
Journal of Applied Fluid Mechanics, Vol. 11, No. 3, pp. 637-645, 2018. 
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.29252/jafm.11.03.28531 

A Similarity Solution with Two-Equation Turbulence 
Model for Computation of Turbulent Film Condensation 

on a Vertical Surface 

M. Ziaei-Rad1†, A. Ahmadi Nadooshan2 and S. Mahmoodi2

1 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran 
2 Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran 

†Corresponding Author Email:m.ziaeirad@eng.ui.ac.ir 

(Received October 20, 2017; accepted December 12, 2017) 

ABSTRACT 

In this paper, we presented a similarity solution for turbulent film condensation of stationary vapor on an 
isothermal vertical flat plate. In this method, some similarity transformations are employed and the set of 
governing partial differential equations (PDE) of conservation together with transport equations of turbulent 
kinetic energy and dissipation rate are transformed into a set of ordinary differential equations (ODE). 
Calculated data for the flow field, velocity profile, wall shear stress, condensate film thickness, turbulent 
kinetic energy, rate of dissipation, and heat transfer properties are discussed. The effect of Prandtl (Pr) 
number was also investigated in a wide range of variations. The obtained results showed that at high Prandtl 
numbers, the velocity profile becomes more uniform across the condensation film and therefore, the kinetic 
energy of turbulence is reduced. Furthermore, the effect of change in Pr is negligible at high Pr numbers and 
consequently, the flow parameters have no significant change in this range. The friction coefficient changes 
linearly through the condensation film and the slope of friction lines diminishes slightly by the Pr number. 
The rate of turbulent kinetic energy increases linearly from the wall up to about 20% of condensate film, then 
rises asymptotically and converges to a constant value near the liquid-vapor interface. Also, the rate of 
turbulent dissipation grows linearly up to 40% of condensate film thickness and then increases slightly while 
it oscillates. 

Keywords: Turbulent film condensation; Similarity solution; k- turbulence modeling; Vertical surface. 

NOMENCLATURE 

a,b,c,d,e coefficients 
C  constant 
Cp  heat capacity 
E  dimensionless turbulent dissipation rate 
F  stream function 
g  gravitational acceleration 
hfg  latent heat transfer coefficient 
Ja  Jacob number 
K dimensionless turbulent kinetic energy 
k turbulent kinetic energy 
m,n,p,q,l constant powers 
Pr  Prandtl number 
T  temperature 

u,v  velocity components 
x,y  stream/normal directions 

  boundary layer edge 
  turbulent dissipation rate 
  similarity variable 
  dimensionless temperature
  conductivity
vt  eddy viscosity 
  density 
 constant 
  stream function 

1. INTRODUCTION

Because of phase change and the basic role of latent 
heat, heat transfer occurs in constant temperature in 
film condensation. In fact in condensation, the heat 
is transferred with high rate and low temperature 
difference. Therefore, condensation plays a 

significant role in numerous engineering designs 
such as power plants, chemical engineering, 
medical industry and air conditioning. However, in 
most of these applications, the condensate film 
becomes turbulent after a short distance.  

Several analytical and numerical methods can be 
found in literatures for formulation and solution of 
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two-phase flows (in particular, the problem of film 
condensation) governing equations. A common 
scheme is the ‘integral method’ in which the 
governing equation for liquid and vapor phases are 
derived separately and then the results are 
obtained by integrating the equations over a 
specific range. In this method, the formulation is 
relatively simple, but applying the boundary 
conditions and solving the resultant integrals is 
difficult. Another method is to solve directly the 
flow field governing PDEs using a numerical 
scheme. However, due to the presence of two 
different phases, the solution procedure and 
applying the boundary conditions are very 
complicated in this method and it consumes 
considerable CPU and time. There is also a well-
known notable method for complex problems 
called similarity solution. In this approach, it is 
possible to change the set of governing PDEs into 
ordinary differential equations (ODE) by applying 
an appropriate similarity variable.  Thus, the 
number of independent variables is reduced which 
results in an easy solution for the equations and 
relatively simple applying of boundary conditions. 
However, the method is limited to free or force 
convection flows on physically simple geometries 
(Kays et al. 2012).  

The first study on laminar film condensation of 
stagnant vapor is published by Nusselt (Incropera 
and DeWitt 2007). After Nusselt work, numerous 
studies have been made on the laminar film 
condensation of a quiescent vapor on various 
geometries. Sparrow and Gregg (1959) used a 
similarity solution to analyze the full boundary 
layer equations for condensate film. They showed 
that the condensate film thickness is dependent on 
physical quantity CpT/hfg, known as Jacob 
number. In low Jacob numbers, their results 
correlated with Nusselt theory. Koh et al. (1961) 
solved two set of governing equations for liquid 
and vapor phase, simultaneously. They adopted 
the shear effects on liquid-vapor interface and 
indicated that it is satisfactory to neglect them in 
governing equations. Chen et al. (1961) 
investigated laminar film condensation of pure 
vapor on vertical flat plate experimentally. They 
also noted that the shear layer is negligible at 
liquid-vapor interface. The Nusselt theory 
correlates their experimental data at Reynolds 
numbers lower than 20. Mendez et al. (2000) 
numerically analyzed laminar film condensation 
on a two-dimensional fin. They solved conduction 
heat transfer in fin and phase changing of vapor 
and showed that in fins with high thermal 
conductivity, the results coincide with Nusselt 
theory and when conductivity becomes smaller 
than a critical point, it is possible that some area 
on the fin becomes dried and hence, condensation 
may not occur. Shekrilazde and Gomelauri (1966) 
studied film condensation on low velocity flowing 
vapor on horizontal tubes. They used an 
asymptotic solution to model shear effect on 
vapor-liquid interface. Their results could 
correlate experimental data at low velocities but n 
increased velocity, deviance grows, and the model 
did not respond favorably for high velocities. 

Sosnowski et al. (2013) investigated laminar film 
condensation of stagnant vapor-air mixture on 
solid surfaces with different substances. They used 
OpenFOAM to solve governing equations and 
showed that vapor concentration in mixture in the 
presence of metals is much less than non-metallic 
substances, therefore, the condensation rate 
increases on surfaces with high thermal 
conductivity. There are also some previous studies 
on using nanofluids in the condensate layer 
(Avramenko et al. 2014, 2015; Liu et al. 2010; 
Gabriela and Angel Huminic 2013).  

Available published literatures provide a wide 
investigation on laminar film condensation. But in 
the case of turbulent film condensation, cause of 
complications in two-phase turbulent flows, 
experimental works are much more than numerical 
studies. However, numerical analysis of turbulent 
film condensation is also of interest (Lee 1964; 
Kharangate and Mudawar 2017). Koyama (1984) 
analyzed turbulent film condensation on a 
horizontal tube. They neglected the shear effects in 
vapor-liquid interface and solved the governing 
equations numerically using integration method. 
Their results revealed that heat transfer rate 
increases with distance from the upper stagnant 
point and decreases toward downer stagnant point. 
They also showed that heat transfer rate due to 
condensation on vertical plates are always more 
than those of tubes. Michael et al. (1989) presented 
an important concept on film condensation in which 
they suggested that the flow in condensate film is 
partially turbulent. This is caused by wave forming 
in film condensation phenomena. Nakayama and 
Koyama (1984) and Sarma et al. (1998) formulated 
turbulent film condensation of flowing air-vapor 
mixture with high velocity on a horizontal tube. 
They neglected inertia terms in momentum and 
energy equations. They used Kato’s eddy 
diffusivity model to model the eddy viscosity (Kato 
et al. 1968) and used Colburn analogy to calculate 
the interfacial shear effect. They showed that the 
maximum local Nusselt number is at the angle of 
90o on the tube (where the effect of gravity is 
maximum), and that the condensate film thickness 
increases at high velocities. Sheng and Yan-Ting 
(2005) added the pressure gradient from potential 
flow, omitted the inertial terms and adopted the 
separation for turbulent film condensation of 
moving vapor on a horizontal tube. They 
demonstrated that when the velocity of vapor 
increases, the film thickness grows and the 
separation point moves toward the upper region. 
Cha’o-Kuang and Yan-Ting (2009) analyzed 
turbulent film condensation of vapor in the presence 
of non-condensable gas on a circular tube. They 
solved the governing equation in two-phase using 
finite different implicit method. They used Kato’s 
model to calculate the eddy diffusivity, and showed 
that in the presence of small amount of non-
condensable gas, the Nusselt number takes a large 
negative change.  

Recently, Cintolesi et al. (2017) utilized large-eddy 
simulation to study a hot and wet plate surrounded 
by a cold and wet square enclosure. They reported 
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the evolution of the drying-process simulations and 
concluded that the physical properties of the plate 
materials lead to different decays of the surface 
thermal fluctuations. Gou et al. (2017) developed an 
analytical model for pure vapor condensation in a 
vertical tube. They recommended Kay’s turbulent 
eddy diffusivity model for their newly proposed 
model and claimed that there is a good agreement 
between their results and available experimental 
data. Shen et al. (2017) proposed an improved 
model amplifying the thermal conductivity of vapor 
in the phase interaction region and showed that the 
interfacial temperature deviation is reduced by the 
amplified thermal conductivity of vapor. Swartz and 
Yao (2017) experimentally investigated the 
influence of film waviness and mass transfer 
suction on the turbulent, natural convective 
condensing flow with high non-condensable mass 
fraction. Their test results showed a significant 
enhancement in heat transfer caused by disruption 
of the gas boundary layer due to film waviness. 
They also proposed a new correlation and compared 
the results to several datasets. 

There are a few studies in literatures on similarity 
solution of turbulent flow, which are for some 
cases excluding the problem of condensation. 
Principally, finding appropriate similarity 
variables to change the governing equations of 
turbulent flow into ODEs is a complex process. In 
contrast, if we succeed to do so by applying valid 
assumptions, the solution procedure will be easier 
and the computational cost is reduced 
considerably. Paullay et al. (1985) utilized 
similarity method to solve turbulent flow of planar 
and circular jets. They stated that due to special 
boundary conditions, singular points exist in PDEs 
as well as obtained ODEs of the problem. As a 
result, regular numerical schemes are not 
applicable in this case and a secondary 
transformation is required to transfer the singular 
points to infinity and solve the equations 
asymptotically. Wen-xin and Li (1993) 
investigated the problem of turbulent natural 
convection near a solid wall. They employed two-
equation k- model for turbulence modeling, and 
then introduced a proper similarity variable to 
achieve ODEs and finally, solved them by space 
marching. 

The above reviewed studies used similarity solution 
for single-phase flows with constant properties. 
Furthermore, they replaced simplified asymptotic 
method with limited range of validity in the 
numerical schemes. Therefore, the lack of a 
comprehensive similarity solution for the problem 
of turbulent film condensation is obvious in 
literatures. Usually, it is difficult to investigate two-
phase flow problems via solving the governing 
PDEs, whereas solution and making discussion on 
the set of transformed ODEs are more amenable. In 
this paper, by introducing some useful 
transformation variables, we change the formidable 
set of governing conservation PDEs together with 
two transport equations for turbulence quantities 
into a set of ODEs. We also use a wide range of 
Prandtl number and govern the problem of presence 

of singular points in the equations through a 
suitable numerical technique.  

2. PHYSICAL MODEL AND 

ASSUMPTIONS 

Figure 1 shows a schematic of turbulent film 
condensate flowing on a vertical flat plate. Infinite 
stationary bulk vapor has its saturated temperature, 
therefore there is no temperature gradient and 
interface surface attains saturated temperature. Flat 
plate is at uniform constant temperature Tw. It is 
assumed that plate is much bigger than condensate 
thickness, therefore it is allowable to formulate 
equations in two dimensional coordinate, and 
turbulent flow appears at the top of the plate. 

According to no slip condition on the wall, there is 
no tangential or vertical component of velocity 
there. Moreover, turbulent kinetic energy, k, and its 
dissipation rate, , are set to be zero on the surface, 
since the vapor is in quiescent state with no 
disturbance. Also, the gradient of k and  take zero 
at the liquid-vapor interface surface.  

 

 
Fig. 1. Physical model of turbulent film 

condensation on a vertical surface. 
 

Considering boundary layer approximations, the 
axial diffusion terms can be neglected in the 
governing equations. Also, y-momentum equation 
is reduced to ∂݌/ ∂y = 0, confirming that the 
pressure in the condensate layer is a function of 
flow direction (x) only and can be expressed in 
terms of density change. Therefore, we can write 
the equations of continuity, x-momentum, energy, 
turbulent kinetic energy and its dissipation rate, as 
follow:  ப୳ப୶ + ப୴ப୷ = 0                                                            (1) u ப୳ப୶ + v ப୳ப୷ = (஡೗ି஡౬)஡ౢ . g + பப୷ (ν୲ ப୳ப୷)                      (2) u பTப୶ + v பTப୷ = பப୷ ቀ஝౪஢౪ பTப୷ቁ                                         (3) 

u ப୩ப୶ + v ப୩ப୷ = பப୷ ቀ ஝౪஢ౡ ப୩ப୷ቁ + ν୲ ቀப୳ப୷ቁଶ − ε                (4) u பகப୶ + v பகப୷ = பப୷ ቀ஝౪஢಍ பகப୷ቁ + cଵ க୩ ν୲(ப୳ப୷)ଶ − cଶ கమ୩       (5) 

Here u and v are the velocity components in 
streamwise (x) and normal (y) directions, 
respectively. T is temperature, g is gravity, and l 
and v respectively define the liquid and vapor 
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densities. Moreover, turbulent kinetic energy and its 
dissipation rate are denoted by k and ε, respectively, 
and ν୲ is the eddy viscosity, expressed as: ν୲ = Cμ ୩మக                                                               (6) 

The model constants take the below (Wilcox, 
1994): σ୲ = 0.9, σ୩ = 1.0,          σக = 1.3 Cଵ = 1.44,      Cଶ = 1.92,        Cμ = 0.09               (7) 

Finally, the boundary conditions are defined as: 

y = 0: 
۔ۖەۖ
ۓ u = 0v = 0T = T୵k = 0ε = 0     ,     y → δ: 

۔ۖەۖ
ۓ ப୳ப୷ = 0T = Tୱୟ୲ப୩ப୷ = 0பகப୷ = 0              (8) 

2.1 Similarity Analysis 

To derive the ordinary differential equations from 
governing partial differential Eqs. (1-5), we define 
appropriate similarity variables as below:  η = a xି୪ y                                                            (9) ψ = b x୫ F(η)                                                    (10) c x୬θ(η) = T౩౗౪ିTT౩౗౪ିT౭                                             (11) k = d x୮ K(η)                                                     (12) ε = e x୯ E(η)                                                      (13) 

where, ψ is the stream function, defined by           ݑ = ߲ψ/߲ݕ, ݒ = −߲ψ/߲ݔ, and  η, F, θ, K and E 
are non-dimensional forms of lateral similarity 
variable, stream function, temperature, turbulent 
kinetic energy and its dissipation rate. Also, a, b, c, 
d, e, m, n, p and q are arbitrary constants. By 
substituting the above definitions (9) to (13) into 
Eqs. (2) to (5), we have: aଶbଶxଶ୫ିଶ୪ିଵൣ(m − l)Fᇱଶ − mFFᇱᇱ൧ = (஡ౢି஡౬)஡ౢ . g +cμ ୟయୠୢమୣ xଶ୮ା୫ି୯ିଷ୪ ቂቀଶKKᇲE − KమEᇲEమ ቁ Fᇱᇱ + KమE Fᇱᇱᇱቃ                                              
                 (14) abcx୫ା୬ିଵି୪(nθFᇱ − mFθᇱ) =ୡμ஢౪ ୟమୡୢమୣ xଶ୮ା୬ି୯ିଶ୪ ቂቀଶKKᇲE − KమEᇲEమ ቁ θᇱ + KమE θᇱᇱቃ    (15) abdx୫ା୮ି୪ିଵ(pKFᇱ − mFK′) =ୡμ஢ౡ ୟమୢయୣ xଷ୮ି୯ିଶ୪ ቂቀଶKKᇲE − KమEᇲEమ ቁ K′ + KమE K′′ቃ +cμ ୟరୠమୢమୣ xଶ୮ାଶ୫ି୯ିସ୪ KమFᇱᇱమE − ex୯E                (16) abex୫ା୯ି୪ିଵ(qEFᇱ − mFE′) =ୡμ஢಍ aଶdଶxଶ୮ିଶ୪ ቂቀଶKKᇲE − KమEᇲEమ ቁ E′ + KమE E′′ቃ +cଵcμaସbଶdx୮ାଶ୫ିସ୪KF′′ଶ − cଶ ୣమୢ xଶ୯ି୮ EమK          (17) 

The condensate layer thickness is a function of the 
ratio of conduction heat transfer to latent heat 
during phase change; consequently, energy 
balancing can be written as: 

׬ λ୶଴ [பTப୷]୷ୀ଴ dx = ׬ h୤୥  dmሶ                                 (18) 

Using similarity variables in this equation yields: −λ(Tୱୟ୲ − T୵)acθ′(ηஔ) ୶౤షౢశభ୬ି୪ାଵ =  ρbh୤୥x୫F(ηஔ) 

                 (19) 

To obtain the equations in similarity form, the role 
of variable x in Eqs. (14-17) and (19) should be 
eliminated.  Therefore, the following equations 
must be satisfied: ൜ 2m − 2l − 1 = 02p + m − q − 3l = 0                                        (20) m + n − l − 1 = 2p + n − q − 2l                      (21) m + p-l-1 = 3p-q-2l = 2p + 2m-q-4l = q   
                             (22) m + q − l − 1 = 2p − 2l = p + 2m − 4l = 2q − p                                                
                 (23) n − l + 1 = m                (24) 

By solving the above equations, the constant 
coefficients become: l = 1,      m = ଷଶ ,      p = 1,      q = ଵଶ ,      n = ଷଶ    (25) 

Furthermore, the following relation should be 
satisfied so that the coefficients in Eqs. (14) to (17) 
can be omitted: (ಙౢషಙ౬)ಙౢ .୥ୟమୠమ = ୟୢమୣୠ = ୟయୠୢୣ = ୟୠ஑ୡ = 1                            (26) 

which results in: 

a = 1,  b = ቂ(஡ౢି஡౬)஡ౢ . gቃభమ,  c = ൤(஡ౢି஡౬)஑మౢ஡ౢ . g൨భమ
 , d =(஡ౢି஡౬)஡ౢ . g,      e = ቂ(஡ౢି஡౬)஡ౢ . gቃయమ                      (27) 

Using these results through Eqs. (14-17) and (19), 
the set of similarity ordinary differential equations 
should take its final form: Fᇱᇱᇱ + ቀଶKᇲK − EᇲE ቁ F′′ + EଶୡμKమ ଵP୰ ൫3FFᇱᇱ − Fᇱଶ൯ +ଵP୰ EୡμKమ = 0                 (28) θᇱᇱ + ଷଶ ஢౪EୡμKమ (Fθᇱ − θFᇱ) + ቀଶKᇲK − EᇲE ቁ θᇱ = 0      (29) Kᇱᇱ + ஢ౡEୡμKమ ቀଷଶ FKᇱ − KFᇱቁ + ቀଶKᇲK − EᇲE ቁ Kᇱ +σ୩Fᇱᇱଶ − ஢ౡEమୡμKమ = 0                    (30) E′′ + ଵଶ ஢಍EୡμKమ (3FEᇱ − EFᇱ) + ቀଶKᇲK − EᇲE ቁ Eᇱ +cଵσக EK Fᇱᇱଶ − cଶ ஢಍EయୡμKయ = 0                      (31) 

Boundary conditions can be re-written in similarity 
form as below: 

η = ۔ۖەۖ :0
ۓ F = 0F′ = 0θ = 1K = 0E = 0     ,       η = ηஔ : ൞F′′ = 0θ = 0K′ = 0E′ = 0             (32) 
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where ηஔ is the value of η at the condensate 
interface.  

We also define a new variable which represents 
dimensionless eddy viscosity in similarity form. It 
is:  ν୲∗ = KమE                                                                 (33) 

Moreover, Eq. (19) is changed into its similarity 
form as follows. Ja୲୳୰ୠ = − ଷଶ F(஗ಌ)஘ᇱ(஗ಌ)                                               (34) 

Here, Jacob number (Ja୲୳୰ୠ) represents the ratio of 
sensible to latent heat transfer during liquid-vapor 
phase-change, which is: Ja୲୳୰ୠ = C୮ ∆T୦౜ౝ                                                      (35) 

2.2 Solution Method 

Evidently, the numerical solution of converted 
ODEs is much easier than PDEs with less 
computational efforts. However, the set of ordinary 
differential Eqs. (28-31) with their boundary 
conditions are non-linear and highly coupled. 
Furthermore, boundary conditions of equations 
reveal them to be singular at the plate surface. This 
property is the cause of vanishing turbulent kinetic 
energy and its dissipation rate at near wall region. 
Therefore, the Eqs. (28) to (31) are amenable to 
solve, and in this case, using common numerical 
schemes will not be helpful. Paullay et al. (1985) 
analyzed turbulent plane and radial jets using k- 
model in similarity form. They also had singularity 
problem in their equations, but according to 
governing momentum, turbulent kinetic energy and 
dissipation rate equations and related boundary 
conditions, they transferred singular point into 
infinite solution domain using a secondary 
transformation variable, and then solved them 
easily. However in the present problem, because of 
physical phenomena, mathematical model and 
equation properties mentioned above, we cannot use 
such methods.  This means that a more efficient 
numerical scheme is required. 

The governing equations in the present study (28-
31) are a set of non-linear, non-homogenous, and 
third-order ordinary differential equation. Also, 
momentum, turbulent kinetic energy and its 
dissipation rate are coupled and must be solved 
coincidently. Moreover, we can see that there are 
some terms in the governing Eqs. (28-31) where K 
and E are in the denominator of the fraction, and we 
know that they are zero at many parts of 
computational domain. Hence, singularity is the 
main problem for this case. Dealing with non-
homogenous governing equations and the presence 
of singular points within the computational domain 
also make the numerical scheme of ODEs very 
complicated.  

There are several methods for solving the set of 
ODEs, but all of them diverge rapidly. There are 
also some asymptotical solutions for the problems 
including singular points (Paullay et al. 1985, Wen-
xin and Li 1993), but these methods are only for 

single-phase cases. In this paper, we use 
Differential Transform Method (DTM). It is a 
suitable scheme for solving singular problems 
(Vedat, 2007). In this method, differential equation 
with n-order of derivations is converted to n+1 
algebraic equations. Then, the set of algebraic 
equations are solved simultaneously. A code is 
developed using Maple software (version 18, 2014).  

3. RESULTS AND DISCUSSION 

The results of computed average Nusselt number 
for different numbers of computational nodes are 
summarized in Table 1. The obtained results are 
for a turbulent film condensation on a vertical plate 
at Jacob number of 0.6. It is evident that a grid 
with 200 nodes is suitable for numerical 
computations. 

 
Table 1 Mesh independency of computations for 

turbulent film condensation at Ja=0.6 
Average Nusselt 

number 
Number of computational 

nodes 
0.51 50 
0.48 100 
0.41 150 

0.402 200 
0.401 250 

 
At first, we used this method to solve the problem 
of turbulent planar jet for validation. Paullay et al. 
(1985) studied the same problem by considering a 
k- turbulence model. They reported that singular 
points appeared on the edge of the jet because the 
values of k and  are set to be zero there. They 
transformed the singular points to infinity by 
transformation of coordinates and solved the 
equations asymptotically using central difference 
discretization. However, we solve the resultant 
ODEs directly by applying DTM method with less 
computational efforts.  

Figs. 2 and 3 show the comparison of dimensionless 
velocity and turbulent kinetic energy profiles.  

 

Fig. 2. Turbulent plane jet velocity profile, a 
comparison with Paullay work [19]. 

 
Based on the obtained results, we can say that the 
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results of the present DTM method are in good 
agreement with analytical asymptotic solution 
(Paullay et al. 1985). 
 

 

Fig. 3. Plane jet turbulent kinetic energy, a 
comparison with Paullay work [19]. 

 
The similarity solution of stream function of 
turbulent condensate layer is shown in Fig. 4. The 
stream function grows with increasing condensate 
thickness. 
 

 
Fig. 4. Dimensionless stream function of 

turbulent condensate layer at different Pr 
numbers. 

 
As it can be seen, the stream function increases with 
increase in Prandtl number.  It is because in fluids 
with high Prandtl number, the momentum 
diffusivity is more than the thermal diffusivity and 
the resistance against fluid flowing is weak, 
therefore flowing power and consequently flow 
velocity increases at high Prandtl numbers (Fig. 5). 
Figs. 4 and 5 also show that when Prandtl number 
increases, the effect of momentum diffusivity 
decreases. This property is justifiable in 
mathematical and physical haunt. According to Eq. 
30, when the Prandtl number grows, the two last 
terms vanish and therefore, the effect of Prandtl 
number becomes insensible. Also in turbulent 
flows, in fluids with high momentum diffusivity 
(high Prandtl number), the effect of fluid viscosity 
becomes negligible compared with eddy viscosity; 

therefore the effect of increasing Prandtl number is 
not significant. 

According to variables definitions (10), velocity 
derivation represents the friction field. Friction field 
is shown in Fig. 6. As can be seen, change in 
friction field is not significant with Prandtl number 
variation.  Therefore, it is preferred to draw two 
Prandtl number. The results show that in high 
Prandtl numbers, the friction value becomes smaller 
in the hole of condensate layer, especially near the 
wall. It can be explained that in high Prandtl 
numbers, the momentum diffusivity increases, 
therefore the resistance against liquid flow 
decreases and the flow friction takes smaller values.  

 

 
Fig. 5. Dimensionless velocity profile of turbulent 

condensate layer at different Pr numbers. 

 

 
Fig. 6. Dimensionless friction field of turbulent 

condensate layer at different Pr numbers. 
 
The lateral distribution of turbulent kinetic energy is 
shown in Fig. 7. The results show that turbulent 
kinetic energy increases linearly for the first 20% of 
lateral distance, then grows smoothly to 70% of 
condensate layer and finally, turbulent kinetic 
energy attains a constant value up to vapor-liquid 
interface at all Prandtl numbers. Therefore, the 
distribution of turbulent kinetic energy is not 
dependent on the type of fluid, but the order of 
magnitude of turbulent kinetic energy decreases 
with increase in Prandtl number. In fluids with high 
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Prandtl numbers, the value of velocity increases and 
its profile becomes more uniform and therefore, the 
turbulent generation decreases with high Prandtl 
numbers. Also in uniform velocity profile, the 
power of turbulent dissipation rate will grow (Fig. 
8). According to Figs. 7 and 8 and Eq. 33, the 
turbulent eddy viscosity will increase along the 
lateral condensate layer and will decrease in high 
Prandtl numbers. According to the profiles of K and 
E and the definition of dimensionless eddy viscosity 
(Eq. 33), the results for eddy viscosity are shown in 
Fig. 9. As shown in this figure, eddy viscosity 
grows linearly at the first twenty percent of 
condensate layer and then its change becomes 
negligible. 

 

 
Fig. 7. Dimensionless turbulent kinetic energy 

across the condensate layer at different Pr 
numbers. 

 

 
Fig. 8. Dimensionless dissipation rate of 

turbulent kinetic energy across the condensate 
layer at different Pr numbers. 

 
In turbulent flows, the size and power of eddies are 
enhanced by distance from the solid walls, and 
consequently, the eddy viscosity increases rapidly 
from the wall. This is more considerable for low Pr 
number fluids in which the deterrence of viscosity 
is less compared with their thermal diffusivity. We 
can see in Fig. 9 that at all Pr numbers, the eddy 
viscosity increases sharply and then reaches a stable 
value after some oscillations close to the liquid-
vapor interface. 

It is also interesting to show the turbulent kinetic 
energy versus its dissipation rate along the lateral 
distance. In Fig. 10, we can see that from wall in 
most of the condensate layer, the growth rate of the 
turbulent kinetic energy is smaller than its 
dissipation rate, and near the vapor- liquid interface, 
the dissipation rate gets a constant value, while 
turbulent kinetic energy increases consistently.  
Paying attention to physical model, we can say that 
the effect of dissipation rate is significant because 
of the boundary condition on the solid wall and near 
the vapor- liquid interface.   

 

 
Fig. 9. Dimensionless eddy viscosity across the 

condensate layer at different Pr numbers. 
 

Fig. 10. Turbulent kinetic energy versus its 
dissipation rate for the condensate layer at 

different Pr numbers. 
 
According to the vapor viscosity which is much 
smaller than liquid viscosity, there is no effective 
force against turbulent generation, therefore the 
turbulent kinetic energy increases continuously. 

Average turbulent film condensation Nusselt 
number over a flat plate is shown in Fig. 11. The 
figure show how the Nusselt number changes 
versus Jacob number. When Jacob number 
increases, the ratio of heat transfer due to sensible 
temperature change is increased. On the other hand, 
increase in temperature gradient (Eq. 35), is due to 
increase in film thickness. Also in condensate layer 
with bigger thickness, the effect of conduction heat 
transfer decreases. Therefore, the ratio of 
convection heat transfer to conduction heat transfer 
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(which represents the Nusselt number) will grow by 
increasing the Jacob number. The figure also 
indicates that Nusselt number increases in high 
Prandtl numbers. This behavior is because in high 
Prandtl numbers, the effect of momentum 
diffusivity is more significant, therefore the heat 
transfer due to convection increases. At small 
Prandtl numbers, the change in Nusselt number 
with Jacob number is more considerable whereas by 
increasing the Prandtl number, this variation is 
reduced. The reason is that at low Prandtl numbers, 
the thermal diffusivity is more than momentum 
diffusion coefficient and thus, conductive heat 
transfer is dominant.  As a result, the temperature 
gradient in the condensate film is larger and 
according to the definition of Jacob number, the 
variation of Nusselt number is more at low Prandtl 
numbers. It is also worth mentioning that for all 
Jacob numbers, the average Nusselt number of 
turbulent film condensation is larger than that of 
laminar flow at each Prandtl number. 

 

 
Fig. 11. Average Nusselt number versus Jacob 
number across turbulent condensate layer at 

different Pr numbers. 
 

CONCLUSION 

In this study, turbulent film condensation of pure 
stagnant vapor on a vertical flat plate was solved by 
using a similarity method.  By defining four 
similarity variables, governing partial differential 
equation changed to set of ordinary differential 
equation, which is more amenable to solve. DTM 
method was used to remove singularity problem. 
Results of DTM method are in good agreement with 
creditable literatures. Results revealed that turbulent 
parameters are negligible near the wall (turbulent 
kinetic energy and its dissipation rate). In high 
Prandtl numbers, the velocity profile becomes 
smoother and the power of eddy production 
decreases. The turbulent kinetic energy increases 
almost linearly up to 0.2 of condensate film 
thickness and then tends toward a constant value 
near the liquid-vapor interface. The dissipation rate 
of kinetic energy also grows from the wall to 40% 
of condensate film thickness at all Prandtl numbers 
and then reaches a value after some oscillations. In 
all cases, the changes in small Prandtl numbers are 

more significant. We also found that among various 
flow parameters, the wall shear stress is less 
affected by the Prandtl number, since the velocity 
profile does not change significantly with the 
Prandtl number. We also obtained from the results 
that average Nusselt number on the surface in 
turbulent film condensation reduces by increasing 
Jacob number, since thermal equilibrium is 
achieved between the surface and the condensate 
film in high Jacob numbers. 
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