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ABSTRACT 

The study of the influence of magnetic field, channel inclination, porous medium and cilia on the Micropolar 
fluid under different boundary conditions is carried out. The methods of solving Navier Stokes equation specific 
to Micropolar fluid under the joint influence of these effects are presented. The profiles of velocity (along the 
flow direction), the micro rotation vector and the variation of pressure rise with time average flow rate for fixed 
values of other parameters were carried out and the results are discussed.  
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NOMENCLATURE 

ji  Cauchy stress tensor,  

jis  Micro stress average,  

kji First stress moments,  

V velocity vector  

v component in the axial direction),  

jF body force per unit mass, 

kjS
 spin inertia

kjL body couple.  

 (,)  comma after a suffix denotes covariant 
differentiation, 
 i  micro rotation vector 

 
kiC couple stress tensor  

v dilation(bulk) viscosity coefficient,

  classical shear viscosity coefficient  

k vortex viscosity coefficient unit tensor,  
p isotropic pressure,  

d  rate of deformation tensor  
a mean breadth of the ciliated channel, 
ε non-dimensional measure w.r.t cilia length, 
α  measure of the eccentricity of the elliptical  

motion of the particle.   

λ  wavelength 
 c wave speed of the metachronal wave  

0X  reference position of the particle 
I  unit tensor,  

kij  alternating tensor 

kS
.

micro inertial rotation 

v ,
v ,    spin gradient viscosity coefficients.

e electrical conductivity of the fluid,  

0B magnetic flux,

 angle of inclination,

0k permeability parameter  

g acceleration due to gravity. ܾ amplitude,
Da  Darcy’s number  

1 slip parameter  

 Dimensionless wave number, 

Λ wavelength  the metachronal wave. 
q volume flux 

u fluid velocity

p pressure rise
m Micropolar parameter,  
M  magnetic parameter,  
N  Coupling number  
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1. INTRODUCTION 

It is well known that mixing and transporting of 
physiological fluids is referred as peristalsis, 
which is generated due to progressive waves of 
area contraction and expansion along the length of 
a distensible tube containing fluid. Peristalsis 
occurs widely in the functioning of the ureter, food 
mixing and chyme movement in the intestine, 
movement of eggs in the fallopian tube, the 
transport of the spermatozoa in cervical canal, 
transport of bile in the bile duct, transport of cilia, 
and circulation of blood in small blood vessels. 
The peristaltic transports through tubes/channels 
have attracted considerable attention due to their 
wide applications in medical and engineering 
sciences. Motivated by these facts, a good number 
of analytical, numerical and experimental studies 
have been conducted to understand peristaltic 
action under different conditions with reference to 
physiological and mechanical situations. 

Magneto hydrodynamics is the dynamics of 
magnetic fields in electrically conducting fluids. 
Many researchers have considered MHD flows of 
viscous electrically conducting fluids inside 
channels for various situations. Gribben (1965) 
discussed the Magneto hydrodynamic boundary 
layer in the presence of a pressure gradient. Moreu 
(1990) in his book Magneto hydrodynamics gave 
the conclusions on the system of equations of 
MHD. 

A porous medium is a multi phase material and is 
characterized by its porosity, permeability, tensile 
strength and electrical conductivity. These 
properties are derived from the respective 
properties of its constituents (solid matrix and 
fluid). The flow in a porous medium can be 
described using either by Darcy’s law or non-
Darcy’s law. Research was done on dynamics of 
fluids in porous media by Bear J (1972) which 
helped in developing of joint probability 
distributions of soil water retention characteristics.  

El.Shehawey (1999,2000)investigated peristaltic 
transport through a porous medium and effects of 
porous boundaries on peristaltic transport through 
a porous medium. Mekheimer (2003) studied the 
linear peristaltic transport through a porous 
medium in an inclined planar channel. Peristaltic 
pumping of a Jeffrey fluid with variable viscosity 
through a porous medium in a planar channel was 
discussed by Subba Reddy (2010). Krishna 
Kumari et al (2011) discussed peristaltic pumping 
of a Jeffrey fluid and MHD Casson Fluid in an 
inclined channel 

Cilia are little appendages that stick out from 
eukaryotic cells. They whip back and forth and 
help cells move around in cellular fluids. They also 
help particles move past the cell. They generally 
occur one per cell, examples of primary cilia can 
be found in human sensory organs such as the eye 
and the nose. Another important feature of ciliated 
cells is the existence of waves propagating all 
along the surface. These are called metachronal 
waves and might be due to the coordination of 

adjacent cilia, for example, via hydrodynamic 
interactions. Boris Guirao and Jean-Francxois 
Joanny (2017) observed experimentally  that 
metachronal waves  propagate in all possible 
directions, in the direction of the effective stroke 
(symplectic metachronal waves), in the opposite 
direction (antiplectic), or even in a perpendicular 
(laeoplectic or dexioplectic) or oblique direction  
Metachronal waves are produced when a group of 
cilia operate together, and it applies a force on the 
fluid to move it in the direction of the effective 
stroke. In the last few years considerable success 
in the modeling of cilia and the understanding of 
their fluid mechanical interaction to explain either 
propulsion or fluid transport has been observed 
.Siddiqui (2015) developed a mathematical model 
for the flow of a Casson fluid due to metachronal 
beating of cilia in a tube. Recently Nadeem (2017) 
analyzed metachronal wave for non-Newtonian 
fluid inside a symmetrical channel with ciliated 
walls and the physical hydrodynamic propulsion 
model on creeping viscous flow through a ciliated 
porous tube was studied by Akbar (2017). 

Research in molecular biology, microcirculation, 
and micro fluidics reveal that fluids like blood, 
polymeric suspensions etc. have individual 
particles of different sizes around a micron with 
complex structures that can rotate or change shape 
thus altering the macroscopic properties which 
was identified by Eringen (1965). Micropolar 
fluids are treated as a special case of micro 
continuum fluids, in which, only the rotational 
aspect of the particle is considered. Physically, 
Micropolar models represent fluids whose 
molecules can rotate independently of the fluid 
stream and its local vorticity. The occurrence of 
the Microrotation vector, which differs from the 
stream flow vorticity vector and from the angular 
velocity, results in the formation of non-symmetric 
stresses and coupled stresses, which consequently 
result in an increase in the energy dissipation.  

Arimon and Cakmak (1968) discussed three basic 
viscous flows of Micropolar fluids. Devanathan 
(1975) investigated peristaltic motion of a 
Micropolar fluid. Srinivasacharya (2003) studied 
peristaltic pumping of a Micropolar fluid in a tube. 
Muthu et al (2003) discussed peristaltic motion of 
Micropolar fluid in circular cylindrical tubes, 
Hayat (2008) studied peristaltic flow of a 
Micropolar fluid in an asymmetric channel.  
Satyanarayana (2016) studied MHD peristaltic 
transport of a Micropolar fluid in an asymmetric 
channel with porous medium. However, literature 
survey indicates that no attention was given to 
analyze ciliated effect on Micropolar fluid in the 
presence of porous medium and magnetic field. 
The study was then extended to find the effect of 
peristalsis and cilia on the flow rate of Micropolar 
fluid under identical conditions and a comparative 
study on the properties is carried out. 

2. MATHEMATICAL FORMULATION 

Under the assumption that the channel length is an 

integral multiple of the wavelength  and the 
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pressure difference across the ends of the channel 
is a constant, the flow becomes steady in the wave 
frame ),( yx  moving with velocity c away from 

the fixed (laboratory) frame ),( YX . The 

transformation between these two frames is given 
by  

),(),(

);,(),(;;

YtcXVyxv

YtcXUyxuYytcXx



  

The equation of conservation of mass is 

0),( 



iiV
t



                                              
(1)

 

Balance of linear momentum 
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




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jjiji vF                                  (2) 

Balance of first stress moments 
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results of linear constitutive theory of Micro-
isotropic fluids as outlined by Eringen (1965) are 

 
)(2)(2

2)()(

32

10

dbdb

dIdbtrdtrp
T 






      (4) 

 
)2(2

)()(

11

0

dbbd

IdbtrdtrpS
T 






                (5) 

jikjkijki

ikjjikjki

kjrirrirrri

kirjrrrjrrj

jirkrrrkrkrkji

aaa

aaa

aaa

aaa

aaa

151413

121110

987

654

321

)(

)(

)(





















 (6)

 

with, 

),(
2

1
,, ijjiji vvd 

ijjiji vvb ,,  ,

kjijkia ,
 

                            (7) 

A micro fluid will be called Micropolar if for all 
motions 

jkikji  
, 

ikjjkiijji aa 
            (8) 

 

Micropolar fluids exhibit only micro-rotational 
effects and can support surface and body couples. 
Fluid points contained in a small volume element, 
in addition to its usual rigid motion, can rotate 
about the centric of the volume element in an 

average sense described by the gyration tensor Ω. 

Equation (6) is valid for all motions if  

1 2 4 5
7 8 10 12 11 13

0,
0, 0

    
                (9)  

Using Eq. (9) in Eq. (6), we get 

i jk 1 2 kkk ij jkk ik

10 12 ijk ikj 14 15 jki

( )(a a )
( )(a a ) ( )a
       
                  (10) 

.In view of skew-symmetry conditions (8) the 

independent number 
ji  and kji are 

respectively 3 and 9.  

Introducing two new sets of variables we get k  

and 
jiC by 

jikijk 
2

1 ,
ijkkjikiC  ,         (11) 

Similarly we introduce  

. . . .
k i j i j kki j ki j
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The constitutive Eq. (6) can be put in the form 

 
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Rewriting Eq. (13) we get
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Multiplying Eq. (10) with ijk and using Eqs. 

(11) and (12), we get 
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Now the field equations satisfied by ,
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j is the fluid micro gyration parameter and the dot 
notation is used for the material derivatives given 
by 
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The equation of continuity is 
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y
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Introducing the Micropolar principles into Navier 
Stokes formulation in the presence of magnetic 
field, porous medium and inclination results  the 
following equations. 
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It is assumed that the plates are very wide and long so 
that the flow is essentially axial (u ≠0, v = 0). Further, 
the flow is considered far downstream from the 
entrance so that it can be treated as fully-developed.  

From the continuity equation we get 

)(0 yuu
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                                (24) 

As it is obvious from Eq. (23), that there is only a single 

non-zero velocity component that varies across the 
channel. So, only x-component of Navier-Stokes 
equation can be considered for this planner flow.  

Introducing the non-dimensional variables, we get 
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The non-dimensional governing equations of the 
fluid flow are 
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where  
)( k

k
N





is  coupling number 

 ( 10  N ) ,    kkkjm   /22  is the 

Micro-polar parameter. N  and m  are the two 
parameters which characterize the Micropolar 
fluid and makes it different from the Newtonian 
fluid in the limiting case of .0,0  mN  

2.1 Flow With Peristaltic Pumping  

Consider the peristaltic pumping of a Micropolar 
fluid in an inclined channel of half-width ‘a’. A 
longitudinal train of progressive sinusoidal waves 
take place on the upper and lower walls of the 
channel. For simplicity we restrict our discussion to 
the half-width of the channel as shown in Fig. 1. 

 
Case (i) With out-slip condition 

Case (ii) With Slip condition 

Fig. 1 Physical model of the problem with 
peristaltic effect. 

The wall deformation is given by  

  ,
2

),( 
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
  tcXSinbatXHY

          (28) 



S. V. H. N. Krishna Kumari P. et al. / JAFM, Vol. 11, No.5, pp. 1321-1331, 2018.  

 

1325 

Case (i) No-slip condition 

The corresponding non-dimensional no-slip 
boundary conditions are  
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Case (ii) Slip-condition 

The corresponding non-dimensional slip-
boundary conditions are  
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where

1
1 

 Da
 with  

Case(iii).Flow with Ciliated effect with no 
slip boundary condition 

 

Fig. 2. Physical model of the problem with 
ciliated effect. 

The inner surface of the channel is ciliated with 
metachronal waves and the flow occurs due to 
collective beating of the cilia. 

The wall deformation is given by 
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The cilia tips horizontal position may be expressed 
as 
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and if no slip condition is applied, then the 
velocities of the transporting fluid are just those 
caused by the cilia tips, which can be given as: 
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The non-dimensional no-slip boundary conditions 
are 
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3. SOLUTION OF THE PROBLEM 

Equations (26) and (27) together with the 
corresponding boundary conditions are solved to 
get the fluid velocity ,u Micro-rotation vector

. , pressure rise p and time average flow rate

Q. 

The axial velocity is given by 
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The volume flux q through each cross section in 
the wave frame is given by  


h

udyq
0

            (37) 

The time averaged flow rate is       

1 qQ             (38) 

Eliminating dp/dx from Eq. (35) we get pressure 
gradient as 
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(39) 

Integrating the Eq. (39) over one wave length, we 
get the pressure rise (drop) for peristalsis with no-
slip condition over one cycle of the wave as 


1

0

dx
dx

dp
p

            
(40) 

Case (i) Solution for no-slip condition with 
peristalsis: 
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Case (ii) Solution for slip condition with 
peristalsis: 
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Case (iii) Solution for no-slip condition with 
cilia: 
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4. RESULTS AND DISCUSSIONS 

The governing equations are solved together with 
the corresponding boundary conditions to get fluid 

velocityu, Micro-rotation vector  and pressure 

rise p for varying Micropolar parameter m, 

magnetic parameter M , coupling number N and 
porous parameter. The variation of velocity u 

along y for Micropolar parameters 2.5m  to 4.5 

for 0.5,  0.4, 1.3,M 0.2,N / 3, 
1.5,Q  1 0.2,  0.4,  0.7, 0.2,   are 

shown in Fig. 3.  From Figs. 3(a),3(b) and 3(c) it 
is observed that as the Micropolar parameter m 
increases the velocity decreases in all the three 
cases. However in case of slip condition with 
peristalsis Fig. 3(b), velocity is higher than the 
other two cases due to the slip at the boundary. 

The Profiles of velocity and Micro rotation vector 
for different values of magnetic parameter M are 
shown in Fig. 4. It is observed that as the magnetic 
parameter M increases the velocity of the fluid 
decreases due to an increase in magnetic flux B0 

leads to increased Lorentz force. This force acts 
along the direction of flow leading to a higher 
velocity. Also it is analyzed from Figs. 4(a) and  
4(c)  that ciliated effect at the boundary reduces the 
velocity compared to no-slip with peristaltic effect 
for higher values of  magnetic parameter M. In cas 

e of slip condition the value of velocity is 
significantly higher compared to no-slip and cilia 
effect for fixed value ofMwhich can be analyzed 
from Fig. 4(b). 

The profiles of velocity for different values of 
Coupling number N are shown in Fig. 5. It is 
observed that as N increases the velocity decreases 
beyond y = -0.5 to y = 0.5 in all the three 
cases..Increase in coupling number indicates 
increase in vortex viscosity, which 
 

 

Fig. 3(a). Peristalsis with no-slip 

 

Fig. 3(b). Peristalsis with slip 

 

Fig. 3(c). With cilia 

Fig. 3. Velocity profiles for different values of 
Micropolar parameter m  

(with peristalsis and cilia effects separately) 

 

Fig. 4(a). Peristalis with no-slip 

 

Fig. 4(b). Peristalsis with slip 

 

Fig. 4(c). With cilia 

Fig. 4. Velocity profile for different values of 
magnetic parameter M 

(with peristalsis and cilia effects separately) 

      
,

2

2/8 1
22

11
2

2

NALmALALm
m






S. V. H. N. Krishna Kumari P. et al. / JAFM, Vol. 11, No.5, pp. 1321-1331, 2018.  

 

1327 

increases the momentum drag and hence reduces 
the velocity of the fluid which is depicted in the 
figures. 

 

Fig. 5(a). Peristalsis with no-slip 

 

Fig. 5(b). Peristalsis with slip 

 

Fig. 5(c). With cilia 

Fig. 5. Velocity profile for different values of 
coupling number N  

(with peristalsis and cilia effects separately) 

The analysis is made on the effect of variation 
of porous medium on velocity when the fluid 
passes through the porous medium and past the 
porous medium. The porous parameter ߪ  is 
given by ߪ ൌ ܽ/ඥ݇଴ where k0 is the porous 
permeability and a the distance between origin 
and the boundary. It is observed from Fig. 6(a)  
that the presence of porous medium in the 
channel slows down the flow in case of no-slip 
condition with peristalsis compared to ciliated 
effect which is shown in Fig. 6(c).Also it is 
observed that the fluid velocity increases as the 
Darcy’s number increases. Darcy’s number is 
given by Da =k0/ a2Permeability is a measure of 
the ease with which a fluid can move through a 
porous medium. This implies that flow velocity 
would be higher for higher Darcy numbers a 
feature which is reflected in Fig. 6 (b). 

The profiles of velocity for different values of 
angle of inclination are shown in Fig. 7. It is 
observed that velocity is insensitive to angle of 
inclination in all the three cases.This is due to the 
fluid's Reynolds number being very small leading 
to an inertia free flow.  

 

Fig. 6(a). Peristalsis with no slip 

 

Fig. 6(b). Peristalsis with slip 

 

Fig. 6(c). With cilia 

Fig. 6. Velocity profile for different values of 
porous parameterߪ 

(with peristalsis and cilia effects separately) 

The profiles of micro-rotation vector for different 
parameters are shown in the figures Figs. 8 – 11. 

From Fig. 8. it is observed that as the 
Micropolar parameter 

   kkkjm   /22 is a direct 

function of j, the gyration gradient and k, the 
vortex viscosity. Since bothj and k represent 
rotational aspects, it is obvious that micro polar 

rotation is large for large values of , since 
one rotational feature can couple better to 
another rotational feature.  

It is interesting to note that for the increasing 
values of m the micro rotation vector 
decreases at one end of the channel and shows 
reverse behavior at the other end for no-slip 
condition with peristaltic and ciliated effect 
which is shown in Figs. 8(a) and 8(c).Similar 
behavior is observed for slip condition with 
peristalsis which is shown in Fig. 8(b). 

The effect of magnetic parameter M on  rotation 
vector  is shown in Fig. 9. It is observed that for 
a Micropolar fluid as the magnetic parameterM 
increases  decreases for fixed value of y. From 
Figs. 9(a) and 9(c) it is observed that the effect of 
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variation of M on rotation vector  in 
thepresence of peristalsis with no-slip condition 
and cilia is low compared to slip condition with 
peristalsis which is shown in Fig. 9(b). 

 

Fig. 7(a). Peristalsis with no-slip 

 

Fig. 7(b). Peristalsis with slip 

 

Fig. 7(c). With cilia 

Fig. 7. Velocity profile for different values of 
angle of inclination 

 (with peristalsis and cilia effects separately) 

The effect of varying porous parameter on 
Microrotation profile is illustrated in Fig. 10. It is 
observed that for fixed value of y the magnitude of 
Micro rotation vector decreases as porous 
parameter increases. Also it is observed from Figs. 
10(a) and 10(c) due to the presence of porous 
medium in the channel the magnitude of 
Microrotation vector is small compared to that due 
to the effect of slip condition which is shown in 
Fig. 10(b). 

Pumping Performance 

The pumping performance is characterized by 
means of the pressure rise per wavelength. The 
variation of time averaged flow rate  ഥܳ ,   with 
pressure rise per wavelength, p  , for various 

parameters are given in Figs. 11 to 13. 

The effect of Micropolar parameter m on 
 

 

Fig. 8(a). Peristalsis with no-slip 

 

Fig. 8(b). Peristalsis with slip 

 

Fig. 8(c).With cilia 

Fig. 8. Profile for micro rotation vector for 
different values of Micropolar parameter 

(with peristalsis and cilia effects separately) 

pumping characteristics is shown in Fig. 11. It is 
observed that pressure rise p decreases as mean 

flow rate increases in the pumping region and 
reverse effect is observed in co-pumping region. 
The pumping due to peristalsis with no-slip 
condition is shown in Fig. 11(a), with slip 
condition is shown in Fig. 11(b) and pumping due 
to metachronal wave is depicted in Fig. 11(c). For 
fixed value of m the pressure rise is high with 
ciliated effect compared to peristaltic effect with 
no-slip, but when compared to slip-condition with 
peristalsis pressure rise higher than ciliated effect. 

The variation of pressure rise with average flow rate തܳfor different values of magnetic parameter M is 
shown in Fig. 12. It is observed that pressure rise

p decreases as mean flow rate increases. For fixed 

value of തܳ  the pressure rise increases as magnetic 
parameter Mincreases in the pumping region and 
reverse effect is observed in co-pumping region. 
The pumping due to peristalsis with no-slip 
condition is shown in Fig. 12(a), with slip condition 
is shown is shown in Fig. 12(b) and 
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Fig. 9(a). Peristalsis with no-slip 

 
Fig. 9(b). With slip 

 
Fig. 9(c).With cilia 

Fig. 9. Profile of Microrotation vector for 
different values of magnetic parameter M(with 

peristalsis and cilia effects separately)  

 
Fig. 10(a). Peristalsis with no-slip  

 
Fig. 10(b). Peristalsis with slip 

 
Fig. 10(c). With cilia 

Fig. 10. Profile for Microrotation vector for 
different values of porous parameter 

(with peristalsis and cilia effects separately)  

 

 pumping due to metachronal wave is depicted in 
Fig. 12(c). For fixed value of M the pressure rise is 
high with ciliated effect compared to peristaltic 
effect with no-slip, but when compared to slip-
condition with peristalsis pressure rise is higher 
than ciliated effect. 

It is observed that as porous parameter increases 
the pressure rise increases in pumping region 
increases and reverse behavior is observed in co-
pumping region in all the three cases which is 
shown in Fig. 13. From Fig. 13(c) it is observed 
that pressure rise is high due to metachronal wave 
of cilia. 

5. CONCLUSIONS 

 An attempt is made to study the effect of 
peristalsis and cilia on the flow of MHD 
Micropolar fluid through a porous channel. Along 
with peristalsis, three cases are considered. i. slip 
boundary condition ii. no slip condition iii. Cilia. 

Following are the conclusions drawn from the 

study. 

1) Increase in the micropolar parameter m 
increases the velocity in all the three cases. 
However in case of slip condition with peristalsis, 
velocity is higher than the other two cases due to 
the slip at the boundary. 

2). Magnetic parameter M increases the velocity of 
the fluid decreases due to an increase in c leads to 
increase in Lorentz force. The ciliated effect at the 
boundary reduces the velocity compared to no-slip 
with peristaltic effect for higher values of 
magnetic parameter M. In case of slip condition 
the value of velocity is significantly higher 
compared to no-slip and cilia effect for fixed value 
of M. 

3) Coupling number N increases the velocity 
decreases beyond y = -0.5 to y = 0.5 in all the three 
cases..Increase in coupling number indicates increase 
in vortex viscosity, which increases the momentum 
drag and hence reduces the velocity of the fluid which 
is shown in the graphs. 
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4). Presence of porous medium in the channel 
slows down the flow in case of no-slip condition 
with peristalsis compared to ciliated effect. 

5).Velocity is insensitive to angle of inclination in 
all the three cases.This is due to the fluid's 
Reynolds number being very small leading to an 
inertia free flow.  

6).For the increasing values of m the micro 
rotation vector decreases at one end of the 
channel and shows reverse behavior at the other 
end for no-slip condition with peristaltic and 
ciliated effect. Similar behavior is observed for 
slip condition with peristalsis. 

 
Fig. 11(a). Peristalsis with no-slip 

 
Fig. 11(b). Peristalsis with slip 

 
Fig. 11(c). With cilia 

Fig. 11. Variation of pressure rise with average 
flow rate ࡽഥ  for different values of Micropolar 

parameter m 

7) The effect of varying porous parameter on Micro 
rotation profile is illustrated in Fig. 10. It is observed 
that for fixed value of y the magnitude of Micro 
rotation vector decreases as porous parameter 
increases. Also it is observed from Figs. 10(a) and 
10(c) due to the presence of porous medium in the 
channel the magnitude of Micro rotation vector is 
small compared to that due to the effect of slip 
condition which is shown in Fig. 10(b). 

8) The effect of Micro polar parameter, magnetic 
parameter and porous medium on pumping 

characteristics also observed . 

 

Fig. 12(a). Peristalsis with no-slip 

 

Fig. 12(b). Peristalsis with slip 

 

Fig. 12(c). With cilia 

Fig. 12. Variation of pressure rise with average 
flow rate ࡽഥfor different values of magnetic 

parameter M 

 Fig. 13(a). Peristalsis with no-slip 

 Fig. 13(b). With cilia 

Fig. 13. Variation of pressure rise with average 
flow rate ࡽഥfor different values of porous 

parameter 
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