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ABSTRACT 

Three-dimensional particulate flow has been simulated using Lattice Boltzmann Method (LBM). Solid-fluid 
interaction was modeled based on Smoothed Profile Method (SPM) (Jafari et. al, Lattice-Boltzmann method 
combined with smoothed-profile method for particulate suspensions, Phys. Rev. E, 2011). In this paper a 
GPU code based on three-dimensional lattice Boltzmann method and smoothed profile method has been 
prepared due to the ability of SPM-LBM to perform locally and in parallel mode. Results obtained for 
sedimentation of one and two spherical particles as well as their behavior in shear flow showed excellent 
correspondence with previous published works. Computations for a large number of particles sedimentation 
showed that combination of LBM and SPM on a GPU platform can be considered as an efficient and 
promising computational frame work in particulate flow simulations. 
 
Key words: Particulate flow; Parallel processing; Lattice boltzmann method; Smoothed profile method; 
GPU programming. 

NOMENCLATURE 

F fluid-solid interaction force 
H
iF  hydrodynamic force 

ext
iF  external force 

pN  number of particle 
M  velocity transformation matrix 
m moments vector 
Re Reynolds number 
R radius of particle 
Ŝ  diagonal relaxation matrix 
t time 

u


 fluid velocity vector 

( , )uP tx  velocity field of the particles 

V transitional velocity 

f  velocity distribution function 

p  stiffness parameter between particles 

w  stiffness parameter between particles 

and wall 
  shear rate 

F  fluid density 

s  solid density 

  relaxation time 
  characteristic directions for LBM model 

( , )t x  density profile 
  fluid kinematic viscosity 

  kesi 

 
1. INTRODUCTION 

Particulate flow occurs in a great number of 
engineering applications such as fluidized bed, 
sediment transportation and fuel cell industry. 

Analysis of such flow requires accurate prediction 
of motion of particles, an issue which has its roots 
in solid-fluid interaction. Although computational 
fluid dynamic methods has been used in simulation 
of such flows since more than a few decades ago, 
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they suffer from intensive computational issues, 
mainly due to the requirement of moving mesh 
which is needed to identify particles at subsequent 
times. As an alternative, Lattice Boltzmann Method 
(LBM) showed considerable success in simulation 
of such flows (Ladd and Verberg 2001, Succi 
2001), leading to more efficient computer codes 
capable of predicting fluid-solid interaction in a 
computationally efficient manner. It is a numerical 
method for solving Boltzmann equation which is an 
evolution equation of velocity distribution function 
in time. This method has three main advantages as 
compered of other conventional numerical methods, 
namely simple algorithm, accuracy in satisfying 
mass and momentum conservation and ideal for 
parallel processing. Suspensions of particles at low 
Reynolds number is a remarkable instance of LBM 
application (Aidun and Clausen 2010).  

LBM simulation of particulate flow started by 
pioneering work of ((Ladd 1994, Ladd 1994) and 
continued with subsequent works such as (Aidun 
and Lu 1995) and (Qi 1999). In these studies, 
momentum exchange method was used to simulate 
hydrodynamic interaction between solid particles 
and host fluid based on the bounce-back collision 
rule which is applied to satisfy the no-slip boundary 
condition on the fluid-particle interface. In this 
method, interface is discretized using particle 
boundary nodes. The main drawback of such 
method appeared in simulation of particulate flow 
problems with complex geometry of particles since 
solid boundary cannot move smoothly in space; 
hence, it causes fluctuations in the computation of 
forces exerting on the particle. Although using 
different techniques such as proper lattice grid with 
concentrated nodes at boundaries or higher-degree 
bounce back (Bouzidi, Firdaouss et al. 2001) can  
reduce  these fluctuations considerably, it results in 
increasing computational time . 

As an alternative in simulation of solid particles 
motions in fluid flow, a combination of immersed 
boundary method (IBM) and LBM was proposed by 
(Feng and Michaelides 2004). In these methods, a 
fixed Lagrangian grid was used for particle domains 
at each time step while a regular Eulerian one was 
used for fluid domain at all times. Moreover, fluid-
solid interaction was implemented through adding 
an external force density to the fluid domain in 
order to obtain equal velocity for solid and fluid at 
the boundary nodes. Transformation of force 
density from boundary to Eulerian nodes was done 
by a discrete  -function which is a complicated 
task. 

In order to avoid the complicated transformation of 
density force, Smoothed profile method (SPM) was 
introduced by (Nakayama and Yamamoto 2005) as 
a simple and efficient method for modeling and 
simulation of fluid-particle interactions. In SPM, a 
fixed Eulerian grid is used to simulate fluid flow. It 
represents the particles by smoothed body forces in 
the Navier-Stokes equations, instead of treating 
them as boundary conditions in the fluid. A 
smoothly spreading interface layer is considered to 
represent the particle boundaries for transition from 
the rigid-body motion to the fluid motion. By using 

such a simple modification, a regular Cartesian 
coordinates can be used for a system consisting of 
many particles with any arbitrary particle shape, 
rather than boundary-fitted coordinates. Here, solid-
fluid interface has a finite volume supported by a 
few grid points. Thus, simulation of a curved 
particle in a fixed Cartesian grid can be done 
without difficulty.  Although computational demand 
of this method depends on the number of grid 
points, it is insensitive to the number of particles. 
(Jafari, Yamamoto et al. 2011) combined SPM and 
LBM successfully to study particulate suspension 
for the first time. In their work, such combination 
has been validated by simulating flow over a 
circular cylinder, a neutrally buoyant cylinder in 
simple shear flow, two circular cylinders that 
approach each other in a channel, and sedimentation 
of two circular cylinders in a viscous fluid. All of 
the results confirmed accuracy and efficiency of the 
method. Later on (Javaran, Rahnama et al. 2013) 
combined SPM with Lees Edwards boundary 
condition in order to introduce shear into particle 
suspensions in two-dimensional flow. Their main 
reason for using Lees Edward Boundary condition 
was to simulate a system consisting of large number 
of particles at a reasonable computational cost and 
remove wall effects.  While Galilean invariance 
errors were reported in the previous works, their 
computations showed that such errors were absent 
in their computations.   

Due to the explicit nature of this method and weak 
correlations among neighbor computational points, 
LBM is an efficient method for parallel processing 
especially using Graphic Processing Unit (GPU) 
(Li, Fan et al. , Kuznik, Obrecht et al. 2010, Tölke 
2010). The use of GPU to perform non-graphical 
calculations was begun as the computational  power 
of graphic cards starts to increase considerably 
above that of Central Processing Unit (Anderson, 
Lorenz et al. 2008). As an example,  computational 
power of GeForce 8800-ultra graphic card is 400 
GFLOPs in single precision task while  that of Intel 
Core2 Duo 2.4 GHz is 38.4 GFLOPs for the same 
task (Tölke 2010). These graphic cards have been 
used by many researchers in their work. (Li, Fan et 
al.)  used GPU computations in their 3D LBM 
code. They obtained a computational time speedup 
of 15.3 for GPU as compared with CPU. (Kuznik, 
Obrecht et al. 2010) offered a method to implement 
various parts of the lattice Boltzmann method on 
GPU. (Bernaschi, Rossi et al. 2009) could present a 
GPU implementation of the multicomponent of LB 
equation for soft-glassy materials successfully. 
They obtained the significant performance for their 
GPU/CPU code speeding up in excess of 10 for 
10242 grids. A GPU implementation as used by 
(Bernaschi, Fatica et al. 2010) to perform a  
multi-physics/scale simulation software. They 
optimized the indirect addressing that a multi-
physics/scale simulation software uses for efficient 
simulations of irregular domains.  As Smoothed 
Profile method, similar to Lattice Boltzmann 
method, has the ability of performing locally and in 
parallel mode, their combination can be used in 
parallel mode by means of GPU in investigating 
particulate suspensions. 
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In this paper, multi-relaxation time LBM combined 
with Smoothed Profile method and GPU computing 
were used in order to investigate motion of a 
number of particles in fluid flow. The capability and 
computational efficiency of the present method are 
shown by 3D simulation of sedimentation of 1176 
spherical particles in a square cylinders in addition 
to simple geometries such as sedimentation of one 
and two spherical particles in a quiescent fluid.  In 
the following sections, a brief description of the 
methods including LBM, SPM and GPU are 
presented with the subsequent validation tests 
including particle sedimentations and particles in 
shear flow. Concluding remarks are given in the last 
section. 

2. COMPUTATIONAL METHOD 

The present computational method is based on 
Lattice Boltzmann Method for simulating fluid 
flow. LBM is an efficient and simple tool showing 
remarkable progress in simulating particulate flow 
during last decade (Aidun and Clausen 2010). 
While different methods have been used for 
predicting particle motion in such flows, SPM was 
selected in the present computations for particle 
motion simulation due to some advantages which 
were mentioned in the introduction part of the 
paper. Because of increasing computational demand 
required for simulation of large number of particles 
motion in a fluid flow, attempts were made to use 
GPU computing. A more detailed explanation of 
these issues are presented in the following sections.  

2.1. Generalized Lattice Boltzmann Method 
with Forcing Term 

LBM is a numerical solution of Boltzmann 
Equation on a lattice with a discrete velocity field. 
The main concept in LBM is velocity distribution 
function which is obtained based on collision and 
streaming steps. At the collision step, relaxations is 
considered to the local equilibrium values while 
movements along the characteristic directions given 
by a discrete particle velocity space are described in 
the streaming step. In its simple form, single 
relaxation time is used in LBM simulation of fluid 
flows. However, to improve the numerical stability 
and accuracy of computations, (Yiotis, Psihogios et 
al. 2007) proposed Multiple Relaxation Time 
(MRT) that can be used in such flow simulations. In 
MRT-LBM which is also called Generalized LBM, 
collision is computed at moment space, while 
streaming step is performed at article velocity 
space. GLBM has been modified for the case of 
fluid flows with external forces which is called 
GLBM with forcing term (Pattison, Premnath et al. 
2009, Premnath, Pattison et al. 2009, Premnath, 
Pattison et al. 2009). It can be express in the 
following form: 

   
   

 

1
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, ,
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
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   



 

 

fs

 

    (1) 

Here, f is velocity distribution function, M  and 
Ŝ  are the transformation matrix and the diagonal 
relaxation matrix, respectively. Collision and source 
terms are expressed in moment space in this 
equation. M is an orthogonal transformation matrix 
with 19 19 elements, mapping velocity distribution 
function to the moment vector m  in the moment 
space. The collision matrix in velocity space,  , is 
related to Ŝ in Eq. 1 through the relation 

1Ŝ M M     such that Ŝ is a diagonal matrix. The 
diagonal relaxation matrix is given by: 

(0, , , 0, , 0, , 0, , ,

, , , , , , , , )

e q q q

m m m

S S S S S S

S S S S S S S S S

S diag  

     




      (2) 

The speed of sound is 1

3
sc  and viscosity is 

related to S   as: 

1

3

1 1

2S
 

 
 

 
    (3) 

Relaxation rate, S  , is obtained from Eq. 3 and 

other relaxation rate { , , , ,q mS S S S S   } are set 
by (Sheikh and Pak 2015) to be identical values to 
preserve symmetry on the chosen lattice as follows:  

2
8

8
S
S





 
  

    (4) 

The last term in Eq. 1 shows the effect of an 
external force field on the evolution of the 
distribution function. While different external 
force fields may exist such as gravity, here fluid-
solid interaction force, F  which is obtained from 
SPM method, is considered as an external force 
field. 

The source terms, fS in moment space are functions 
of external force and introduced by the following 
relations: 
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                  (5) 

More detailed on MRT- 3 19QD  can be found in 

Refs. (Mei, Luo et al. 2006). In 3 19QD  lattice 

model (Fig. 1), there exist nineteen velocities to 
resolve the three- dimensional fluid flow. Discrete 
velocities vector are given as:  

(0,0,0) 0

( 1,0,0),(0, 1,0),(0,0, 1) 1 6

( 1, 1,0),(0, 1, 1),( 1,0, 1) 7 18

e









   
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





             (6) 

 

 

Fig. 1. LBM discrete velocity vector, 3 19QD  

model. 

 

Finally, the macroscopic density and velocity on 
each lattice node are given by the following 
relations: 

8

0

( , ) ( , )i it f t





 x x
 

8

1

( , ) ( , ) ( , )i i it t f t 





x u x c x
 

(7) 

2.2.   Smoothed Profile Method 

Smoothed Profile Method is a numerical method 
used for simulation of fluid-particle interactions.  In 
this method, implementation of no-slip boundary 
condition is performed using a body force which is 
introduced in LB equation. The position of solid 
particles in a fluid are indicated using a function 
which has a value of one and zero for internal and 
external nodes respectively, while at the interface, it 
varies continuously from one to zero as is shown in 
(Fig. 2).  

 
Fig. 2. Representation of a particle in smoothed 

profile (solid line). 
 

A formulation for such function for PN particles 

can be written as: 

1
( , ) ( , )PN

ii
t t 


 x x  (8) 

Where, ( , )i t x  is the density profile of the i th 

particle and pN is the total number of particles in 

the domain. Several functions have been suggested 
in the literature of (Nakayama and Yamamoto 
2005) for density profile. The function used in the 
present simulation is expressed as:  
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1
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i

s R t
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x
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     
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 

x x R

                 (9) 

Where iR  is the radius of the i th particle and Ri is 

the position vector for center of mass of ith particle. 

The velocity field of the particles, ( , )
P

u x t , is 

defined as: 

 1

, ,

( ) ( )

( ) ( )

( , )

P

N P
i i i i i

t t

t t

u

x t







     

x x

V ω x R   (10) 

Here, V
i

 and i  are the translational and angular 

velocities of the i th particle, respectively. Fluid 
nodes covered by the solid particles must have the 
same velocity as the solid particles. To enforce the 
fictitious fluid inside the rigid particle to satisfy the 
rigid-body motion constraint, a body force is 
introduced inside of the particle domain which is 
zero outside of it. Fluid-solid interaction force 
which acts on solid particle nodes is given by 
(Jafari, Yamamoto et al. 2011): 

 
( , ) ( , )

( , ) ( , ) ( , ) /

t f tP

t t tPu u t



 





x x

x x x
   (11) 

In the above equation, ( , )
p

tu x and ( , )tu x are the 
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particle and fluid velocities at t  and x, respectively. 
The force applying on the fluid boundary nodes is 
obtained from the following relation: 

 
( , ) ( , ) ( , )

( , ) ( , ) /

P
t t tH

t tPu u t



 

  

 

x x x

x x

f f
   (12) 

In order to implement interaction between two 
phases, fluid-solid interaction force is added in Eq. 
1. Applying momentum conservation law, 
hydrodynamic force and torque on the particles, can 
be obtained from the following relations:  

 ( , ) ( , )
H

i
u t u t d pp ipi

  


F x x    (13) 

   ( , ) ( , )
H
i u t u t di pp ipi

    


T x R x x    (14) 

Finally, particle translational and angular velocities 
and new particle position are obtained using the 
following equations: 

 lub1 1 H extn
i i in

t tn n
M dsi i p ti

    V V F F F    (15) 

 1 1 H extn
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t tn n
dspi i ti

   ω ω I T T    (16) 

1n n n
i i in

t t
dst

 
  R R V    (17) 

In which, ext
iF , ext

iT  are the external force and 

torque on particle and 
lub
iF  is the collision force 

between two particles or a particle and a wall in 
distances of the order of grid spacing. Here 

i
pM and 

ipI are the mass and the moment of inertia tensor 

for the ith particle, respectively. They are obtained 
from the following relations for a sphere: 

34

3i
spM R   

(18) 

20.4
i i

pMp RI  (19) 

Where s  is the density of the ith  particle. Detailed 

derivation of the equations mentioned in this 
section were presented in (Nakayama and 
Yamamoto 2005);(Jafari, Yamamoto et al. 2011). 

2.3.   Particles Near Contact 

In fluid flows containing many particles, collision 
between particles is unavoidable. Generally, forces 
between particles can be modeled through fluid-
solid interaction force when the distance between 
the nearest points on the surfaces of two particles 
contains enough fluid-computational nodes. For the 
case of small distances in the order of one lattice 
spacing, no fluid-solid interaction force can be 
computed due to the lack of fluid nodes. This 
situation results in particles crossing each other. 
Therefore an artificial repelling force is needed to 
prevent particles from penetrating into each other or 

into domain walls when the distance between two 
adjacent solid nodes become less than one grid 
distance. A popular approach is to introduce a 
repulsive force when the gap between two particles 
exceeds a given threshold, the so-called safe zone. 
In this study, a pair-wise repulsive force acting on 
the ith particle due to its interaction with jth particle 
is adopted. This extra short-range repulsive force 
which is added as an external force into the total 
force experienced by a particle, has a functional 
form as follows (Feng and Michaelides 2004): 
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Similarly the repulsive force between a particle and 
a wall is given by a reflection method which is 
expressed as follows: 
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In the above two equations, cij is a force scale and is 

set to be the buoyancy force in this study. 
i

R and 

j
R  represent particle positions, 

wj
R  is wall position 

and ζis the threshold or safe zone and is set to one 

lattice unit in the present simulation. p and w are 

the stiffness parameters. This repulsive force is 
called lubrication force in most published papers. 

3. PARALLEL PROCESSING USING 
GPU 

Nowadays, a Graphics Processing Unit (GPU) is 
widely used to perform a very large number of same 
or similar calculations on data items very quickly. 
GPUs are a computing hardware with a large 
collection of only modestly powerful cores (1536 
on the NVidia GeForce GTX 680) as compared to a 
CPU which is a small collection of very powerful 
cores (Intel® Xeon® CPU @ 2.4 GHz). To run a 
program on GeForce graphic cards, NVidia CUDA 
C programming language was introduced and a 
code should be prepared as a CUDA C code.   

CUDA is a programming language based on the 
standard C language for parallel processing on 
graphic cards. The structure of a CUDA program 
reflects the cooperation of CPU and GPU. As an 
advantage of LBM/SPM, their local computations 
can be used in parallel simulation of particulate 
flows. These local calculation are explicit and 
generally needs only the information from nearest 
adjacent nodes. In LBM, macroscopic flow 
properties are obtained based on the motions of 
constituent particles. As calculation of each particle 
is performed independently, they can be done 
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simultaneously; consequently, GPU computing can 
be used as a means of parallel computation. The 
first step in a GPU code is to transfer data from 
CPU to the global memory of GPU. When the 
information were placed on the GPU, each data grid 
in the physical geometry is broken down into block 
threads and threads. Each grid point of the physical 
geometry is connected to its respective thread. A 
thread number identifies each thread. This thread 
number is obtained according to its row, column 
and depth. The physical grid versus the computing 
thread blocks and threads is illustrated in (Fig. 3). 
Due to the large number of threads exist in GPU, it 
is possible to do parallel computations on each grid 
at the same time which results in considerable 
reduction of computational time. The present 
computations were performed using a GPU code 
which was prepared by authors.  

 

 
Lattice grid 
 

 
Grid of blocks loaded in Global memory 
 

Fig. 3. Physical grid and thread blocks. 
 

4. VALIDATION OF NUMERICAL 
RESULTS 

In order to validate the present computational 
method, a series of flow geometries which were 
studied by previous researchers are modeled and 
compared with their published work. These are 
sedimentation of one and two spheres in a quiescent 
fluid as well as their motion in shear flow. In 
addition to these flow geometries, sedimentation of 
1176 particles in a quiescent fluid were studied to 
reveal the computational ability of the present 
method. Such simulation was also performed in the 
present work which is explained in the following 

sections. 

4.1. A Particle Sedimentation in a Quiescent 
Fluid 

Sedimentation of a sphere in a square cylinder 
containing quiescent fluid has been investigated by 
many researchers. (Ten Cate, Nieuwstad et al. 
2002) used particle image velocimetry to study this 
geometry. In their experiments, dimensions of the 
square cylinder was selected as 100×100×160 mm3, 
as is shown in (Fig. 4). A sphere with a diameter of 
15 mm was located at center at a height of 120 mm 
from bottom of the cylinder. Density of sphere was 
selected as 1120 kg/m3, while different quiescent 
fluid were used to obtain different Reynolds 
number. (Table 1) shows selected fluid viscosities 
which are correspond to Re = 1.4, 4.1, 11.6 and 
31.9. Last column of table shows sphere terminal 
velocity after its release from rest.  

 

Table 1 Reynolds number, fluid density and 
viscosity and terminal velocity of sphere in its 
sedimentation. (Re, ρF and μF were taken from 

Ten cate et al.(2002)) 

 F p
p

F

ρ U d
Re

μ
 

3
 
 
 

F
kgρ
m

 
3

2
10 
  
 

S
F

Nμ
m

  
 
 


mU
s

 

1.5 970 373 0.038 

4.1 965 212 0.06 

11.6 962 113 0.09 

31.9 960 58 0.128 

 
Spherical particle sedimentation was studied using 
LBM-SPM-GPU code in the present work. The 
number of grid points used in this simulation were 
100×100×160. Using this number of grid points for 
the aforementioned geometry results in sphere 
diameter 15 based on lattice units. Relaxation time 
was selected as 0.8. Physically, the sphere starts to 
accelerate after its release, then it attains a constant 
terminal velocity which occurs due to balance of 
gravitational and drag forces. Near bottom of 
cylinder, as sphere approaches the bottom, its 
velocity decreases until it touches the bottom with 
zero velocity.  
 

 
Fig. 4. Schematic view of a sphere in a square 

cylinder. 
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Fig. 5. Vertical velocity contours with streamlines for falling sphere at four instances. 

 

 
(Figure 5) represents vertical velocity contours of 
the fluid with streamlines configuration during 
sedimentation of the sphere at different times. A 
symmetrical behavior relative to the vertical axis is 
observed in this figure. (Fig. 6) shows particle 
settling velocity and location of center of sphere as 
a function of time along with experimental results 
obtained by (Ten Cate, Nieuwstad et al. 2002) at 
different Reynolds numbers. As is observed in (Fig. 
6(a)),  vertical velocity obtained from present 
computations shows acceptable correspondence to 
those obtained experimentally by (Ten Cate, 
Nieuwstad et al. 2002). (Fig. 6(b)) shows good 
agreement between experimental results and the 
present computations considering spatial position of 
sphere with time. In general, it can be concluded 
that the present computations are capable of 
predicting single particle sedimentation with good 
accuracy.   
To reveal the effect of number of grid points used in 
the present computations, effect of grid resolution 
on sedimentation velocity at Re=11.6 is studied by 
increasing the number of grid points from 

64×64×104  to 130×130×208 as is shown in (Fig. 
7). As observed in this figure, increasing the 
number of grid points does not improve 
sedimentation velocity considerably compared to 
experimental data. 

4. 2.  Sedimentation of two in-line Spheres 
in a Quiescent Fluid 

When two in-line spheres settle under gravity in a 
quiescent fluid, their position does not follow a 
regular pattern due to their wake interactions. This 
problem has been investigated by (Glowinski, Pan 
et al. 2001) and (Apte, Martin et al. 2009). (Fig. 8) 
shows geometry of two spheres in a cylinder before 
starting to move. The computational domain 
considered for this problem was 10×10×40 mm3. 
Densities of each of two identical particles and the 
surrounding fluid are 1.14 g/cm3 and 1.0 g/cm3, 
respectively. Fluid viscosity was selected as 0.01 
g/cm.s. Initially, two particles, each of diameter 1/6 
cm, are placed in-line in the fluid at the center of 
square cylinder at different heights of 3.5 cm and 
3.16 cm. Both particles start to settle from rest 
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under gravity. The number of grid points used in the 
present geometry were selected as 96×96×384. A 
relaxation time of 0.6 was implemented for the 
present calculation. 
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Fig. 6. Variation of vertical (a) velocity and (b) 

height of sphere with time for different Reynods 
numbers. 
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Fig. 7. Comparison of particle settling velocity 

for Re=11.6 for different grid size. 

 
Fig. 8. Schematic presentation of the geometry of 

two spheres placed in a square cylinder. 
 
Figures 9 and 10 show separation distance between 
centers of spheres and vertical position as a function 
of time respectively. It is observed that distance 
between two spheres remains constant until t=0.17 
sec. This distance decreases until t=0.32 sec., the 
time which two spheres are nearly in touch with 
each other. This period of motion is called 
"drafting". From t=0.32 to t=0.57, the spheres 
remain nearly in touch with each other, a period 
which is called "kissing". It is worth mentioning 
that any numerical simulation used for prediction of 
motion during kissing period, should be able to 
maintain the sphere in touch with each other, while 
preventing any penetration of particles into each 
other. Implementation of a repulsive artificial force 
called lubrication force, prevents spheres from 
intersecting each other. More detailed discussion 
about lubrication force was mentioned in section 
2.3. In the last period of motion which is called 
"tumbling", the distance between them increases 
which is due to the deceleration of spheres as well 
as their lateral motion. As is observed in fig. 9 and 
10, the present results correspond to the results that 
were obtained from other researcher such as  
((Glowinski, Pan et al. 2001);(Apte, Martin et al. 
2009). 
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Fig. 9. Separation distance between two spheres 

settling in a quiescent fluid. 
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Fig. 10. Vertical position of two sphere setting in 
a quiescent fluid. 

 
Vertical velocity contour of fluid with streamlines 
during sedimentation of the two spheres at different 
times represent by (Fig. 11). 

 

 
Fig. 11. Two settling particles in a quiescent flow 

with streamline configuration and vertical 

velocity contour. 

 
4. 3. Sedimentation of Many Spheres in a 
Quiescent Fluid 

4.3.1.   The Sedimentation Process 

In this section, sedimentation of 1176 spheres in 
a quiescent fluid were studied to reveal the 

ability of present LBM-SPM in simulation of 
such flow geometries. All spheres have the same 
diameter of 0.06 cm which is equal to 6 based on 
lattice units. Initially, they were placed at top of 
a cubic enclosure of length 1.00 cm, see fig. 12a. 
Initial gap between two neighboring particles is 
one lattice unit. Particle and fluid densities are 

31.04 g cm and 31g cm respectively. Particles 
position at subsequent times are presented in 
(Figs.12a-d). (Fig. 12a) shows initial position of 
particles, which are placed in six rows starting 
from top of the enclosure. The first row at the 
top is placed at half lattice unit from top wall. 
No-slip boundary is adopted for all boundaries. 
Figs. 12b-12d show particle positions at 
subsequent times after starting to settle under 
gravity. As is observed from these figures, 
particles located at middle settle down more 
quickly than those placed near the walls. Fig. 13 
shows variation of average velocity of particles 
located at the top row as well as those at the 
bottom row with time. As is observed from these 
figures, top row achieves higher vertical 
downward velocity after about 3000 time steps 
compared to the bottom row. This is due to the 
wake space appeared after displacement of other 
rows making the first row to move faster. It was 
also observed that bottom row is nearly settled at 
the bottom of the computational domain after 
about 5000 time steps .Such three-dimensional 
behavior is almost opposite to two-dimensional 
results reported by previous authors such as 
((Feng, Hu et al. 1994, Feng and  
Michaelides 2004). (Zhang, Trias et al. 2015) 
who studied three-dimensional particle 
sedimentation, reported the same behavior, 
which confirms our findings in such flow 
geometry. 

4.3.2.  Effect of GPU on Computational 
Time 

In order to examin the effect of GPU computing 
on computational time as compared to CPU one, 
several simulations were done for different 
number of particles. Particles were arranged in 
the same region as previous subsection. The 
diameter of particles is 0.06 cm. Computational 
time for one iteration as a function of number of 
particles presented in (Fig. 14). As is observed in 
this figure, computational time increases almost 
linearly with increasing the number of particles 
for both GPU and CPU computations, however, 
higher slope is observed for CPU compared to 
GPU computations. Computational time for 
simulation of sedimnetation of 3060 particles 
using CPU is 5 times that of GPU which 
confirms computational efficiency of  
LBM/SPM with GPU in particulate flow 
simulations.  
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Fig. 13. Average velocity of sedimentation of 

particles located at  (a) the top and (b) the 
bottom row 

 

 
Fig. 14. Particle number versus simulation time. 
 
4.4.   Spheres in Shear Flow 

To reveal the behavior of present computational 
scheme in shear flows, the problem of motion of a 
sphere located at centerline of a shear flow was 
studied. (Fig. 15) shows schematic of a sphere 
located midway between two parallel plates. As is 
shown in it, the top and bottom plates are moving in 
opposite directions, creating a shear flow which 
causes sphere to rotate. Computational domain 

 
a 

 

 
b 
 

c 
 

 
d 
 

Fig. 12. Positions of the 1176 particles at 
different times, a= 0.0 s, b=5.7, c=11s, d=20 s. 
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consists of two solid walls for which bounce back 
boundary conditions are applied, with periodic 
boundary conditions on remaining boundaries. 
Density of solid sphere is selected as 10 times that 
of fluid. Reynolds number based on sphere diameter 

is defined as 2Re 4p Rp    in which γ is shear rate 

and defined as 2 w yU L . 

 

 
Fig. 15. Schematic of the geometry of a sphere 
located between two parallel plates in a shear 

flow. 
 
 

 
Fig.16. Effect of plate distance on angular non-
dimensional velocity of sphere. The results are 
compared to results of (Taylor 1932) for a 3D 

system. 
 

Non-dimensional angular velocity of the sphere 
obtained from exact solution is equal to 0.5 in this 
geometry (Taylor 1932). To investigate the effect of 
distance between two plates on angular velocity of 
sphere, it was changed from 2.5Rp to 40Rp. (Fig. 
16) shows the effect of plates separation distance on 
non-dimensional angular velocity of the sphere 
at Re 0.058p  . As it is observed in this figure, the 

predicted angular velocity is equal to the exact 
solution if the distance between two plates is 
selected greater than 16Rp. The discrepancy 
observed in fig. 16 occurs if the distance between 
plates is less than 16Rp. The reason for such 
discrepancy is the wall effects which appear due to 
higher shear rate related to smaller distance. As the 

vertical axis of fig. 16 shows non-dimensional 
angular velocity, increasing shear rate reduces this 
parameter resulting in values lower than 0.5. It is 
worth mentioning that reduction in angular velocity 
with increasing wall distances beyond 16Rp is 
proportional to the reduction in shear rate, resulting 
in a constant non-dimensional angular velocity.    

In order to study the hydrodynamic interactions 
between two particles using the combined SPM-
LBM, the problem of two spheres located in a shear 
flow is investigated. When two spherical particles 
which are located at a distance from each other, are 
subjected to shear flow, they start to approach each 
other. (Fig. 17) line of the channel. Consider a 
coordinate axis with origin located at centerline, 
midway between inlet and outlet, particles are 
located at (5Rp, -0.75Rp, 0) and (-5Rp, 0.75Rp, 0). 
The plate separation distance affects angular and 
translational velocity of spheres. Results of the 
present computations showed that no significant 
variation in these two parameters is observed for 
H>40Rp. Therefore distance between two plates 
was selected as H=40Rp. 

 

 
Fig. 17. Schematic of two spherical particles in a 

shear flow. 

 

 
Fig. 18. Central position of two spheres in shear 

flow as a function of time. 

 
Figure18 shows location of two spherical particles 
as a function of time along with those obtained by 



B. Khalili et al. / JAFM, Vol. 10, No. 4, pp. 1091-1103, 2017.  
 

1102 

(Kromkamp, van den Ende et al. 2006). When two 
spheres approach each other, they experience a 
vertical motion in opposite direction to be able to 
pass each other. As is observed in this figure, the 
present results show good correspondence with 

those of (Kromkamp, van den Ende et al. 2006).  

5. CONCLUSION 

A computational frame work consisting of Lattice 
Boltzmann Method and Smoothed Profile Method 
which is based on GPU computations, is used to 
study particulate flow. Results obtained for one and 
two particle sedimentations in a quiescent flow 
showed accurate prediction of particle position as 
well as its velocity during sedimentation as 
compared to previous published works. 
Incorporation of GPU computations made it 
possible to simulate sedimentation of 1176 particles 
in a reasonable computational time as well as the 
ability of the method in studying a large number of 
particle motions in a fluid flow. To reveal the 
ability of present method in predicting particle 
motion in shear flow, flow geometries consisting of 
one and two spherical particles in shear flow were 
studied in detail. Results showed accurate 
prediction of particle angular velocity for the case 
of one particle in shear flow, as well as motion of 
two particles passing each other. In general, the 
present computations showed that LBM/SPM with 
GPU computing is capable of predicting accurate 
particulate flow characteristics with high 
computational efficiency.     
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