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ABSTRACT 

In this paper, a theoretical investigation has been carried out to study the combined effect of AC electric field 
and temperature depended internal heat source on the onset of convection in a porous medium layer saturated 
by a dielectric nanofluid. The model used for nanofluid incorporates the combined effect of Brownian 
diffusion, thermophoresis and electrophoresis, while for porous medium Darcy model is employed. The flux 
of volume fraction of a nanoparticle with the effect of thermophoresis is taken to be zero on the boundaries 
and the eigenvalue problem is solved using the Galerkin method. Principle of exchange of stabilities is found 
to be valid and subcritical instability is ruled out. The results show that increase in the internal heat source 
parameter SH , AC electric Rayleigh-Darcy number eR , the Lewis number eL , the modified diffusivity ratio 

AN  and the concentration Rayleigh-Darcy number nR  are to hasten the onset of convection. The size of 

convection cells decreases with increasing the internal heat source parameter SH  and the AC electric 

Rayleigh-Darcy number eR .  

Keywords: Electrohydrodynamic instability; Nanofluids; Internal heat source; Porous medium. 

 
1. INTRODUCTION 

Nanofluids have an important impact on heat 
transfer enhancement in modern years. They have 
been utilized in various technologies including 
cooling systems of electronic devices (Wong and 
Leon 2010; Saidur et al. 2011), porous media solar 
collectors (Bég et al. 2012), geothermics 
(Sheikholeslami and Ganji 2014), automotive 
applications (Srinivas et al. 2016) and chemical 
engineering coating processes (Malvandi et al. 
2015). Further, remarkable implementations of 
nanofluids include crystal growth (Jayaraman et al. 
2009), materials processing (Muthtamilselvan and 
Rakkiyappan 2011), energy storage (Uddin et al. 
2013) and automotive engine cooling (Leong et al. 
2010). Nanofluids represent a significant class of 
heat transfer fluids obtained by dispersing very 
small amount of nanoparticles (<100 nanometers in 
diameter) in conventional poor thermal conductivity 
base fluids. Nanoparticles used in nanofluid are 
typically made of oxide ceramics (Al2O3, CuO), 
metal carbides (SiC) or metals (Al, Cu) and base 
fluids are water, oil, bio-fluids, polymer solutions 
and other common fluids. The presence of the 
nanoparticles in the fluid increased the effective 
thermal conductivity of the fluid and consequently 
enhanced the heat transfer characteristics. There are 

some review papers that show detailed 
characteristic feature of nanofluids (Wang 2007; 
Murshed et al. 2008; Özerinç et al. 2010). 

A nanofluid modelling was made by Buongiorno 
(2006) who clarified that the key mechanisms 
contributing to thermal enhancement are Brownian 
diffusion and thermophoresis. This model was 
applied to study the thermal instability problem by 
Tzou (2008 a, b) and observed that nanofluid is less 
stable than regular fluid. Later, this problem was 
revisited by Nield and Kuznetsov (2010) by taking 
different types of non-dimensional parameters. 
Thermal instability problem for rotating nanofluid 
layer was studied by Chand and Rana (2012), 
Yadav et al. (2011, 2013a, 2014a) and Rana et al.  
(2014). Thermal conductivity and viscosity 
variation on the onset of convection in nanofluid 
was studied by Nield and Kuznetsov (2012), Yadav 
et al. (2013b,2014b,2015a) and Umavathi et al. 
(2015). They obtained that the consequence of these 
factors increase the critical Rayleigh number.  

In recent years, the study of the interaction of 
electromagnetic fields with fluids saturated porous 
medium started gaining attention with the promise 
of applications in many fields of science and 
engineering including nuclear fusion, chemical 
engineering and medicine (Allen and Karayiannis 
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1995; Yabe et al. 1996; Moreno et al. 1996; Lai and 
Lai 2002). Depending on the nature of fluids, the 
effects of magnetic and electric fields become 
important. The magnetic field effects are dominant 
if the fluid is highly electrically conducting. To the 
opposing, the electric forces play a key role in 
driving the motion if the fluid is dielectric with low 
electrical conductivity. The investigation of 
convective instability together with the electrical 
and magnetic forces in nanofluids is of practical 
importance. A systematic study through a proper 
theory is essential to understand the physics of the 
complex flow behaviour of nanofluids and also to 
obtain invaluable scaled up information for 
industrial applications. 

Thermal convection in a dielectric fluid layer in the 
presence of an AC and/or DC electric field is 
known as electrothermal convection (ETC). 
Rudraiah and Gayathri (2009) investigated the 
effect of vertical electric field on the 
electroconvection in a horizontal dielectric fluid 
saturated densely packed porous layer and 
discussed the importance of ETC in porous media. 
El-Sayed (2008) analyzed the problem of 
electrohyrodynamic instability in a horizontal layer 
of the Oldroydian viscoelastic dielectric liquid 
through Brinkman porous medium under the 
simultaneous action of a vertical ac electric field 
and a vertical temperature gradient. Using linear 
stability theory, both stationary and oscillatory 
instabilities are discussed when the liquid layer is 
heated from below or above. It is shown that the 
electrical force is the sole agency causing 
instability. The effect of vertical AC electric field 
and boundaries on the onset of ETC in sparse 
porous layer heated from below or above was 
studied by Shivakumara et al. (2011a). Later, the 
onset of ETC in a rotating Brinkman porous layer 
was investigated by Shivakumara et al. (2011b). An 
extensive review on this topic has been made by 
Nield and Bejan (2013). 

In some convective flow situations, one may 
encounter heat generated due to radioactive decay 
or weak exothermic reactions and nuclear reaction, 
which leads to change in the energy and thus the 
temperature profile of the system, like in the case of 
celestial bodies. Therefore, the role of internal heat 
generation becomes very important in several 
applications including food engineering, nuclear 
heat cores, nuclear energy, nuclear waste disposals, 
electrical equipment, oil extractions and crystal 
growth. Despite the importance of internal heat 
generation in nanofluids, there are few 
investigations of its effect. The previous works have 
only considered the much simpler case of uniform 
heat generation. For example, Hamad and Pop 
(2011), Yadav et al. (2012) and Nield and 
Kuznetsov (2013a,b) carried out numerical 
investigations and found that the basic temperature 
distribution and the basic volumetric fraction of 
nanoparticle distribution deviate from linear to non-
linear in the presence of internal heating, and the 
critical Rayleigh number decreases with an increase 
in the internal heat source strength. 

Under the circumstances, the study of electric field 

with non-uniform internal heat source on the onset 
of dielectric nanofluid convection in a porous 
medium seems to be significance in electrical 
equipment such as distribution transformers, 
regulating transformers and shunt reactors 
(Sheikhbahai et al. 2012; Asadzadeh et al. 2012; El-
Genk 2012), and has not been given any attention in 
the literature. Therefore, the purpose of the research 
reported here is to examine theoretically the 
combined effect of vertical AC electric field and 
temperature dependent internal heat source on the 
criterion for the onset of convection in a dielectric 
nanofluid saturated horizontal layer of porous 
medium. We used the Horton–Rogers–Lapwood 
model with effects due to the electric field, the 
internal heat generation and nanoparticles. The 
temperature is considered to be fixed at the 
boundaries, while the nanoparticles flux under the 
thermophoretic effects to be zero thereat (Nield and 
Kuznetsov 2014). 

2. ANALYSIS 

Consider an infinite horizontal layer of 
incompressible dielectric nanofluid-saturated 
porous layer of thickness d  with internal heat 
generation and heated from below. A Cartesian co-

ordinate system  , ,x y z  is chosen in which 

z axis is taken at right angle to the boundaries. The 
nanofluid is confined between two parallel plates 

0z   and z d , where the temperatures at the 
lower and upper boundaries are taken to be 0T  and 

1T , respectively, 0T  being greater than 1T . 

Nanofluid layer is subjected to a uniform vertical 
AC electric field applied across the layer; lower 
surface is grounded and upper surface is kept at an 
alternating potential whose root mean square is 1 . 

For simplicity, Darcy’s law is assumed to hold and 
the Oberbeck--Boussinesq approximation is 
employed. Homogeneity and local thermal 
equilibrium in the porous medium is also assumed. 
According to the works of Buongiorno (2006), the 
governing equations under this model are: 

The continuity equation for the nanofluid is 

0,  v


                                                               (1) 

where  , ,u v wv


is the Darcy velocity.  

If one introduces a buoyancy force and a force of 
electrical origin, the momentum equation in a 
Darcy-porous medium can be written as   

0 ,ep
K

     v g f


                                    (2) 

where p  is the pressure, K is the permeability of 

the porous medium, g


 is the gravitational 

acceleration, ef


  is the force of electrical origin,   

and   are the viscosity and the mass density of the 
nanofluid,  respectively. The mass density (  ) of 
nanofluid can be written as: 
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 1 ,p f                                                 (3) 

where   is volumetric fraction of nanoparticle, p  

and f  are the density  of the nanoparticle and the 

base fluid, respectively. 

Under the Boussinesq approximation, the density of 
base fluid can be approximated as 

  0 11f f T T     ,                                    (4) 

Where 
0f  is the density of the base fluid at 

reference temperature 1T  and   is the thermal 

expansion coefficient. The density of the nanofluid 
can be approximated by that of base fluid, i.e. 

00 ,f  since the volumetric fraction of 

nanoparticles is only a few percent. Hence, with the 
help of equations (3) and (4), the buoyancy term 
can be approximated as 

    0 11 1p T T          g g
  .            (5) 

On using equation (5), the momentum equation (2) 
can be written as 

    0 11 1 .p ep T T
K

            v g f


 

(6) 

The conservation equation for the nanoparticle is        

 1 1
,p

pt


 
 

       
v j


                          (7)  

where   is the porosity of the porous medium and 

pj


 is the diffusion mass flux for the nanoparticle, 

given as the sum of two diffusion terms (Brownian 
motion and thermophoresis) by  

1
,T

p p B p
D

D T
T

  
 

     
 

j


                        (8) 

where BD  and TD  are the Brownian and the 

thermophoresis diffusion coefficients of the 
nanoparticle, respectively. According to Einstein 
formula (Einstein 1905), BD  and TD  are given 

as: 

3
B

B
p

k T
D

d
 , 

0.26
,

2T
p

k
D

k k

 


  
                

(9) 

where T  is the temperature, Bk  is the 

Boltzmann’s constant, pd  is the diameter  of 

nanoparticle, k  and pk  are the thermal 

conductivity of the fluid and the nanoparticle, 
respectively.  

Substituting the expression of pj


 from the equation 

(8) into the equation (7), the conservation equation 
for the nanoparticle (7) becomes 

  2 2

1

1
. ,T

B
D

D T
t T

 


 
       

v


               (10) 

The energy equation is 

    

 1                                          ,

p pm
c c T h

t

Q T T

         
 

v q j


       (11)      

where  1Q T T  is the strength of internal heat 

generation,  c  is the heat capacity of nanofluid, 

q


 is the energy flux relative to nanofluid velocity 

and p ph   j


 is the addition flow work due to the 

Brownian and the thermophoresis motions of 
nanoparticle relative to the flow velocities. The 
energy flux q


 can be written as the sum of the 

conduction heat flux and the heat flux due to 
nanoparticle diffusion as 

,m p pk T h   q j


                                       (12) 

where mk is the effective thermal conductivity and 

ph  is the specific enthalpy. Equation (12) gives 

 
 

  

2

2

2

       

       ,

m p p

m p p p p

m p p p p

k T h

k T h h

k T h c T







    

      

       

q j

j j

j j



 

 
     (13) 

where ph  is equal to pc T  and c p  is the 

specific heat of the material constituting the 
nanoparticles. Substituting the expression for q


 

from equation (13) and pj


 
from equation

 
(8), the 

energy equation (11) becomes as  

    

   

2

1
1

mm

T
Bp

c c T k T
t

D
c D T T T Q T T

T

 

  

      
  

         
   

v


.   (14)   

The force of electrical origin ef


 in equation (6) can 

be expressed by Landau and Lifshitz (1960) for 
incompressible nanofluid as 

 1
,

2e e   f E E E
   

                                     

(15) 

where E


 is the root mean square value of the 
electric field, e  is the charge density and   is the 

dielectric constant. The first term on the right hand 
side is the Coulomb force due to a free charge and 
the second term depends on the gradient of . If an 
AC electric field is applied at a frequency much 
higher than the reciprocal of the electrical relaxation 
time, the free charge does not have time to 
accumulate. Moreover, the electrical relaxation 
times of most dielectric liquids appear to be 
sufficiently long to prevent the buildup of free 
charge at standard power line frequencies. At the 
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same time, dielectric loss at these frequencies is so 
low that it makes no significant contribution to the 
temperature field. Under the circumstances, only 
the force induced by non-uniformity of the 
dielectric constant is considered. Furthermore, since 
the second term in the above equation depends on 

 E E
 

 rather than E


 and the variation of E


 is 

very rapid, the root mean square value of E


 can be 
assumed as the effective value. In other words, we 
can treat the AC electric field as the DC electric 
field whose strength is equal to the root mean 
square value of the AC electric field. Assuming the 
free charge density is negligibly small, the relevant 
Maxwell equations are: 

0,  E


                                     (16)
 

  0.   E


                                                    (17) 

In view of equation (16), E


 can be expressed as  

, E


                                                           (18) 

where   is the root mean square value of the 

electric potential.  

The dielectric constant is assumed to be a linear 
function of temperature in the form  

 0 11 0,T T                                             (19) 

where γ(>0) is the thermal expansion coefficient of 
dielectric constant and is assumed to be small.  

We assume that the temperature is constant and 
nanoparticles flux including the effect of 
thermophoresis is zero on the boundaries. Thus, 
boundary conditions are: 

0
1

0, , 0T
B

d D dT
w T T D

dz T dz


     at 0z  ,        (20a) 

1
1

0, , 0T
B

d D dT
w T T D

dz T dz


      at  z d .       (20b) 

2.1.   Basic State 

Assuming the basic state to be quiescent, the 
quantities at the basic state are given by: 

0,v


   ,bT T z
 

 ,bp p z
 

  ,b z 
 

 
 z ,b  z ,b   bE E z .               (21)

            

The solution of the basic flows is: 

 
1

s i n

,

s i n

m
b

m

Q
d z

k
T T T

Q
d

k

 
 

    
 
 
    

0
1

,T
b b

B

D
T

T D
 

 
   
 

 0 ˆ
1b

E
E

Tz d


 
k , 

   0 ˆlog 1b
E d T

z
T d




      
k , 

0
ˆ1b

T
z

d

    
 

k , 

where subscript b  denote the steady state, 0  is a 

reference scale for the nanoparticle fraction, 

 0 1T T T    and 
 
1

0 log 1

T d
E

T

 



 

 
 is the 

root mean square value of the electric field at 
0z  . 

2.2.   PERTURBATION SOLUTION 

Let the initial basic state as described by equation 
be slightly perturbed so that the perturbed state is 
given by: 

,v v ( ) ,bp p z p   ( ) ,bT T z T  

( ) ,b z    ,b   ,b  E E E
  

b    ,                                                       (22) 

where the prime denote the perturbed quantities. On 
substituting the equation (22) into the equations (1), 
(6), (10), (14) -(20) and linearizing by neglecting 
the products of primed quantities, eliminating the 
pressure term from the momentum equation by 
operating curl twice, and retaining the vertical 
component and  converting the resulting equations 
to non-dimensional form by introducing the 
following dimensionless variables:  

, ,
( , , ) ,

x y z
x y z

d

        
  2

,mt t
d




 

, ,
( , ,  ) ,

m

u v w
u v w d


   

     
 

1-
,

T T
T

T


 


    

0

0
,

 

 

 0E T d





 


, where 0  is a 

reference scale for the nanoparticle fraction and 

,
( )

m
m

k

c





 

( )

( )
mc

c




 , we obtain the linear 

stability equations (dropping the dashes ('') for 
simplicity) in non dimensional form as: 

 
2 2 2 2- - ,D H n H e Hw R T R R T

z

          
     (23) 

     

 

2 A B

e

B

e

T N N T
T

t L z

N
                  ,

L z

Swf z H f z

f z


 
    

 




   

(24) 

  2 21 1A A

e e

N N
w f z T

t L L

 
 


    


,  

(25) 

2 ,
T

z
 

 


                           (26) 

where  
 S S

S

H c o s H 1

s in H

z
f z

   
 
 

. 

In the above equations the following non-
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dimensional parameters are given as:

 

 

m
e

B
L

D




 

is the Lewis number, 

0  D
m

g TKd
R

 



  is the thermal Rayleigh-Darcy 

number, 
 0 0p

n
m

gKd
R

  




  is the 

nanoparticle Rayleigh-Darcy number, 

 22 2
0  e

m

E T K
R




 
  is the AC electric 

Rayleigh-Darcy number,

 

2

SH  
m

Qd

k
  is the 

internal heat source parameter, 

1 0
 T

A
B

D T
N

D T 


 is the modified diffusivity 

ratio,
 
 

0
   p

B

c
N

c

 



  is the modified particle-

density increment. 

In non- dimensional form, the boundary conditions 

become: 

0,  A
T

w T N
z z z

   
   

  
  at z = 0,1  (27) 

Analyzing the disturbances into the normal modes 
and assuming that the perturbed quantities are of the 
form:  

     

 
,  ,  ,  ( ), ( ), ,

                      exp ,x y

w T W z z z z

ik x ik y nt

        

  
 (28) 

where, n  is the growth rate of disturbances, 

xk and  yk   are wave numbers in x  and y  

directions, respectively. 

On using equation (28), into equations (23) - (26), 
we have: 

 2 2 2 2

2 0,

D n

e

D a W R a R a

R a
z

    

      

          (29) 
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 

    

0)3(

  

 

   

 

2 2

2 2

1

0,

A

e

A

e

N n
W f z D a

L

N
D a

L

 
 

    
 

   

 (31) 

 2 2 0D a D     ,                         (32) 

where, d
D

dz
 ,  

 S S

S

H co s H 1

sin H

z
f z

   
 
 

 

and 2 2
x ya k k    is the resultant dimensionless 

wave number. The boundary conditions in view of 
normal mode analysis are: 

0 ,  0 ,  0 ,  

0   a t   0 ,1 .A

W D

D N D z

    
    

         (33)   

The growth rate n  is in general a complex quantity 
such that r in i   , the system with 0r   is 

always stable, while for 0r   it will become 

unstable. For neutral stability, the real part of   is 
zero. Hence, we write in i , where i is  real 

dimensionless frequency. 

The Galerkin weighted residuals method is used to 
obtain an analytical solution to the system of 
equations (29) - (32). Accordingly, the base 
functions ,  ,  W   and   are taken in the 
following way: 

1

,
N

p p
P

W A W


   
1

,
N

p p
P

B


  
 

1

,
N

p p
P

C


    

 1

,
N

p p
P

D


              (34) 

where sin ,  sin ,p p p AW p z N p z     

cos ,p p z   (satisfying the corresponding 

boundary conditions), ,pA  pB , pC  and pD are 

unknown coefficients, and 1,2,3,..., .p N  On 

using above expression for ,  ,  W    and   into 
equations (29)-(32) and multiplying the resulting  
first equation by pW second equation by p , third 

equations by p  and fourth equation by p  and 

integrating in the limits from zero to unity,  we 
obtained a system of 4N linear algebraic equations 
in the 4N  unknowns ,pA

 
,pB
 pC and

 
,pD  

1,2,3,...,p N . For the existence of non trivial 
solution, the determinant of coefficients matrix 
must vanish, which gives the characteristic equation 
for the system, with the thermal Rayleigh- Darcy 
number DR  as the eigenvalue of the characteristic 

equation. For a first approximation, we take 1N  ; 
this produces the result 

 

     
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2 22
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J
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(35) 
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Where
 

 2 2J a   ,  

   
1 2

2
2

S0

2
sin  ,

H 4
F z f z z dz




 
  

   
2

S S

2
S

H t a n H 2

H 4

A B

e

N N
G z

L





 
 


 

Generally when we employ a single-term Galerkin 
approximation in this situation we get a value 
overestimate by about 3%. But in the present case, 
the single-term Galerkin approximation gives the 
exact result. Because the terms containing 

BN involves as a function of B eN L  and the 

value of B eN L  is too small of order 2 510 10  , 

pointing to the zero contribution of the nanoparticle 
flux in the thermal energy conversation. 

3. RESULTS AND DISCUSSION 

3.1   Stationary Convection 

First, consider the case of stationary convection, 
i.e. 0i  . Then, from equation (35), the 

expression of thermal Rayleigh- Darcy 
number DR for the stationary convection can be 

obtained as 

 
   

  
 

2 2

22 2

2
.

2

S e
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e

A n S e

e

H J J a R
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Ja F z J L G z

N R J G z H J L

J L G z










 

   
    



  (36)  

It is obvious from equation (36) that the thermal 
Rayleigh-Darcy number DR  decreases with 

increasing the internal heat source parameter SH , 

AC electric Rayleigh-Darcy number eR  and 

nanofluid parameters while increases with porosity 
parameter . 

When 0SH  and 0eR  , i.e. in the absence of 

internal heat source and electric field, therefore 
equation (36) becomes 

 22 2

2
1 e

D A n

a L
R N R

a





  
   

 
.          (37) 

This result is identical with the result of Yadav and 
Lee (2015) for a thermal equilibrium case 
with 0a DD T  .  

In the absence of nanoparticles and electric field, 
i.e. eR 0,n BR N    equation (36) gives 

  
 

2 2 2 2

22

S
D

H a a
R

a F z

   
 .     (38)  

The above is the same result obtained by Bhadauria 
(2012) for homogeneous single component 
convection and absence of electric field in a porous 
layer.  

Now rescaling the parameter as 2 2
ca  and 

putting into the equation (36) and then taking 
0DR    , the expression for critical thermal 

Rayleigh-Darcy number ,D cR  is obtained, 

corresponding to the critical value of the wave 
number c  which satisfies the following 

equation 
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  
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 

   
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 

    

    
(39) 

Here  refer to critical value.  

In the absence of nanoparticles and electric field, 
i.e. eR 0,n BR N   equation (39) gives: 

2 2 2 0SH     .                                         (40) 

Equation (40) coincides with that of Bhadauria 
(2012) for homogeneous single component 
convection and absence of electric field in a porous 
layer. 

3.2   OSCILLATORY CONVECTION 

Oscillatory convection is possible only if some 
supplementary constraints, such as rotation, 
magnetic field, salinity gradient etc., are present in 
the system. For oscillatory convection 0i  , the 

real and imaginary parts of equation (35) yield: 

      
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J H J J a F z

J L a F z
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   

   

    

  (41) 

      
    

2
,

2 2 3 2

2 2

2 2 0.

e S D Osc

e e A n

L J J G z H J a F z R

a F z a R J a F z JL N R



  

  

   
     (42) 

Equations (41) and (42) give the following 
expressions for the thermal Rayleigh- Darcy 

number ,D OscR and the frequency of oscillation i : 
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Table 1 Comparison of critical thermal Rayleigh-Darcy number ,R D c  and critical wave number ca  

with different values of internal heat source parameter SH and AC electric Rayleigh-Darcy number 

eR for regular fluid 

SH
 eR  ,RD c                ca

 SH
 eR

 ,RD c           ca
 

0 

0 
10 
20 
30 
40 
50 

39.48                3.14 
34.32                3.35 
28.85                 3.55 
23.10                 3.76 
17.08                 3.96 
10.83                 4.15 

1.0 

0 
10 
20 
30 
40 
50 

36.50               3.06 
31.47               3.27 
26.09               3.50 
20.41                3.72 
14.44                3.93 
8.22                 4.13 

0.5 

0 
10 
20 
30 
40 
50 

37.98                 3.10 
32.89                 3.31 
27.47                 3.53 
21.74                 3.74 
15.75                 3.94 
9.52                  4.14 

2.0 

0 
10 
20 
30 
40 
50 

33.57               2.97 
28.67               3.20 
23.40                3.44 
17.79               3.67 
11.87               3.90 
5.68                 4.11 

 
Table 2 Comparison of critical thermal Rayleigh-Darcy number 

,R D c
 and critical wave number ca  

with different values of internal heat source parameter 
SH and AC electric Rayleigh-Darcy number 

eR for nanofluid at
 

2,AN  5,eL 
 

0.01,BN  0.7,  0.5nR   

SH  
eR  ,RD c              ca  SH  

eR  ,RD c             ca  

0 

0 
10 
20 
30 
40 
50 

31.34                 3.14 
26.18                3.35 
20.71                3.55 
14.96                3.76 
8.94                  3.96 
2.69                  4.15 

1.0 

0 
10 
20 
30 
40 
50 

28.74                 3.07 
23.68                3.29 
18.28                3.51 
12.58                3.73 
6.59                  3.94 
0.35                 4.14 

0.5 

0 
10 
20 
30 
40 
50 

30.03                3.11 
24.92               3.32 
19.49               3.53 
13.76               3.75 
7.75                 3.95 
1.51                4.15 

2.0 

0 
10 
20 
30 
40 
50 

26.22               3.00 
21.26               3.23 
15.94               3.47 
10.28               3.70 
4.32                 3.93 
-1.91                4.14 
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 (43) 
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i S e
e

A n e
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L J

G z J a F z N R J G z L

J a F z L N R
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



 

      

   

 

(44) 

From equation (44), it is interesting to note that the 
vertical AC electric field does not influence the 
existence of oscillatory convection. Following 
Buongiorno (2006), Nield and Kuznetsov (2013a,b) 
and Yadav (2014) for most of nanofluids, the Lewis 

number eL  is on the order of 1 310 10 , AN  is on 

the order of 1 10 , the nanoparticle Rayleigh-
Darcy number nR and  are on the order of 

1 10 , and Hence from equation (44), the value of 
2

i  will be always negative. Since i is real for 

oscillatory convection, therefore oscillatory 
convection cannot occur and the principle of the 
exchange of stability is valid for the case of 
nanofluid. 

The results which are given in the equations (36) 
and (39) are presented graphically in the Figs.1-12 
and also tabled in the Tables 1-6 for fixed values of 

1,SH 
 

2,AN 
 

5,eL 
 

0.01,BN 
 

0.7,   
0.5nR  except the varying parameters. The range 

of parameters fall in these figures is taken from the 
available literature (Buongiorno 2006; Nield and 
Kuznetsov  2013a,b; Yadav 2014; Kefayati 2013; 
Kuznetsov 2012, Yadav et al. 2015c, 
2016a,b,c,d,e,f,g).  

The linear stability theory expresses the criteria of 
stability in terms of the critical thermal Rayleigh-
Darcy number ,D cR , below which the system is  
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Table 3 Comparison of critical thermal Rayleigh-Darcy number 
,R D c

 and critical wave number ca  

with different values of nanoparticles Rayleigh-Darcy number nR and AC electric Rayleigh-Darcy 

number 
eR for nanofluid at

 SH 1, 2,AN  5,eL 
 

0.01,BN  0.7   

nR  eR  ,RD c                  
 ca  nR  eR  ,RD c              ca  

0.2 

0 
10 
20 
30 
40 
50 

33.41                    3.07 
28.36                    3.28 
22.98                    3.50 
17.28                    3.72 
11.30                   3.94 
5.08                     4.13 

0.6 

0 
10 
20 
30 
40 
50 

27.19               3.08 
22.12              3.29 
16.72              3.52 
11.01              3.74 
5.01               3.95 
-1.23             4.15 

0.4 

0 
10 
20 
30 
40 
50 

30.30                   3.07 
25.24                   3.29 
19.85                   3.51 
14.14                  3.73 
8.16                    3.94 
1.93                   4.14 

1.0 

0 
10 
20 
30 
40 
50 

20.97            3.09 
15.88            3.31 
10.46            3.53 
4.73             3.75 
-1.28           3.96 
-7.53           4.16 

 

 
Table 4 Comparison of critical thermal Rayleigh-Darcy number 

,R D c
 and critical wave number 

ca  

with different values of Lewis number  eL  and AC electric Rayleigh-Darcy number eR for nanofluid at
 

SH 1, 2,AN  0.01,BN  0.7,  0.5nR   

 eL  eR  ,RD c  ca   eL  eR  ,RD c   ca  

2 

0 
10 
20 
30 
40 
50 

32.81                  3.07 
27.76                 3.28 
22.38                 3.50 
16.68                3.72 
10.70                 3.94 
4.48                  4.13 

8 

0 
10 
20 
30 
40 
50 

24.68               3.08 
19.60               3.30 
14.19               3.52 
8.47                 3.74 
2.47                 3.95 
-3.78               4.15 

5 

0 
10 
20 
30 
40 
50 

28.74               3.07 
23.68               3.29 
18.28               3.51 
12.58               3.73 
6.59                 3.94 
0.35                4.14 

11 

0 
10 
20 
30 
40 
50 

20.61                3.09 
15.52                3.31 
10.09                3.53 
4.36                  3.75 
-1.65                 3.96 
-7.90                4.16 

 
 

stable, while above which it is unstable. To 
determine the accuracy of the numerical procedure 
used  to obtain the critical stability parameters, first 
the test computations are carried out for different 
values of internal heat source parameter SH under 

the limiting case of nanoparticle and electric field 
i.e. eR 0nR   and results are tabled in Table 1. 

From the Table 1, we identify that in the absence of 
nanoparticles, internal heat source and electric field, 
we recover the exactly well-known result that the 
critical Rayleigh-Darcy number ,R D c  is equal 

to 24  and the corresponding wave number ca  

is . This verifies the accuracy of the numerical 
method used.  

The critical thermal Rayleigh-Darcy number ,D cR  

and the corresponding critical wave number ca as a 

function of AC electric Rayleigh-Darcy number eR  

for different values of internal heat source parameter 

SH are shown in Figs. 1 and 2, respectively. From 

Fig. 1, it is observed that on increasing the value of 
internal heat source parameter SH , the critical value 

of thermal Rayleigh-Darcy number decreases; thus 
the effect of SH

 
is to advance the onset of 

convection. This is because increase in SH , 

amounts to increase in energy supply to the system 
which in turn improve the disturbances in the fluid 
layer and thus system is more unstable. From Fig.1, 
it is also found that the critical thermal Rayleigh-
Darcy number

,R D c
 decreases with the AC electric 

Rayleigh-Darcy number eR .  
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Table 5 Comparison of critical thermal Rayleigh-Darcy number 
,R D c

 and critical wave number ca  

with different values of modified diffusivity ratio  AN   and AC electric Rayleigh-Darcy number 
eR for 

nanofluid at
 SH 1, 5,eL 

 
0.01,BN  0.7,  0.5nR   

 AN  eR  ,RD c                   ca   AN  eR  ,RD c    ca  

1 

0 
10 
20 
30 
40 
50 

32.62                  3.07 
27.57                 3.28 
22.19                3.51 
16.49                3.73 
10.51                3.94 
4.29                 4.14 

3 

0 
10 
20 
30 
40 
50 

24.86                3.08 
19.79                3.30 
14.38                3.52 
8.66                 3.74 
2.66                 3.95 
-3.59                4.15 

2 

0 
10 
20 
30 
40 
50 

28.74               3.07 
23.68               3.29 
18.28               3.51 
12.58                3.73 
6.59                  3.94 
0.35                 4.14 

4 

0 
10 
20 
30 
40 
50 

20.98                3.09 
15.89                3.31 
10.47                3.53 
4.74                  3.75 
-1.27                 3.96 
-7.52                 4.16 

 
 

Table 6 Comparison of critical thermal Rayleigh-Darcy number 
,R D c

 and critical wave number ca  

with different values of porosity parameter   and AC electric Rayleigh-Darcy number eR for 

nanofluid at
 SH 1,  2,AN 

 
5,eL 

 
0.01,BN  0.7,  0.5nR   

  
eR  ,RD c            ca    eR  ,RD c          ca  

0.1 

0 
10 
20 
30 
40 
50 

-11.97             3.17 
-17.18             3.39 
-22.71            3.61 
-28.54            3.82 
-34.64           4.03 
-40.98           4.22 

0.7 

0 
10 
20 
30 
40 
50 

28.74             3.07 
23.68             3.29 
18.28             3.51 
12.58             3.73 
6.59               3.94 
0.35              4.14 

0.4 

0 
10 
20 
30 
40 
50 

23.67             3.09 
18.59             3.30 
13.17             3.53 
7.45               3.74 
1.44               3.96 
-4.80            4.15 

1.0 

0 
10 
20 
30 
40 
50 

30.77            3.07 
25.72            3.29 
20.33            3.51 
14.63            3.73 
8.64              3.94 
2.41               4.14 
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Fig. 1. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

internal heat source parameter SH  at 

2,AN  5,eL 
 

0.01,BN 
  

0.7,   
0.5.nR   

Therefore, the effect of imposed AC electric field 
results in the reduction of stability of the system. 
Fig 2 shows that increase in the values of internal 
heat source parameter SH and

 
AC electric Rayleigh-

Darcy number eR  tend to increase ca  and thus its 

effect is to decrease the size of convection cells. 
Also, it is interesting to note that the effect of 
internal heat source parameter SH

 
on the critical 

wave number ca  is reversed for higher values of 

AC electric Rayleigh-Darcy number  eR 80 . 

Figurs 3and 4 indicate the influence of 
nanoparticles Rayleigh-Darcy number nR on the 

stability characteristics.   

From Fig. 3, it is observed that the critical thermal 
Rayleigh-Darcy number ,D cR  decreases as 

nanoparticles Rayleigh-Darcy number nR  increases. 

Therefore, nanoparticles Rayleigh-Darcy 
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number nR  has a destabilizing effect on the stability 

of the system. This is because as an increase in 
nanoparticles Rayleigh-Darcy number nR , increases 

the Brownian motion of the nanoparticles and thus 
system is more unstable. The corresponding critical 

wave number ca  is plotted in Fig. 4 and found that 

the nanoparticles Rayleigh-Darcy number nR has no 

significant effect on the critical wave number. 
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Fig. 2. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number  ca  for 

different values of internal heat source 
parameter SH  at 2,AN  5,eL 

 
0.01,BN 

 
0.7,  0.5.nR   
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Fig. 3. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

concentration Rayleigh-Darcy number R n  at 

2,AN  5,eL 
 

0.01,BN 
 

0.7,  1.SH   

 
Figs. 5-10 show the effect of Lewis number  eL , the 

modified diffusivity ratio  AN  and porosity 

parameter on the stability of the system. From 

Figs. 5, 7 and 9, we found that the Lewis number 

 eL  and the modified diffusivity ratio  AN  

accelerate the onset of convection, while porosity 
parameter delays the convection in a nanofluid 

layer. It may be happened because the 
thermophoresis at a higher value of thermophoretic 
diffusivity is more supportable to the disturbance in 
nanofluids, while both thermophoresis and 
Brownian motion are driving forces in favour of the 
motion of nanoparticles.  From Figs. 6, 8 and 10, 
we found that the Lewis number  eL , the modified 

diffusivity ratio  AN  and porosity 

parameter have no significant effect on the 

critical wave number ca .  
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Fig. 4. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number ca  for 

different values of concentration Rayleigh-Darcy 
number R n  at 2,AN  5,eL 

 
0.01,BN 

 
0.7,  1.SH   
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Fig. 5. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

Lewis number eL  at 

2,AN  0.01,BN  0.7,   1,SH 
 
R 0.5.n   
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The effect of modified specific heat increment BN  

on the onset of convection is shown in Figs. 11 and 
12.  It is found that the modified specific heat 
increment BN  has no significant effect on the 

stability of system. This is occurred due to the terms 
containing BN involves as a function of 

B eN L and the value of B eN L is too small of 

order 2 510 10  , pointing to the zero contribution 
of the nanoparticle flux in the thermal energy 
conversation. 
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Fig. 6. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number ca  for 

different values of Lewis number 

eL  at 2,AN  0.01,BN   
0.7,   1,SH 
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Fig. 7. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

modified diffusivity ratio  AN  at 

5,eL  0.01,BN  0.7,   
1,SH 

  
R 0.5.n   

0 20 40 60 80 100
3

3.5

4

4.5

5

  R
e

a c

NA=4, 3, 2, 1

 
Fig.8. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number ca  for 

different values of modified diffusivity ratio  AN  

at 5,eL  0.01,BN  0.7,   1,SH 
 

R 0.5.n   
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Fig. 9. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

porosity  at 2,AN  5,eL 
 

0.01,BN 
 

R 0.5,n  1.SH   
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Fig. 10. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number  ca   for 

different values of porosity  at 

2,AN  5,eL 
 

0.01,BN 
 
R 0.5,n  1.SH   
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Fig. 11. Effect of AC electric Rayleigh-Darcy 
number eR on the critical thermal Rayleigh-

Darcy number ,RD c  for different values of 

modified specific heat increment BN   at 

2,AN  5,eL 
 

0.7, 
 
R 0.5,n  1.SH   
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Fig. 12. Effect of AC electric Rayleigh-Darcy 

number eR on the critical wave number ca  for 

different values of modified specific heat 
increment BN   at 2,AN  5,eL 

 
0.7, 

 
R 0.5,n  1.SH   

 

4. CONCLUSIONS 

The combined effect of vertical AC electric field 
and temperature depended internal heat source on 
the onset of convection in a nanofluid-saturated 
porous layer has been studied analytically with the 
assumption that the nanoparticle flux is zero under 
the thermophoresis at the boundaries. The results 
have been obtained in terms of the critical thermal 
Rayleigh-Darcy number ,D cR . We have the 

following observations: 

1) The instability of the nanofluid is reinforced 
with an increase in the value of internal heat 
source SH , AC electric Rayleigh-Darcy 

number
eR , the Lewis number

eL , the modified 

diffusivity ratio AN   and the concentration 

Rayleigh-Darcy number
nR .  

2) The size of convection cells decreases with 
increasing the AC electric Rayleigh-Darcy 
number

eR .  

3) For lower values of AC electric Rayleigh-Darcy 
number  eR 80 , the size of convection cells 

decreases with increasing the internal heat 
source SH , while reverse  for higher values of 

AC electric Rayleigh-Darcy number eR . 

4) The vertical AC electric field does not 
influence the existence of oscillatory 
convection and it is ruled out for nanofluid 
convection due to absence of the two 
opposing agencies who affect the instability. 
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