j j i

j ii i ji k kj j kk

n

i j j i k kji j kki

T M M M

n v v

v v v v

v v v v
l k

n v v

v v v v

v v v v









      

   
    
 

  
  

   
 

   
 
     

The force stress tensor is obtained by combining 
symmetric and antisymmetric force stress tensors 
(Eqs. (4) and (12)): 

(13)  
   ji ji jiT T T   

Therefore, the solution of the momentum equations 
will be possible with replacing of the obtained force 
stress tensor into the Eq. (2).  

In what follows, these relations are used to solve the 
flow in ceramic tape casting. Applying this theory 
with considering the microscale thickness of the 
ceramic film, yield acceptable results. 

3. FLOW GEOMETRY IN CERAMIC 
TAPE CASTING  

Assume an incompressible steady flow in ceramic 
tape casting procedure as shown in Fig. 1. The flow 
geometry is solved assuming Newtonian and 
power-law fluids and based on the mentioned 
couple stress theory.  

3.1 Newtonian fluid 

Continuity and momentum equations for the steady, 
developed flow of a Newtonian fluid can be simplified 
according to the boundary conditions shown in Fig. 2: 

(14)  
0v   

(15)  Momentum along y-axis: 0
P

y





 

(16)  

Momentum along x -axis: 
2 4

2
2 4

d

d

u u P
l

y y x
  

 
 

 

where u  is the flow velocity along the x-axis which 
is only a function of y, and P denotes the pressure 
as a function of x according to Eqs. (15) and (16). 
The governing boundary conditions, according to 
Fig. 2, are as follows: 

2
2

2
at =0 =0, 2 0x

u
y u M l

y
 

 


 (17) 

2
2

0 2
at = = , 2 0c x

u
y h u u M l

y
 

 


 (18) 



F. Karami et al. / JAFM, Vol. 11, No. 5, pp. 1239-1246, 2018.  

 

1242 

Therefore, the developed velocity profile can be 
calculated using Eqs. (16)-(18): 

 

 

1
2

2 20
1 1

1

2 2
1 1

d 1

d

1 1

2

Y YL
L L

L L

L

c

L L

h P e
u Y L e L e

x
e e

e
Y Y L u Y

e e











 


    

 (19) 

0 0

,
y l

Y L
h h

   (20) 

The flow rate of the casting process can be 
calculated by Eq. (19): 

 
1 1

1 3
30

0 1 1
0

2 0

d 2
= d 2

d

1

12 2

L L

L L

c

h P e e
Q u Y h Y L

x
e e

u h
L








  


  


 (21) 

In Eq. (19), for 0L  , the velocity profile is 
identical to that obtained from the classical theory: 

)22(     
2

20 d

2 d c

h P
u Y Y Y u Y

x
    

This profile represents the velocity that is obtained 
by Navier-Stokes equations.  

3.2 Power-law fluid 

According to Eqs. (2), (4), and (12), the momentum 
equation for the steady-state, incompressible flow 
of power-law fluid along the x-axis is as follows: 

 

1

2

22 2

2

1 13 3

3 3

dP d d

d d d

1

n

n

n n

u u
k kl

x y y y y

u u
n

y y

u u u u

y y y y





 

     
           

    
         

      
           

 (23) 

 
Fig. 1. Schematic diagram of the ceramic 

 tape-casting process 

Therefore, the velocity profile is calculated using 
the equation above and considering the boundary 
conditions from Eqs. (17), (18), and (20): 

 

Fig. 2. Governing boundary conditions of flow in 
the ceramic tape-casting process 

 

1

0
1 2

0

0 0 3

d
d

d

Y Y nn n
L L

Y

h L
A e A e

k nu Y h Y
h P A

Y
k x k

  
  

    
    

  (24) 

The constants 1A  and 2A  are obtained using 

boundary conditions:  

(25)  1

d 1

d

n

L

n n

L L

P e
A

x
e e





 
   

  

 

(26)  2

d 1

d

n

L

n n

L L

P e
A

x
e e


 
   

  

 

and the constant 3A  can be calculated from the 

following relation: 

(27)  

1

0
1 1 2

0

0 0 3

d
d

d

Y Y nn n
L L

c

h L
A e A e

K nu h Y
h P A

Y
K x K

  
  

    
    

  

4. RESULTS AND DISCUSSION 

The results from two cases (Newtonian and power-
law fluids) are discussed in this section. The 
velocity profile was plotted for the two cases and 
the diagram of ceramic film thickness with respect 
to casting speed was compared with previous 
studies at different length scales. 

4.1 Newtonian fluid results  

Figure 3 shows the non-dimensional velocity profile 
for various length scale values at 0cu  . The velocity 

profile for 0L   represents the classical solution. 

Here,   2
0 0 / 2 d / du h P x  and as expected, the 

velocity profile deviates from the classical solution as 
the size effect is increased. This shows the importance 
of using the non-classical theory at small scales. The 
value of d / dP x  for ceramic tape flow during 

casting is obtained as 0/s gH L . 

Chou et al. (1987) evaluated their model for fluid 
flow in ceramic tape casting using experimental data. 
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The parameters considered in this evaluation are 
presented in Table 1. They proposed the following 
relation for estimation of the ceramic film thickness: 

(28)  
s

tp
tp c

Q

u




  

 
Fig. 3. Variations of the dimensionless velocity 
profile for various length scale value at 0cu   

Joshi et al. (2002) used the same relation to 
estimate film thickness. In the present study, by 
calculating the flow rate from Eq. (21), the ceramic 
film thickness was obtained for the Newtonian fluid 
using Eq. (28) and was then compared to the 
analytical and experimental results from Chou et al. 
(1987) and Joshi et al. (2002) (Table 2). The results 
were represented for L=0.35 because of the best 
fitting with experimental results. The results suggest 
that the new theory gives an acceptable accuracy in 
comparison with the other models. Moreover, it is 
evident that film thickness is reduced as casting 
speed is increased and that the thickness 
considerably varies with speed at lower speeds, 
while the variations are mitigated as the speed is 
increased. 

Table 1 Tape-casting process parameters for 
perovskite ceramic slurry (Chou et al. 1987) 

Parameter Value 

η (Ns/m2) 1.5 

ρs (kg/m3) 2030 

ρtp (kg/m3) 3440 

α 0.89 

h0 (m) 0.402×10-3 

P (Pa) 188 

L0 (m) 1.59×10-2 

β 0.6 

4.2 Power-law fluid 

Table 3 compares the ceramic film thickness for the 
non-Newtonian power-law fluid with the 
experimental results from Chou et al. (1987). The 
geometrical parameters from Table 1 were used in 
this investigation. As shown, the results from the 
couple stress theory for the non-Newtonian fluid are 
closer to the experimental results, showing more 
accuracy as compared to the case with a Newtonian 
fluid (Table 2). Figure 4 shows the velocity profile 
of the non-Newtonian fluid 0.59n   at various 
length scales and for 0.005m/scu  . The 

parameters employed in this evaluation are 
presented in Table 4. The results were compared 
with those from the classical method ( 0L  ). As 
expected, the results deviate from the classical 
solution as the length scale is increased. 

Pitchumani and Karbhari (1995) found the 
thickness of the film produced using a non-
Newtonian power-law fluid by modeling a planar 
Couette flow. The variations of ceramic film 
thickness with casting speed for a power-law fluid 
with L=0 and n=0.59 are compared with the results 
from Pitchumani and Karbhari (1995) in Fig. 5. 
Furthermore, results are also presented for other 
length scales showing their impact. Clearly, as a 
result of the reduced speed and flow rate, the film 
thickness is reduced as the material characteristic 
length is increased. Furthermore, the film thickness 
changes much more with length scale at low 
velocities. As expected, the film thickness is 
reduced as casting speed is increased. 

Figure 6 shows a diagram of film thickness with 
respect to casting speed ( cu ) for different viscosity 

models (different powers) assuming an arbitrary 
length scale (L=0.35). It is clear from the figure that 
film thickness is considerably reduced as n is 
increased, showing the significance of the case with 
non-Newtonian fluid as compared to the Newtonian 
fluid. The geometrical parameters that are shown in 
either of Figs. 5 and 6 are extracted from Table 4.  
The diagrams in Figs. 7-10 show the ceramic film 
thickness with respect to casting speed for different 
amounts of slurry height in the reservoir according 
to the geometrical parameters represented in Table 
4. The changes in the thickness of the ceramic film 
in the case with the non-Newtonian power-law fluid 
are shown in Figs. 7, 8, 9, and 10 for L=0, 0.15, 
0.35, and 0.55, respectively.  

Table 2 Comparison of the present article results for L=0.35 and the analytical and experimental 
results 

δtp (10-6), m 

uc (10-2), 
m/s Experimental Data 

(Chou et al. 1987) 

Chou’s Model 

(Chou et al. 1987) 

Joshi’s Model 

(Joshi et al. 2002) 

Present 
Model 

66.0 64.4 64.4 63.84 1.277 
63.5 64.2 64.2 63.73 1.621 
63.5 64.0 64.0 63.65 2.059 
63.5 63.8 63.8 63.55 2.988 
62.2 63.6 63.6 63.48 4.396 
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It is evident from Fig. 7 that the film thickness is high 
at low speeds for all three slurry heights and only 
reducing as the speed is increased. The same behavior 
is also observed in Figs. 8-10. Moreover, all the 
diagrams in Figs. 7-10 indicate the film thickness to be 
increasing as the height of slurry in the reservoir, or in 
fact, the flow pressure gradient is increased. 
Comparing Figs. 7-10, it is concluded that the film 
thickness is reduced as the length scale is increased. 

Table 3 Comparison of the present results for 
the and  )=0.35L, 0.59n fluid ( law-power

experimental results  
δtp (10-6), m  

Experimental Data 
(Chou et al. 1987) 

Present 
Model 

uc (10-2), 
m/s 

66.0 64.74 1.277 
63.5 64.40 1.621 
63.5 64.10 2.059 
63.5 63.76 2.988 
62.2 63.45 4.396 

 

 
Fig. 4. Comparison of the velocity profile 

variations of power-law fluid for 0.005m/scu  , 

and various length scale values and classical 
solution 

Table 4 Tape-casting process parameters for 

3BaTiO  slurry (Pitchumani and Karbhari 1995) 

Value Parameter 

100  0 μmh  

0.01  0 mL  
981  PaP  
0.58 /s tp   
2.7  2Ns/mK  

0.89   
0.60   

 

 
Fig. 5. Comparison of tape thickness variations 

against casting speed of power-law fluid(n=0.59) 
for various length scale values and Pitchumani 

and Karbhari (1995) results 

 

Fig. 6. Variations of tape thickness against 
casting speed for L=0.35, and different viscosity 

models 

5. CONCLUSION 

The non-Newtonian power-law fluid relations were 
extended to the couple stress theory by Hajesfaniari et 
al. (2014). These relations were used to study the flow 
in ceramic tape casting. A comparison between the 
velocity profiles of the classical and the non-classical 
theories shows the importance of the length scale 
which, when increased, leads to a greater difference 
between the results. Variations of the ceramic film 
thickness were obtained for different three power-law 
fluids based on the resulting casting speed  cu . The 

results are different from those obtained from the 
classical theory and further deviate as the length scale 
is increased. Moreover, the film thickness was reduced 
in both specimens as the cu  and the length scale were 

increased. The difference between the results from the 
classical and the non-classical theories is reduced by 
increasing cu . Examining the impact of the slurry 

height in the reservoir, it was found that the film 
thickness increases with the height of slurry at various 
length scales.  

 
Fig. 7. Variations of tape thickness with casting 

velocity for various height values of the slurry in 
the reservoir (n=0.59 and L=0) 

 
Fig. 8. Variations of tape thickness with casting 

velocity for various height values of the slurry in 
the reservoir (n=0.59 and L=0.15) 
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Fig. 9. Variations of tape thickness with casting 

velocity for various height values of the slurry in 
the reservoir (n=0.59 and L=0.35) 

 
Fig. 10. Variations of tape thickness with casting 
velocity for various height values of the slurry in 

the reservoir (n=0.59 and L=0.55 
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