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ABSTRACT 

In this speculative examination, main focused is to address Cu-nanoparticles application in an inclined stenosed 
elastic artery with balloon model examination. Flow of blood in an inclined stenotic artery is investigated 
mathematically by considering its behavior as viscous fluid. The dimensionless terms of temperature, velocity, 
resistance to blood flow and stress on wall of stenotic inclined artery has been computed by using mild stenosis 
approximation. The model is also used to understand the significance of overlapping stenosed artery with 
tapered angle and inclination angle. At the end, the results confirmed that the impulsion of copper as drug agent 
minimized the amplitude of the resistance to blood flow and hence nanoparticles plays an important role in 
engineering as well in biomedical applications. 
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NOMENCLATURE 

eo normal artery radius 
F rate of flow 
Gr Grashof number 
h(z) stenosis height 
k thermal conductivity 
L artery length 
LO length of stenosis 
p pressure force 
Ren Reynolds number 
r, z radial and axial directions 
Srz stress on wall 
t time 
To, T1 temperature considered on walls 

uo averaged velocity 

ω angular frequency 
ρ density 
(ρcp) heat capacitance 
δ height of stenosis 
β heat source parameter 
Ф nanoparticle volume fraction 
θ nano dimensionless temperature 
d* position of stenosis 
λ resistance to blood 
φ shape parameter 
γ thermal expansion 

1. INTRODUCTION

Atherosclerosis is a syndrome of arteries which 
involve complex interactions between blood flow 
and the artery wall. Hemodynamics factors, such as 
resistance impedance to flow and wall shear stress 
plays very important role in keeping normal vascular 
endothelial function which is directly associated to 
the generation and propagation of the atherosclerotic 
lesion. The higher resistance to flow can also become 

progressively important as the stenosis becomes 
more severe. The development of stenosis causes to 
block circulation of blood in the heart which may 
result numerous cardiovascular diseases such as 
angina, myocardial infarction etc. The actual reason 
for growth of stenosis in an artery is not known, but 
its impact on the flow features has been considered 
by many researchers i.e., Texon (1957), Young et al. 
(1973), Liu and Tang (2000), Mandal et al. (2011), 
Nadeem and Ijaz (2016). 
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Several investigates about stenotic growth indicate 
that the studies are mostly concerned with the 
particular stenosis while the stenosis may progress in 
the sequence or may be of asymmetrical shapes or of 
composite or overlapping in nature. Chakravarty et 
al. (1996) explored mathematical problem related to 
blood flow through tapered wall segments. They 
considered non-linear and two-dimensional blood 
flow mathematical model in stenotic arteries with the 
accumulation of overlapped stenosis. Mekheimer et 
al. (2008) explored theoretical model of an elastic 
stenosed artery. They discussed here the impact of 
induced magnetic field on flow of blood. Ismail et al. 
(2008) explored non-newtonian model of blood with 
an elastic stenosed artery. Mekheimer et al. (2012) 
deliberated the behavior of blood flow through 
anisotropically tapered stenosed artery in presence of 
heat and chemical reactions. They treated here nature 
of blood in arteries as non-newtonian micropolar 
fluid.  

In recent study of medicine, with the advancement of 
coronary balloon angioplasty, there has been a 
significant increase in the use of catheters of several 
sizes to minimize the stenotic effects. The insertion 
of a catheter in a blood vessel will change the flow 
field. Dash et al. (1996) explored pattern of blood in 
stenotic arteries. They found here that resistance 
increases due to catheterization. Mekheimer et al. 
(2010) explored the analysis of a dusty model for the 
axis-symmetric flow of blood through coaxial tubes. 
Verma et al. (2011) deliberated mathematical 
problem of artery catheterization by assuming 
symmetric stenosis with blood flow model. For 
further analysis see references Sankar and 
Hemalatha (2007), Srivastava and Srivastava 
(2009), Mekheimer et al. (2012). 

Theoretical models with arteries carrying blood that 
are cited above were considered to being horizontal 
however it is well known that in numerous 
investigation all vessels in physiological systems are 
not horizontal because some have inclination to the 
axis. Chakraborty et al. (2011) explored the 
mathematical model of an inclined artery by 
considering radially symmetric stenosis. They 
discussed the slip at stenotic wall, hematocrit and 
inclination of the artery. Mekheimer et al. (2015) 
examined the theoretical analysis of inclined 
catheterized arteries with balloon angioplasty. To 
discuss this analysis, here they considered blood in 
arteries as Carreau fluid. For some further important 
studies in this direction are given in Prasad et al. 
(2008), Mohan et al. (2013). 

In engineering and medical sciences nanofluid keeps 
several unique features. Nanofluid enhances thermal 
conductivity of the considered base fluid immensely, 
which are stable and have no further problems such 
as erosion and sedimentation. Recent, study has 
revealed that they are important for improving the 
heat transport and thermal conductivity properties of 
the base fluid and may have potential applications in 
the field of biomedicine. In fact, Choi (1995) was the 
first who presented the experimental measurements 
and thermal conductivity enhancement for the 
thermal conductivity of nanofluids. Later on some 

other investigators explored different mathematical 
nano models cited as Buongiorno (2005), Nadeem 
and Ijaz (2015). Ellahi et al. (2014) explored the non-
newtonian mathematical model of nanofluid with 
tapered stenotic artery. Nadeem and Ijaz (2015) 
explored nanoparticles examination through stenotic 
artery with permeable walls. They deliberated here 
solid nanoparticles consequence of a curved stenotic 
artery. Nadeem and Ijaz (2016) explored the 
nanoparticles possessions by considering 
mathematical nano blood flow models. They 
concluded that impact of hemodynamics of a stenotic 
artery minimizes by introducing nanoparticles. Some 
more useful analysis is given in the references Jiang 
et al. (2007), Gentile et al. (2007), Akbarzadeh et al. 
(2016).  

With the above theoretical inspirations, an inclined 
vessel with overlapped stenotic region is considered 
in this examination. The catheterization effect with 
help of balloon model is also assumed. The 
dimensional governing equations are simplified after 
using mild stenosis approximation. After this 
approximation differential equation are solved by 
using exact technique. The acquired effects of 
hemodynamics have been deliberated for various 
parameters with the help of graphical illustration. At 
the end of this investigation, we note that use of 
nanoparticles as drug agent minimizes the 
hemodynamics of stenotic artery. 

2. FORMULATION OF THE 
PROBLEM 

To proceed this analysis, unsteady, incompressible 
and viscous nanofluid is considered that flows 
through a stenotic artery of finite length L. Also to 
discuss the nano effects heat transfer existence is 
introduced by considering temperature To at the inner 
wall of balloon and temperature T1 at the wall of 
stenotic artery. The configuration of stenotic 
segment is defined as [6] 
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in above zh ( , )t is the stenotic radius, 0e  is the 

non-stenotic radius, is the tapered angle, cos   is 

critical height of the stenotic segment, 
02

3
L  is the 

length, e* is position and *a  tan  is the slope of 
the stenotic vessel. Different possible shapes of 
artery are analyzed by considering  0 for 

convergent shape,  0 for non-tapered shape and

0 for divergent shape. The time-variant parameter 
is defined as 
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( ) 1 (cos 1) exp[ ],1x t c wt cwt                  (2) 

where c is defined as constant, w as the angular 
frequency and t as time. Balloon model is defined as 

otherwise,             
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where 
1 is the maximum height of balloon and is 

attained at 0.5,z zd  0e k  is the radius of the 

balloon, dz is the axial translation of the balloon. 

 

 
Fig. 1. Configuration of overlapped stenotic 

artery. 

 
The formulated equations in the presence of 
nanoparticles can be written as, 
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in above equation v  and w  is the velocity 

components, T  is the temperature, 
0q  is the heat 

generation parameter. For the considered single nano 
phase model 

nfk denotes thermal conductivity, 
nf  

is the viscosity, 
nf  is the density, 

nfpc )(  is the 

heat capacitance, 
nf  is the thermal expansion 

coefficient and the thermo physical properties are 
given as (see Table (1)) 

 

Table 1 Thermophysical properties of base fluid 
and solid nanoparticles 

Properties Blood Cu 

cp 3594 385 

ρ 1063 8933 

k 0.492 400 

γ 0.18 1.67 
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where 
f  denotes the density, 

f  is the viscosity, 

f  is thermal expansion coefficient, 
fpc )(  is 

the heat capacitance and 
fk  is thermal conductivity 

of considered base fluid, while 
s  denotes the 

density, 
s  is the thermal expansion coefficient, 

spc )(  is the heat capacitance,   is the 

nanoparticle volume fraction and 
sk  is the thermal 

conductivity of the considered solid nanoparticles. 
Non dimensional parameters are defined as, 
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Where in above equation
enR denotes the Reynolds 
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number, 
rG is the Grashof number,   is the heat 

source parameter and 
0u  is the averaged velocity. 

By mean of Eq. (9) and considered 
approximations (mild stenosis 1

0
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e   the formulated Eqs. (5)  to (7) can 

be reduced as 
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The geometry of arterial stenosis and balloon model 
in dimensionless form are defined as 
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Corresponding boundary conditions are defined as 
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The exact solutions of Eqs. (11) and (12) using Eqs. 
(17)  and (18) are directly written as 
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Expression of flow rate is defined as 

.rwdrF
h

H
                                                    (21) 

Using Eq. (20) into Eq. (21), expression of pressure 
gradient is given as  
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Pressure drop through overlapped stenotic artery is 
given as 

0

.
L dp

p dz
dz
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                                            (24) 

Using Eq. (24), the resistance to blood can be 
estimated as 
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Fig. 2. Velocity profile for Φ=0.01.                   Fig. 3. Velocity profile for η= 45.  

 

         
Fig. 4. Velocity profile for β= 2.0.                  Fig. 5. Velocity profile for G = 2.0.r  
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1
( ) ( ) | .( 1) ( ),  M z N z h az x t H k                 (26) 

To evaluate the stresses on the wall of artery 
following expression is considered [6] 
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Above Eqs. (27) and (25) are further solved by using 
Mathematica software 

3. GRAPHICAL RESULTS AND 
DISCUSSION 

In this unit for theoretical examination figures of 
wall shear stress, resistance, velocity, temperature 
profile and streamlines are plotted with the help of 
physical parameters such as the Grashof number rG , 

heat source parameter  , inclination angle   and 
nanoparticles volume fraction  . These 

parameters are kept constant such as 45,   

0.01,  * 0.75,   0.1,F   0.5,t   2.0,Gr   

7.854,   2.0  , 0.01,1   0.1,zd   0.1,k    

0.01.  The graphs of axial velocity w  against r  
for overlapping stenosis are given in Figs. (2) to (5). 
The variation of inclination angle  is given in Fig. 
(2). It is observed from this graph that velocity starts 
decreasing near the wall of the balloon between the 
interval  1.0H r  (at 90)  , 0.85H r  (at 0   
and 45)  and higher magnitude for convergent 
shape is depicted in these regions, while opposite 
behavior is depicted near wall of stenotic artery in 
the region 1.01 r h  (at 90) , 0.86 r h  (at 0   

and 45)  . Figs. (3) to (5) shows the variations for 

Grashof number rG , heat source parameter   and 

nanoparticles volume fraction  on the graphs of 

velocity profile. It is depicted that velocity profile 
gives higher magnitude for convergent shape and 
start increasing near balloon wall of in the region

0.86,H r  while opposite behavior is depicted near 

arterial wall in the region 0.87 .r h  The 
phenomenon of nano temperature profile is given in 
Figs. (6) and (7). It is depicted that the nano 
temperature profile increases with an increase in the 
values of heat source parameter  . This result is 
obtained due to increase in the thermal behavior of  
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Fig. 6. Nano temperature distribution forΦ=0.01.  Fig. 7. Nano temperature distribution for β=2.0. 

 
 

     

Fig. 8. Stress on wall for Φ=0.01.                         Fig. 9. Stress on wall for η= 45.  
 

 

     
Fig. 10. Stress on wall for β= 2.0.                      Fig. 11. Stress on wall for G = 2.0.r  

 
the base fluid, while decreases with an increase in the 
nanoparticle volume fraction. The graph of the 
temperature phenomena gives higher magnitude for 
divergent shape when compare to other shapes. Figs. 
(8) to (11) are plotted to understand stress behavior 
on wall of stenotic artery. From these graphical 
illustrations one may analyze that stresses on the wall 
of inclined stenotic artery start decreasing towards 
the downstream of the stenotic region and then start 
rapidly increasing towards the end of the inclined 
stenotic artery. One may also analyze from these 
stress patterns that convergent shape of an artery 

gives higher magnitude when compared to other non-
tapered and divergent shapes of stenotic artery. The 
stresses behavior for parameters inclination angle
and nanoparticles volume fraction   are given in 
Figs. (8) and (9). It is depicted under this stress 
pattern that with an increase in the inclination angle 
  stresses on wall of an inclined stenotic artery 
decreases, while stresses on wall decreases by 
increasing in the concentration of nanoparticles. 
Figs. (10) and (11) relates the stress with different 
parameters such  as  Grashof  number  rG  and heat  
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Fig. 12. Resistance to blood for Φ=0.01.             Fig. 13. Resistance to blood for η= 45.  

 
 

           
Fig. 14. Resistance to blood for β=0.2.              Fig. 15. Resistance to blood for G = 2.0.r  

 
 

            
Fig. 16. Chart of velocity profile with t.               Fig. 17. Chart of temperature profile with t. 

 
 
source  . It is depicted from this pattern that the 
stresses on wall of stenotic inclined artery decreases 
with an increase in Grashof number rG  and heat 

source . Figs.  (12) to (15) are strategized to show 
the variation of resistance to flow versus the height 
of stenosiswith different shape of inclined artery. It 
is observed that resistance to flow gives higher 
magnitude for convergent shape as comparing to 
other shapes and increases with an increase in the 
height of stenosis. The graphical illustration for 
inclination angleand nanoparticles volume fraction
  is given in Figs. (12) and (13). It is analyzed from 

this pattern that resistance to flow increases with an 
increase in inclination angle  , while opposite 
behavior is depicted for nanoparticles volume 
fraction case. Fig. (14) is plotted for Grashof number 

rG  and noted that resistance to flow reduces with an 

increase in rG . The inspiration of heat source 

parameter  on resistance to flow is plotted in Fig. 
(15). One may depict from this figure that resistance 
to flow minimizes with an increase in . Figs. (16) to 
(19) represent the behavior of wall shear stress and 
resistance to blood flow against time t for almost 
three cyclic phases.  One  regular  observation  from  
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Fig. 18. Chart of stress on wall with t.               Fig. 19. Chart of resistance to blood with t. 

 

 

     
Fig. 20. Blood flow configuration for G = 2.8.r       Fig. 21. Blood flow configuration for G = 3.2r . 

 

 

    
Fig. 22. Blood flow configuration for β = 0.46.              Fig. 23. Blood flow configuration β = 0.50 . 

 
 
 
these figures is that the magnitude of first cycle starts 
with decreasing behavior to obtain its least possible 
value and after this it starts increasing towards its 
extreme value. This similar pattern is observed for 
other remaining cycles. It is also analyzed that 
oscillated cycles decay as time t increases. This 
graphical result also shows that the stresses on the 
wall and resistance to blood flow decreases for 
converged stenotic inclined shape when compared to 
the other shapes. It is noted here that resistance to 
flow and stresses on wall gives higher magnitude for 
converged shape, while the graphical illustration of 

velocity and temperature profile gives higher 
magnitude for divergent shape. Trapping is a 
motivating phenomenon for to show blood flow 
configuration in an inclined stenotic artery and here 
this configuration is discussed from Figs. (20) to 
(29). In Figs. (20) to (23), it is depicted that number 
of trapping bolus decreases with an increase in rG

and  . The effects of nanoparticles volume fraction 

 are given in Figs. (24) and (25). It is noted here 

from this pattern that the trapping bolus decreases 
with an  ncrease  in  nanoparticles  volume  fraction.  
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Fig. 24. Blood flow configuration for Φ=0.011.      Fig. 25. Blood flow configuration forΦ=0.013.  
 

 

    

Fig. 26. Blood flow configuration for δ= 0.08.           Fig. 27. Blood flow configuration for δ= 0.09 . 
. 

 
 

    
Fig. 28. Blood flow configuration for δ = 0.00.1       Fig. 29. Blood flow configuration for δ = 0.09.1  

 
 

 

The trapping configuration for stenosis height and 
maximum height of balloon 

1  are given in Figs. 

(26) to (29). It is depicted from this flow pattern that 
the number of trapping bolus increases with an 
increase in the values stenosis height, while trapping 
bolus increases in left side of inclined artery as 
compare to the right side of inclined artery with an 
increase in the values maximum height of the 
balloon. Table (2) is constructed to understand the 
numeric behavior of velocity profile for axial 
displacement of the balloon. One may observe from 
this table that the velocity profile for axial 

displacement
dz increases throughout the inclined 

stenotic artery ( H r h  ). It is also analyzed that 
velocity profile gives higher magnitude for 
convergent shape of artery when compare to other 
shapes 

4. CONCLUSION 

The nanoparticle with balloon model through 
inclined stenotic artery is deliberated in this 
theoretical examination. The significant remarks 
from this study can be concise as follows   
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Table 2 Variation of velocity profile for axial displacement of the balloon 

Diverging shape Converging shape Non-tapered shape 

r zd=0.00 zd=0.05 zd=0.09 zd=0.00 zd=0.05 zd=0.09 zd=0.00 zd=0.05 zd=0.09 

H 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.2 0.10813 0.10840 0.10858 0.11091 0.11117 0.11135 0.10946 0.10972 0.10990 

0.3 0.16063 0.16086 0.16102 0.16456 0.16479 0.16494 0.16250 0.16273 0.16289 

0.4 0.18640 0.18658 0.18670 0.19071 0.19089 0.19101 0.18845 0.18863 0.18875 

0.5 0.19512 0.19527 0.19537 0.19933 0.19947 0.19957 0.19713 0.19727 0.19737 

0.6 0.19157 0.19170 0.19179 0.19532 0.19545 0.19553 0.19336 0.19349 0.19357 

0.7 0.17873 0.17886 0.17894 0.18176 0.18189 0.18197 0.18018 0.18031 0.18039 

0.8 0.15884 0.15898 0.15907 0.16093 0.16107 0.16116 0.15985 0.15998 0.16007 

0.9 0.13379 0.13394 0.13404 0.13476 0.13492 0.13503 0.13426 0.13442 0.13453 

1.0 0.10532 0.10549 0.10561 0.10502 0.10521 0.10534 0.10520 0.10538 0.10551 

1.2 0.07514 0.07535 0.07549 0.07346 0.07368 0.07383 0.07437 0.07459 0.07473 

h 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 
 

 Temperature phenomenon reduces for 
nanoparticle volume fraction, which shows 
that thermal conductivity of solid particles are 
helpful to dissipate heat. 

 The hemodynamics of inclined stenotic artery 
give higher magnitude for the convergent 
shape when compare to other shapes. 

 Stress on wall of stenotic inclined artery 
increases with an increase in inclination angle. 

 Solid nanoparticle diminishes the 
hemodynamic effect that is experienced by 
blood while flowing in elastic stenosed 
inclined artery. 

 Resistance to flow and stress on wall has same 
behavior versus t and this wavering magnitude 
is higher for the convergent case. 
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