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ABSTRACT 

In this paper, heat transfer analysis of peristaltic mixed convection flow through a vertical channel is presented 
in addition, effects of heat generation are also investigated. The mathematical model is represented by the 
system of non-linear partial differential equations. The analysis is made in the presence of non-zero wave and 
Reynolds numbers. The results of the long wavelength assumption in a creeping flow can be deduced. These 
results thus predict new features in the peristaltic transport in the absence of the approximation of long wave 
length and low Reynolds number.  The moderate finite elements based technique has been used to compute the 
highly accurate solution of the governing problem. To ensure the accuracy of the computed solution, the results 
obtained are validated against the available results in the literature and found good agreement. The obtained 
result are presented through graphs and the influence of involved pertinent parameters is analyzed.  

Keywords: Mixed convection; Peristaltic flow; Heat generation; Numerical analysis; Non-zero Reynolds 
number.  

1. INTRODUCTION

Importance of fluid mechanics in industrial and 
technological applications attracted the attentions of 
scientists, engineers and mathematician to study the 
fluid behavior in different geometries. The 
manufacturing processes like glass fiber production, 
sheets production, hot rolling, continuous casting, 
extrusion process, coating and paper production etc. 
involves fluid mechanism. Furthermore, 
advancements in fluid mechanics also assists in 
developing of heating and ventilating systems for 
industrial and domestic purposes. The designing of 
pipeline systems also requires the basic 
understanding of fluid flows. In the field of medical 
science, the importance of fluid mechanics increases 
significantly as it is useful in designing of blood 
substitutes, artificial hearts, heart-lung machines, 
breathing aids and other such type of devices, which 
all obeys the basic principles of fluid mechanics. The 
flow generated by sinusoidal motion of the boundary 
of a vessel is known as peristaltic flow. Peristalsis is 
a common mechanism found in physiological and 
industrial processes. The most common examples of 
physiological flows involving peristalsis include 
flow of urine from kidney to the bladder, flow of 
chyme in small intestine, blood flow through 
capillaries, spermatic fluid transport in female 

reproductive tract etc. The transport in corrosive 
fluid in the nuclear industry, diabetes pumps and 
pharmacological delivery systems involve peristaltic 
mechanism.  

In the literature different aspects of the peristaltic 
flow are discussed analytically and experimentally. 
The presence of non-linearity due to the finite 
Reynolds number makes theoretical investigations 
more difficult. Many analytical studies involves 
perturbation techniques through which an explicit 
form of the solution is obtained that helps in 
understanding physical effects of the parameters. 
Peristaltic mechanism first studied by Latham (1966) 
both theoretically and experimentally. This work 
open new venues of research to understand peristaltic 
mechanism in the presence of new aspects. A number 
of articles (Weinberg et al. 1971; Lew et al. 1971; 
Ali et al. 2010; Manton 1975; Jaffrin 1973; 
Dharmrndra Tripathi 2013; Rao and Usha 1995; 
Narahari and Sreenadh 2010; Shapiro 1967) 
addressing the peristaltic phenomenon for different 
type of geometries under the assumption of long 
wavelength and low Reynolds number, small 
amplitude ratio and wave number are available. The 
lubrication theory was used by Shapiro et al. (1969) 
to investigate the peristaltic phenomenon in a two 
dimensional channel using a wave frame of 
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reference. On the other hand, Fung and Yih (1968) 
used fixed frame of reference for investigating 
peristaltic flow without using lubrication approach. 
The non-linear terms get vanished through the 
approach by Shapiro et al. (1969) and problem 
become simpler on comparison to Fung and Yih 
(1968) approach. In this approach effects of 
Reynolds number and wave number (rates of 
characteristic length of the channel/tube to the wave 
length of the peristaltic wave) on various flow 
characteristics cannot be investigated. Due to 
simplicity of the approach, this theory is used widely 
to study the peristaltic flow of Newtonian and non-
Newtonian fluid in number of scenarios. Jaffrin 
(1973) discussed the perturbation solution of two 
dimensional peristaltic flow in a channel. Zien and 
Ostrach (1970) also discussed the peristaltic 
mechanism. Takabatake (1989) and Ayukawa (1990) 
employed the finite difference method to 
numerically simulate two-dimensional peristaltic 
flow in a channel for moderate values of the 
Reynolds numbers and wave numbers. They showed 
that the perturbation solution of Jaffrin (1973) but 
Zien and Ostrach (1970) presented the result in a 
narrow range and in accordance of Reynolds number 
the reflux phenomenon does not cause the change the 
whole situation in the flow. The application of 
immersed boundary technique to simulate the 
transport solid particle in a two-dimensional channel 
by peristalsis was initiated by Fouci (1992). 
Mekheimer (2008) discussed the 
magnetohydrodynamic effect in the natural 
limitation of peristaltic phenomenon, which is not 
valid for moderate values of both Reynolds number 
and wave number. Considerable investigation for 
peristaltic transport pumping problem are formulated 
(Ekstein 1970; Hung and Brown 1975. 

Sajid et al. (2015) investigated the mixed convection 
behavior of an Oldroyd-B fluid. Vajravelua et al. 
(2007) studied heat transfer analysis in peristaltic 
flow through a vertical porous annulus under long 
wavelength approximation. A note on peristaltic 
transport in an asymmetric channel with heat transfer 
is presented by Srinivas et al. (2008). In 
axisymmetric, channel mixed convective heat and 
mass transfer analysis were presented by Srinivas et 
al. (2011). In both studies, they apply the long 
wavelength approximation. Mixed convection in 
peristalsis transport model nowadays gain deep 
interest by the researchers, so the articles related to 
peristaltic motion in different physical situation of 
mixed convection are found in literature (Sayed et. al 
2015; Tanveer et al. 2017; Hayat et al. 2017; 
Sucharitha 2017).  K. Ramesh (2016) recently 
studied the peristaltic flow in the presence of slip and 
convective conditions through porous medium. He 
obtained simplification using the lubrication theory. 
Recently, Hamid et al. (2017) studied the peristaltic 
flow numerically for two dimensional non-
Newtonian fluid without employing the lubrication 
theory. 

The aim of this article is to analyze the mixed 
convection in peristaltic flow in a vertical channel in 
the presence of heat generation and streamline 
curvature effects by dropping the assumption of long 

wavelength and low Reynolds number. First, we 
develop the problem in wave frame by using 
formulation of stream function and vorticity. The 
pressure is eliminated by cross differentiation and 
discussed by explicit expression given in latter part. 
The numerical solution of the problem is computed 
with the help of finite element method which give us 
the liberty to set high values of Reynolds number and 
other suitable values of the involved parameters. The 
result are discussed in the last part with different 
versions of presentation.  

2. PROBLEM DEVELOPMENT 

Consider the motion of Newtonian fluid through a 
vertical channel having inner width size  2݀ . The 
flow is assumed in such a way that propagation of 
waves is along the x-axis with velocity c and y is 
along normal to the channel. The peristaltic wall of 
channel are assumed at some amount of 
temperature ଵܶ and obeys the sinusoidal wave shape 
represented by  

  2 ( )
,  cos ,

X ct
H X t a b



    

 
   (1) 

where b is wave amplitude, ߣ represents wave length 
and h is the symbol for mean distance of the wall 
from the central axis as shown in Fig. 1. The 
coordinates of velocity, pressure and temperature in 
fixed and moving frame of reference are related by 
set of following expression 

* * *

* * *
1

,       ,       ,      

 ,        ,         ,

x X ct y Y u U c

v V p p T T

    

  
              (2) 

where * *( , )u v and ( , )U V  represent the 
components of velocity vectors in moving frame of 
reference and fixed frame of reference respectively. 

 

 
Fig. 1. The geometry of considered two-

dimensional peristaltic channel. 

 
In fixed frame of reference, the continuity, 
momentum and energy equations for the assumed 
problem are 
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in which  is the viscosity  is the density, g is the 

acceleration caused by gravity, T is  thermal 

expansion coefficient, pc is specific heat at constant 

pressure, * is the thermal conductivity and 0Q  

represents constant heat generation with in the flow 
domain.  

The boundary conditions of the problem are 

0,      0 ,      0     0,
U T

V at Y
Y Y

 
   

 
                   (7) 

10,      ,          .
H

U V T T at Y H
T


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
                    (8) 

Equations that governs the flow in wave frame are as 
follows 
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(12) 

The configuration of the peristaltic wall can be 
written as 

*
* 2

( ) cos
x

x a b

 

    
 

,    (13) 

and the no slip and the symmetry condition on the 
planes ݕ∗ = 0 and  ݕ∗ =  ሻ respectively can be∗ݔሺߟ
expressed as follows 

* *
* *

* *
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u T
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 
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                     (14) 
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As both planes ݕ∗ = 0  and ∗ݕ  = ሻ∗ݔሺߟ , present 
streamline and flow rate ݍ∗

 is constant in cross 
section of the channel in wave frame, therefore  

* 0  on * 0,y   

* *q   on * ( ),y x      (16) 

where ݍ∗ = ܳ∗ − ܿℎ  is the relation between flow 
rate in the wave frame of refrence and the time mean 
flow in the laboratory frame ܳ∗.  

Defining new variables  
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Eqs., (9) – (12) takes the form 
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where ܴ݁ is Reynolds number, ߙ  is wave number, ݎܩ  is  Grashof number, ߚ  is heat generation 
parameter and ܲݎ is Prandtl number. The boundary 
conditions in terms of  ,x y  are as follow 
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3. NUMERICAL ANALYSIS 

In the previous sections the obtained equations are 
valid for non-zero Reynolds and wave numbers and 
cannot be transferred to ordinary differential 
equations. Finite element method has been preferred 
in the current investigation due to its several 
advantages over other methods generally used to 
solve numerical problems. The foremost advantage 
of finite element method is that it works with non-
uniform mesh which results in more accurate 
numerical approximation particular when you are 
dealing with complex geometries and irregular 
boundary conditions. Providing the user liberty to 
choose the shape functions and types of elements 
according to the problem. This approach returns 
more accurate solutions with less computational 
cost. To deal with the partial differential equations 
finite element method of Gelerikin’s approach is 
applied to solve Eqs. (17)-(19) subject to the 
boundary conditions (20) in a finite region of ܮ 
number of waves in a wave frame having two end 
sections with one fixed and other moving boundary. 
Because of the continuity of the flow we consider 
single wave at a time and then follow the next and so 
on. In all the cases, the computed results are highly 
convergent and satisfy the tolerance of 

14 1410 , 10     and 1310T
 . The 

numerical computations are made by using non-
uniform meshing of quadratic elements with the help 
of pdetool available in MATLAB. The stream 
function, vorticity as well as temperature functions 
are approximated by 
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in which k , k  and k  are element nodal 

approximation of   ,   and  .  Then Galerkin 
finite element is endorsed to governing Eqs. (17)-
(19) as follows 

2 2
2

1 2 2
0,w d

x y

  


  
       

                     (23) 

2 2 2
2

2 2

Re

0,
y x x y

w d

Gr
yx y

   

  

     
       

               

         (24) 

3 2 2
2

2 2

RePr

0,
y x x y

w d

x y

   

  

     
       

             

             (25) 

where 1 2,w w  and 3w are weight functions. After 

simplifying Eqs. (23)-(25), we obtain 
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By considering the discretized domain, we plugin 
Eq. (22) in (26)-(28) to get 
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The global system in form of matrix is defined as  
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The obtained non-linear equations are then solved by 
using famous Newton-Raphson method. The 
solution process is iterated unless the error between 
two consecutive iterations is become not less than 10-

14. 

4. ANALYSIS OF THE PRESSURE  

Since the flow is caused by the infinite train of 
sinusoidal waves of same period, therefore evaluate 
the pressure at the central part of considered domain 
which covers the region of one wave length, The 
dimensionless form of the expressions for pressure 
gradient is obtained from two dimensional form of 
Naiver-Stokes equations for steady flow as  

2 2

2
Re

         .

P

x x x y y yy

Gr

    



      
          

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




                   (36) 

The pressure-rise per wave length in the wave frame 
are defined as  

0

.
dp

p dx
dx



        (37) 

5. RESULTS AND DISCUSSION 

In this section, we analyzed the results of the 
modelled problem in terms of velocity distribution, 
heat characteristics, trapping phenomenon and rise in 
pressure against different involved flow parameters.  

5.1 Velocity Field and Temperature 
Characteristics  

A comparison of the obtained numerical results with 
the analytical results of Srinivas et al. (2011) in the 
special case are presented in Fig. 2. It is observed that 
our results in the limiting case (ܴ݁ = 0, ߙ = 0ሻ are 

in close agreement with corresponding result of 
Srinivas et al. (2011). The solution of Srinivas et al. 
(2011) is analytical approximation computed by 
perturbation method.  
 

 
Fig. 2. Comparison of velocity profile for present 

results with Srinivas et al. (2011). 
 

 

 
(a) 
 

 
(b) 
Fig. 3. (a) Longitudinal velocity distribution and 
(b) temperature profile for different values of ࢋࡾ 

when other parameters are fixed at ࢻ = ૙. ૛, ࣐ = ૙. ૞, ࡽ = ૚. ૞, ࢘ࡼ = ૙. ૠ, ࢘ࡳ = ૙. ૞, ࢼ = ૙. ૜. 
 

The longitudinal velocity ݑ   and the temperature 
profile ߠ are presented in the Figs. 3 – 6 to see the 
effect of Reynolds number  ܴ݁ , time mean flow 
rate  ܳ , Grashof number ݎܩ   and heat generation 
parameter ߚ. From these figures, it is observed that 
both velocity and temperature achieve maximum in 
the vicinity of the center of the channel. Moreover, 
parabolic behavior by velocity and temperature 
graphs is observed in al cases. In Fig. 3(a), we 
observe the effect of Reynolds number  ܴ݁  on 
velocity distribution.  We see that near the center of 
the channel, increase in  ܴ݁  causes a decrease in 
velocity while an opposite behavior is observed at 
the wall. So, it predicts that dominant inertial effects 
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to viscous forces in the center of the channel causes 
decrease in velocity of the fluid while in the region 
of the wall dominance of inertial forces enhances the 
velocity. Fig. 3(b) illustrates that an increase in ܴ݁ 
rises the temperature over the whole cross-section. 
This observation is not reported in earlier studies and 
it attributed to strong inertial effects induced for 
large values of Reynolds number. Moreover, long 
wavelength and low Reynolds number theory is not 
able to predict such non-linear effect.  

 

 
(a) 
 

 
(b) 
Fig. 4. (a) Longitudinal velocity distribution and 
(b) temperature profile for different values of ࡽ 

when other parameters are fixed at  ࢋࡾ = ૚૙, ࢻ = ૙. ૛, ࣐ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢘ࡳ = ૙. ૞, ࢼ = ૙. ૜. 
 

Figures 4(a) and 4(b) show the effect of time mean 
flow rate ܳ on velocity distribution and temperature 
profile, respectively. Both figures show that the rise 
in volume flow rate  ܳ  enhances longitudinal 
velocity and temperature profile.  Fig. 5(a) presents 
the effect of Grashof number  ݎܩ  on longnitudanl 
velocity profile. We see that the behavior of velocity 
due to Grashof number ݎܩ at the wall and near the 
center is different. In the region  0 ൑ ݕ ൑ 0.2 , we 
observe that dominance of buoyancy forces reduces 
the velocity but after this region ݕ ൒ 0.2, increase in 
velocity is observed by same behavior of ݎܩ. Fig. 
5(b) exhibits the decreasing behavior in temperature 
distribution by enhancing ݎܩ in the whole domain. 
As increase in Grashof number corresponds to 
enhance the buoyancy forces caused by temperature 
difference, which sufferers its effect in the center of 
the channel and so causes the decrease in rise in 
temperature. In Fig. 6(a), we observe that for the 
velocity distribution, heat generation parameter ߚ 
exhibits same behavior as in case of Grashof number 
but in Fig. 6(b) temperature increases due to increase 
in the heat generation parameter ߚ, which is quite 

natural. Hence Grashof number  ݎܩ  also helps to 
control the heat in the fluid flow with heat generation 
parameter and its effects are opposite to the effect of 
heat generation parameter ߚ. 

 

 
(a) 
 

 
(b) 
Fig. 5. (a) Longitudinal velocity distribution and 
(b) temperature profile for different values of ࢘ࡳ 

when other parameters are fixed at  ࢋࡾ = ૚૙, ࢻ = ૙. ૛, ࣐ = ૙. ૞, ࡽ = ૚. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 
 

 

 
(a) 

 
(b) 
Fig. 6. (a) Longitudinal velocity distribution and 
(b) temperature profile for different values of ࢼ 

when other parameters are fixed at  ࢋࡾ = ૚૙, ࢻ = ૙. ૛, ࣐ = ૙. ૞, ࡽ = ૚. ૞, ࢘ࡼ = ૙. ૠ, ࢘ࡳ = ૙. ૞. 
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Fig. 7. Variation of streamlines in wave frame of 

reference for different values of ࢋࡾ with fixed 
values of ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 

 
 

5.2 Trapping and Vorticity 

The behavior of streamlines in wave frame for 
stationary wall is mostly similar as that of wall but 
sometime situation arises that pattern of streamlines 
can split and encloses a bolus of fluid particles in 
closed streamlines form so that circular region is 
created. On the other hand, in the fixed frame, the 
waves trapped the fluid bolus and traps it with speed 
of wave. To examine the variation of streamlines, we 
plotted contours of streamlines for different values of 
the parameter involved as shown in Figs. 7 – 11.  

Figure 7 shows the behavior of streamlines with 

variation of Reynolds number ܴ݁. It is observed that 
size of bolus magnifies with the increase in Reynolds 
number and as far as the number of bolus are 
concern, we observe that number of boluses also 
increases with increase in ܴ݁. It is due to the fact that 
increase in inertial effects causes rise in velocity 
profile of the fluid so thesolution surface attains 
more height. Fig. 8 shows the variation of 
streamlines for different values of Grashof 
number ݎܩ. It is noticed that the trapped bolus exits 
near the central region of the channel for smaller 
values of Grashof number. Moreover, it moves in 
lower region of the boundary wall with increase in 
Grashof number as shown in Fig. 8.  

 

 

 

 
Fig. 8. Variation of streamlines in wave frame of 

reference for different values of ࢘ࡳ with fixed 
values of ࢋࡾ = ૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ =૚. ૛, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 
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Fig. 9. Variation of streamlines in wave frame of 

reference for different values of ࢼ with fixed 
values of  ࢋࡾ = ૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ. 

 
 

Figure 9 provides the behavior of heat generation 
parameter ߚ  . From this figure, we observe the 
increase in the size of bolus with increase in heat 
generation parameter  ߚ. Fig. 10 shows increase in 
the size of traped bolus with increase in wave 
number ߙ. It is also observed that for small ߙ, the 
bolus are trapped near the wall but when we increase 
the wave number ߙ, the bolus moves to the central 
part of the region. Fig. 11 illustrates the effect of time 
mean flow rate ܳ on the streamlines. We observed a 
rapid increase in the number and size of bolus with 
small increase in the flow rate ܳ. In Figs. 12 – 17, we 
plotted the isothermal lines for different flow 
parameters. In Fig. 12, we have observed that by 

increasing in Reynolds number, isothermal lines 
shows enhanced curvature effects and formation of 
bolus appears where complete bolus is developed in 
the central region for ܴ݁ = 12. Fig. 13 shows that 
increase in Grashof number increases curvature 
effects near central wall and shows same smoothness 
of curvature near the peristaltic wall in all cases. Fig. 
14 exhibits the effect of increasing heat generation 
parameter ߚ on isothermal lines. It is observed that 
isothermal lines congregated at central wall and 
moves towards the wall channel. Variation in 
isothermal lines for different values of Prandtl 
number  ܲݎ may be seen in Fig. 15. 

 

 

 

 
Fig. 10. Variation of streamlines in wave frame 
of reference for different values of ࢻ with fixed 

values of ࢋࡾ = ૟, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 
 
 

We can see that more curvature effect in central 
region with more number of bolus by increases the 
value of ܲݎ. Fig. 16 shows decrease in curvature of 
isothermal lines with increase in the wave 
number ߙ.
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Fig. 11. Variation of streamlines in wave frame for different values of ࡽ with fixed values of ࢋࡾ =૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 

 

     

 
Fig. 12. Variation of Isothermal lines in wave frame of reference for different values of ࢋࡾ with fixed 

values of  ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 
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Fig. 13. Variation of Isothermal lines in wave frame of reference for different values of ࢘ࡳ with fixed 

values of ࢋࡾ = ૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 

 

     

 
Fig. 14. Variation of Isothermal lines in wave frame of reference for different values of ࢼ with fixed 

values of ࢋࡾ = ૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ. 
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Fig. 15. Variation of Isothermal lines in wave frame of reference for different values of ࢘ࡼ with fixed 

values of  ࢋࡾ = ૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 
 
 

      

 
Fig. 16. Variation of Isothermal lines in wave frame of reference for different values of ࢻ with fixed 

values of ࢋࡾ = ૟, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜.
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Fig. 17. Variation of Isothermal lines in wave 
frame of reference for different values of ࡽ with 

fixed values of ࢋࡾ = ૟, ࢻ = ૙. ૜, ࣘ = ૙. ૟,  ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 
 
 

In Fig. 17, we see the effect of time mean flow rate ܳ on isothermal lines which exhibits that increase in 
this parameter causes the bending of isothermal lines 
in the central part of the channel towards upper 
region. The effect of Reynolds number ܴ݁  on 
vorticity are presented in Fig. 18. It can be observed 
that vorticity is generated at the peristaltic wall and 
diffuses to the central region of the channel with 
increase in the values of Reynolds number. 

5.3 Pressure Field Analysis 

The pressure rise per wave length has been plotted in 
Figs. 19 – 24 against time mean flow rate for 
different range of values of involved parameters. 
There are following four types of flow region. When 
the flow is in regions Δ ఒܲ > 0 and  ܳ > 0 which 
means, in quadrant I then it is Peristaltic/Positive 
pumping. 
 

 

 

 
Fig. 18. Vorticity in wave frame of reference for 

different values of ࢋࡾ with fixed values of   ࢻ = ૙. ૜, ࣘ = ૙. ૟, ࡽ = ૚. ૛, ࢘ࡳ = ૙. ૞, ࢘ࡼ = ૙. ૠ, ࢼ = ૙. ૜. 

 

 
Fig. 19. Pressure rise per wave length for varies 

value of Re. 
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Fig. 20: Pressure rise per wave length for varies 

value of Pr. 

 

 
Fig. 21. Pressure rise per wave length for varies 

value of Gr. 

 

 
Fig. 22. Pressure rise per wave length for varies 

value of  ࢼ. 

 
When the flow is in regions  Δ ఒܲ > 0 and ܳ <0 
which means, in quadrant II then it is 
Retrograde/Backward pumping. When the flow is 
in regions Δ ఒܲ < 0 and ܳ < 0 which means, in 
quadrant III then it is Co-pumping. When the flow 
is in regions Δ ఒܲ < 0 and ܳ <0 which means, in 
quadrant IV then it is augmented pumping. Also 
when the flow is in regions Δ ఒܲ = 0 and ܳ >0 

which means, in quadrant IV then it is free 
pumping region. Pressure gradient is known as 
adverse pressure if Δ ఒܲ > 0  and favorable 
pressure gradient if  Δ ఒܲ < 0 . In Fig.(19), the 
effect of Reynolds number  ܴ݁  on pressure rise 
per wave length has been shown. We noticed that 
increase in ܴ݁ causes increase in the pressure due 
to the dominance of inertial forces over viscous 
forces. It is due to the fact that when we 
increase  ܴ݁ , it enhances the inertial effect as 
compared to viscous effects, hence more pressure 
is required to maintain the flow in the channel. We 
further observed that when time mean flow rate 
approaches to 1, all the lines coincides which 
reflects the same amount of pressure at that point. 
It is observed from Figs. (20)–(22) that increase in 
Prandtl number Pr, Grashof number ݎܩ and heat 
generation parameter ߚ   drops pressure rise per 
wave length but in the case of amplitude ratio ߶ 
and wave number ߙ, opposite behavior is seen in 
Figs. (23) and (24) respectively. 

 

 
Fig. 23. Pressure rise per wave length for varies 

value of ࢻ. 

 

 
Fig. 24. Pressure rise per wave length for varies 

value of ࣘ. 
 

6. CONCLUSION  

The heat and mass transfer analysis for peristaltic 
flow in a vertical channel has been presented. The 
governing equations are modelled in the absence 
of long wave length approximation which allows 
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us to observe the effect of all the parameter with 
moderate values. The numerical solutions for 
stream function, pressure rise per length as well as 
temperature profile are obtained. The effect of 
parameters on the velocity, heat transfer, and the 
trapping due to the peristaltic wall are discussed in 
detail. From the analysis the main outcomes for 
different flow characteristics are summarized. 
Increase in heat generation reduces the velocity 
near the central region and improves the velocity 
in neighbor of peristaltic wall. It also enhances the 
size of bolus and curvature effect on isothermal 
lines and drops the pressure. Increase in the 
Grashof number causes fall in velocity near the 
central region and rises the velocity neighbor of 
peristaltic wall and drops the pressure. Increase in 
time mean flow rate supports the enhancement of 
velocity, temperature and size of bolus. Increase in 
wave number increases size of bolus, reduces 
curvature effect of isotherms and rises the 
pressure.   
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