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ABSTRACT 

The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-
waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving 
the von Kármán depth-integrated mass and momentum conservation equations, in the long-wave 
approximation. A second-order accurate scheme is adopted and a small random white-noise is superposed to 
the discharge at the channel inlet to generate the natural roll-waves train. Both shear-thinning and shear-
thickening power-law fluids are investigated, considering uniform, accelerated and decelerated hypercritical 
profiles as the unperturbed condition. Independently of the unperturbed profile and of the fluid rheology, 
numerical simulations clearly enlighten the presence of coalescence, coarsening and overtaking processes, as 
experimentally observed. All the considered statistical parameters indicate that the natural roll-waves spatial 
evolution is strongly affected by the unperturbed profile. Compared with the uniform condition, at the beginning 
of roll-waves development an accelerated profile reduces the growth of the roll-waves with a downstream shift 
of the non-linear wave interaction. The opposite behavior is observed if the roll wave train develops over a 
decelerated profile. The comparison with the theoretical outcomes of the linearized near wave-front analysis 
allows the interpretation of this result in terms of stability of the base flow. It is shown that once the coarsening 
process starts to take place, the roll-waves spatial growth rate is independent of the unperturbed profile. Present 
results suggest that an appropriate selection of the flow depth at the channel inlet may contribute to control, 
either enhancing or inhibiting, the formation of a roll-waves train in power-law fluids. 

Keywords: Natural roll-waves; Power-law fluid; Gradually varying flow; Shock-capturing method. 

NOMENCLATURE 

A asymmetry parameter
A coefficient matrix
f flux vector  
f* numerical flux vector  
fI, fII, fIII dimensionless coefficients  
F Froude number  
F* marginally stable Froude number  
g gravity acceleration  
H heaviside operator 
h dimensionless flow depth  
h'max, h'min mean perturbation height at crests and at 

troughs 
hp flow depth perturbation 
I identity matrix  ܔ± left eigenvectors of the A matrix 
k time step counter 
L dimensionless channel length  
L matrix operator 

Nl
~ reference length scales 

n exponent of the power-law fluid  

N' number of observed waves  
p source vector (conservative variable)  
qp discharge perturbation
s source vector (primitive variable) 
S skewness parameter 
t dimensionless time  
t1,m dimensionless time interval between the 

zero up-crossing and the wave peak of 
the m-th wave  

t2,m dimensionless time interval between the 
peak and the zero down-crossing time of 
the m-th wave 

T dimensionless perturbation period 
T' dimensionless mean period of waves  
u dimensionless depth-integrated 

streamwise velocity 

Nu~ reference velocity scale 

u primitive variables vector 
w cell-averaged conservative variables

vector  
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wL, wR conserved variables at the two sides of 
the interface  

w dummy coefficient 
x dimensionless streamwise coordinate  
y dummy coefficient 

 
α dimensionless coefficient  
 momentum correction factor 
γ dimensionless coefficient 
x mesh spacing resolution  
t integration time step
p perturbation amplitude 
ξ, η transformed variables 
θ angle of bottom slope  
λ± eigenvalues of A 
λL , λR minimum characteristic slopes at the 

two sides of a cell interface  
γ dimensionless stability function  
µn dimensional consistency of the power-

law fluid  
 dummy coefficient 
 fluid density  
 dummy coefficient 
 perturbation amplitude ratio  
 pulsation  

 
Subscript 
0  unperturbed initial condition 
1 perturbed condition at the first order 
2  perturbed condition at the second order 
3 perturbed condition at the third order 
N normal flow condition 
U upstream channel section (inlet) 
c critical condition 
 
Superscript 
~  dimensional quantities  

 
 

1. INTRODUCTION 

The flow of a thin film of fluid down an inclined 
plane is a fundamental process not only in the 
geophysics area, i.e. lava flows, mud floods and 
dynamics of continental ice sheets, but also in a 
variety of industrial applications (Craster and Matar, 
2009). It is frequently encountered in biomedical 
engineering, material processing, food and chemical 
industry. Thin fluid films appear in many coating 
processes, such as microchips fabrication, layering 
of paper or plastic webs. In the following, a fluid 
described by a power-law without yield stress is 
considered. A comprehensive review of the role of 
the yield stress may be found in Balmforth et al. 
(2014). 

Experimental evidences have shown that in certain 
flow conditions waves appear at first as surface 
instabilities, then they grow in space up to the 
formation of breaking waves commonly named roll-
waves.  

For analyzing the roll-waves formation, several 
mathematical models of shallow flows of power-law 
fluids have been considered (Ng and Mei, 1994; 
Miladinova et al., 2004; Fernández-Nieto et al., 
2010; Bouchut and Boyaval, 2013; Bouchut and 
Boyaval, 2014). Depending on the particular 
industrial application considered, the occurrence of 
these superficial waves may improve or deteriorate 
the process performance. For this reason, the control 
of their formation and/or evolution is of utmost 
importance and it is gaining more and more attention. 
Aiming to contribute in this direction, the present 
paper explores the possibility of controlling the 
natural roll-waves evolution through a suitable inlet 
boundary condition. 

Many theoretical investigations have examined the 
possibility to control the superficial instabilities 
through different operating strategies, such as bed 
porosity, bed topography and flow non-uniformity.  

Inspired by the results achieved for Newtonian fluids 

(e.g. Pascal, 1999; Sadiq and Usha, 2008), the effects 
of bed porosity on the roll-waves formation in 
power-law fluids has been deeply investigated, using 
both linear and non-linear analyses. Considering the 
von Kármán depth-integrated model, Pascal (2006) 
carried out a linear stability analysis, showing that 
the bed permeability destabilizes the film flow. 
Moreover, the results obtained through the numerical 
solution of the non-linear flow model suggested that 
linearly stable flows are also non-linearly stable. 
Sadiq and Usha (2010) used a Benney-type equation 
for describing the dynamics of a power-law film on 
a porous incline. Using linear and weakly non-linear 
stability analyses of the uniform flow, they 
confirmed that the bottom permeability has a 
destabilizing effect. The numerical solution of the 
full model enlightened that both the permeability and 
the shear-thinning rheology strongly influence the 
shape and the amplitude of the non-linear waves. 
Usha et al. (2011) performed a temporal stability 
analysis of the two-dimensional Cauchy Momentum 
Equations coupled with the power-law rheological 
model, i.e. an Orr-Sommerfeld type analysis. The 
Carreau rheological model (Carreau et al., 1979) was 
used and the presence of a permeable bed was 
assumed. The energy balance of the perturbation 
field indicated that the destabilization induced by 
both the shear-thinning behavior and the bottom 
permeability is strictly related to the viscous shear 
work rate on the free-surface.  

Heining and Aksel (2010) investigated the effect of 
a sinusoidal topography on the stability of a power-
law fluid, using an integral boundary layer model, 
i.e. the von Kármán method. The linear stability 
analysis of the steady state showed that the bottom 
undulation has in most cases a stabilizing influence 
on the free-surface, particularly for shear-thickening 
fluids. Yadav et al. (2015) analyzed the same 
problem in the framework of the weighted-residual 
integral boundary layer method. The linear analysis 
revealed that many factors influence the limiting 
value of the stability parameter, represented by the 
Reynolds number. In particular, the limiting value 
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depends on the shear-thinning rheology, on the 
surface tension and on the amplitude of the free-
surface of the target profile. 

Di Cristo et al. (2015) examined the spatial evolution 
of a point-wise disturbance in a Herschel and 
Bulkley film described through a von Kármán depth-
integrated model in mild-sloped channels, i.e. 
channels in which the uniform flow depth is 
hypocritical. The study showed that the flow stability 
is strongly influenced by an initial gradually varying 
profile. In particular, it has been found that a 
hypocritical accelerated profile may improve the 
instability and, conversely, a hypocritical 
decelerated one may inhibit it. Campomaggiore et al. 
(2016a) confirmed this effect even for power-law 
fluids, for both shear-thinning and shear-thickening 
behaviors. Moreover, in hypercritical conditions it 
has been shown that an accelerated profile reduces 
the growth of the disturbance while a decelerated one 
promotes the instability. Independently of the power-
law index, it was concluded that the influence on the 
stability of the gradually varying hypercritical 
profiles is stronger than that of the hypocritical ones. 
Numerical simulations with the full non-linear model 
representing the propagation of a single point-wise 
disturbance confirmed such a conclusion. Although 
the above results refer only to the stability of the base 
flow, it may be conjectured that a proper selection of 
the upstream boundary conditions may either 
promote or delay the formation of the whole roll-
waves train. However, such a possibility has not been 
yet explored and this is the main target of the present 
research. 

For clear-water flows in turbulent regime, it is widely 
accepted that the essential features of natural roll-
waves train may be reproduced by forcing the 
shallow water model with a random noise at the inlet. 
It was shown that both fully hyperbolic (Zanuttingh 
and Lamberti, 2002; Campomaggiore et al., 2016b) 
or diffusive (Chang et al., 2000; Huang and Lee, 
2015a,b; Cao et al., 2015) models are able to predict 
the main properties of the roll-waves spatial 
evolution experimentally observed by Brock (1967). 
In particular, Brock (1967) observed that the initial 
development of the phenomenon showed an 
exponential growth of the perturbations. Flowing 
downstream, owing to the different crests height, the 
waves traveled with different celerities, overtaking 
one another and merging into larger ones. Moving in 
the downstream direction, the role of non-linear 
waves interaction became more and more important, 
leading to the wave overtaking with shock-waves. In 
this final phase the wave mean period was seen to 
linearly increase along the channel. These features 
have been observed in all the numerical results, 
independently of both the amplitude of the random 
noise prescribed at the inlet and the shallow water 
flow model.  

The numerical solution of the mass and momentum 
conservation equations, with a random noise at the 
upstream inlet, has been recently employed even by 
Edwards and Gray (2015). The Authors were able to 
reproduce natural roll-wave trains in granular free-
surface flows, suggesting that this approach may be 
usefully applied also for non-Newtonian fluids.  

It may therefore be conjectured that the main features 
of the natural roll-waves development in a power-
law fluid could be similarly captured through the 
numerical solution of the full model. 

In the present paper the flow model of Ng and Mei 
(1994) is adopted, which is based on the von Kármán 
depth-integration of the mass and momentum 
conservation equations, in the long-wave 
approximation. This choice provides a suitable trade-
off between the rigorous physical description and the 
mathematical complexity. Steep slope channels, i.e. 
channels in which the uniform flow depth is 
hypercritical, are considered for investigating the 
effect of the upstream inlet conditions. Both shear-
thinning and shear-thickening fluids are analyzed. 
To this aim, non-linear analyses are developed 
starting from several gradually varying hypercritical 
profiles with a prescribed random forcing at the inlet. 
The results of the numerical simulations are 
interpreted also based on the linearized near-front 
expansion technique.  

The paper is structured as follows. In Section 2 the 
governing equations are reported. Both the 
numerical method and its validation are described in 
Section 3, while in Section 4 the characteristics of the 
natural roll-waves trains for different inlet conditions 
are compared and discussed. Conclusions are drawn 
in Section 5. Some details about the near-front 
expansion technique are given in the Appendix, with 
reference to a discontinuity imposed on both the first 
and the second order derivatives of the flow depth. 

2. GOVERNING EQUATIONS 

Let us consider a free-surface flow of a power-law 
fluid down an incline plane forming the angle with 
the horizontal one, without lateral inflow or outflow. 

Let us denote with n, µn, the exponent, the 
consistency and the density of the power-law fluid, 
respectively. Values n < 1 represent shear-thinning 
fluids, whereas n > 1 corresponds to a shear-
thickening ones. The Newtonian case is 
characterized by a unitary value of n. Following the 
thin-layer approach, the typical length scale in the 
cross-stream direction is supposed to be much 
smaller than the streamwise one. The reference 
scales for flow depth and velocity are the uniform or 
normal flow depth (

Nh
~ ) and the corresponding depth-

averaged velocity: 

n

n

n
N

N
hg

n

n
u

1
1sin

~

12
~




















 (1) 

in which g denotes the gravity acceleration. 
Assuming for the streamwise coordinate cot

~~
NN hl   

as reference length scale, the depth-integrated mass 
and momentum conservation equations in 
dimensionless form read (Ng and Mei, 1994, 
Campomaggiore et al., 2016a): 

  0 







uh
xt

h   (2) 
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in which x is the streamwise coordinate and t the 
time. The momentum correction factor  is: 

1
23

12
2 





n

n  (4) 

while the dimensionless bottom stress b is given by 
the following expression:  

n

b h

u






  (5) 

Finally, FN denotes the Froude number under 
uniform condition: 

cos
~

~

N

N
N

hg

u
F   (6) 

Eqs. (2)-(3) may be rewritten in the primitive 
variables uT =  (h, u) as follows:  

   us
u

uA
u
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

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


xt
 (7) 

with: 
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It is easy to verify that the matrix A possesses two 
distinct eigenvalues: 

 
2

21
NF

h
uu    (10) 

The corresponding left-eigenvectors read: 
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













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h

u

h
12

1

l  (11) 

and therefore the system (2)-(3) is hyperbolic. 
Referring to the standard lexicon of hydraulics, 
hypercritical (resp. hypocritical) conditions are 

encountered whenever 0 (resp. 0 ).  

Under steady conditions of flow, henceforth denoted 
with the subscript 0, the flow depth and depth-
averaged velocity have to satisfy the steady-state 
counterpart of Eq. (7): 

0
0

0 d

d
s

u
A 

x
 (12) 

with A0 and of s0 obtained by evaluating Eqs. (8)-(9) 
for u = u0(x). Eq. (12) may be easily rewritten in 
terms of the flow depth h0 only, as follows: 

  33
0

12
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d

c

n

n hh

h

hx

h








  (13) 

with 3 2
Nc Fh   the dimensionless critical flow 

depth. Considering that the dimensionless uniform 
flow depth is unitary, and borrowing the standard 
hydraulic terminology, a channel is classified as 
steep (resp. mild) whenever hc > 1 or FN > FN,c (resp. 
hc < 1 or FN < FN,c), 1, cNF  being the critical 

Froude number. In what follows, only steep slope 
channels are considered. In these conditions, it is 
easy to verify from Eq. (13) that only the 
hypercritical profiles, i.e. h0 < hc, preserve the free-
surface continuity. Depending on the upstream 
boundary condition hU = h0(x = 0), accelerated 
(1 < h0 < hc) or decelerated (0 <h0 <1) profiles may 
occur.  

2. NUMERICAL SIMULATIONS 

2.1 Numerical Method 

The full non-linear problem of Eq. (7) has been 
numerically solved based on its matrix form in terms 
of conserved variables wT =  (h,hu): 

   wp
wfw










xt
 (14) 

in which the expressions of the flux f and the source 
p vectors directly follow from Eqs.(2)-(3). To solve 
Eq. (14) a Finite-Volume approximation has been 
considered: 

   wpff
w









*

2/1
*

2/1
1

iixt
 (15) 

in which w is the average value of w in the finite 
volume of dimension x. The f* term represents the 
numerical approximation of the flux f at the volume 
interfaces, which has been defined following the 
Harten-Lax-Van Leer (HLL) scheme (Harten, 1983): 

     
LR

LRLRRLLR









wwwfwf
f*  (16) 

  
LR

R

,
max   

LR

L

,
min  (17) 

where wL and wR are the piecewise linear 
reconstructions of w on the left and right sides of the 
interface. Owing to the second-order accuracy of the 
present scheme and to preserve the solution 
monotonicity, a non-linear limiter to the gradient 
terms that appear in the reconstruction is necessary. 
To this aim, the minmod limiter (Roe, 1986): 

   ba
ba

ba ,min
2

)(sign)(sign
,minmod


  (18) 

has been applied. The second-order accuracy in time 
is ensured by applying a two-step Runge-Kutta 
scheme (Gottlieb and Shu, 1998). Defining the 
following operator: 
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the temporal integration between the time levels k 
and k+1 is performed with the following procedure: 

   kk t wLww 1  (20a) 

    111

22

1

2

1
wLwww

tkk 
  (20b) 

wheret is the integration time step. 

Based on the hyperbolic character of the governing 
equations, the correct number of boundary 

conditions follows from the sign of the   
eigenvalues at the inlet and outlet of the channel. For 
simulating the natural roll-waves train in presence of 
hypercritical initial flows, at the channel inlet both 
the discharge and the flow depth are prescribed. In 
particular, the former has been evaluated 
superposing to the initial value a small random time-
dependent perturbation, while the latter has been 
assumed constant in time and equal to the initial 
value. At the channel outlet, in order to account for 
the possible occurrence of instantaneous hypocritical 
conditions caused by the roll-waves crests, absorbing 
boundary condition have been imposed 
(Campomaggiore et al., 2016a). 

2.2 Numerical Method Validation 

The above described numerical method has been 
validated by simulating a wave amplification 
process for which the exact solution may be 
deduced. To this aim, the evolution of a time-
periodic perturbation of the flow discharge at the 
channel inlet, in the neighborhood of a uniform 
flow, has been analysed. The perturbation 
amplitude is denoted as p, whereas its pulsation is 
  T,T being the perturbation period. For 
very small p values, the governing equations may 
be linearized in the neighborhood of the uniform 
flow condition and analytically solved. The 
solution is known for the clear-water case, both for 
constant (Supino, 1960) or variable 
(Campomaggiore et al., 2016b) friction factor, and 
it has been previously used as a benchmark for 
numerical methods aimed to reproduce roll-waves 
development (Zanuttigh and Lamberti, 2002; 
Campomaggiore et al., 2016b). This solution has 
been herein further extended to account for the 
features of the present flow model, namely the 
momentum coefficient and the different 
rheological behavior. Denoting with qp(x,t) << 1 
and hp(x,t) << 1 the difference between actual 
discharge and flow depth and the corresponding 
uniform value, the solution can be easily found in 
the form: 
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in which: 
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The symbol H(·) denotes the Heaviside operator.  

The solution consists of the superposition of two 
exponentially modulated sinusoidal waves, advected 

along the characteristic lines of slope 
N . The 

modulating factors determine if the waves grow in 
space or not. Accounting for the expression of , (Eq. 
(4)), it is easy to verify from Eq. (21) that unstable 
conditions occur whenever the Froude number 
exceeds the limiting threshold: 

12

*




n

n
FN  (24) 

in agreement with the results of the normal mode 
analysis and of the Green’s function study performed 
by Ng and Mei (1994) and by Di Cristo et al.(2013b), 
respectively.  

To compare exact and numerical solutions, a 
dimensionless channel length L = 64 has been 
chosen. Two different values of the rheological 
exponent have been considered, namely n = 0.4 
( = 1.125, FN,c=0.94, FN

* = 0.30) and n = 1.5 
( = 1.231, FN,c=0.90, FN

* = 0.75) to represent shear-
thinning and shear-thickening fluids, respectively. 
For both n values, the Froude number has been fixed 

equal to 0.3NF , for which the two uniform 

conditions are both linearly unstable (n = 0.4, 
*10 NN FF  ; n = 1.5, *4 NN FF  ). The perturbation 

amplitude has been assigned equal to p = 1·10–3 and 
the period is T = 8. Numerical simulations have been 
performed with x = L/1280 andt = 1/2048. The 
relative error L1-norm on flow depth and discharge 
over a period has been found to vary in the range 
(0.9 ÷ 2)·10–4 for n = 0.4 and (0.9 ÷ 2)·10–5 for 
n = 1.5. Therefore, a more than satisfactorily 
agreement between numerical and analytical 
solutions has been observed. The exact and 
computed solutions are visually compared in terms 
of hp(x,t)  and qp(x,t) for both the shear-thinning (Fig. 
1a) and the shear-thickening (Fig. 1b) fluids. 
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Fig. 1. Comparison between numerical (solid 

line) and analytical (symbols) solution: a) Shear-
thinning fluid (n = 0.4); b) Shear-thickening fluid 

(n = 1.5). 
 

4. RESULTS 

In the present section, the adoption of inlet boundary 
condition for the potential control of the spatial 
development of natural roll-waves in power-law 
fluids is investigated. To this aim, steep slope 
channels have to be considered and therefore the 
Froude number has to be chosen so that the uniform 
condition corresponds to both hypercritical and 
linearly unstable conditions: i.e. FN > FN,c and 
FN > FN

*. The effects of the upstream boundary 
condition have been analyzed simulating the natural 
roll-waves development, through the numerical 
solution of the governing equations (Section 3), with 
different initial depth profiles. In the following, 
along with the uniform initial profile, both 
accelerated and decelerated hypercritical ones have 
been considered. As in the previous section, the 
power-law exponent n has been fixed to 0.4 (shear-
thinning fluid) and 1.5 (shear-thickening fluid). The 
Froude number has been assumed equal to 3.0, for 
both cases. The following values of the critical flow 
depth hc = 2.15 (n = 0.4) and hc = 2.23 (n = 1.5) hold. 
For both fluids, the accelerated and decelerated 
initial profiles have been evaluated by solving Eq. 
(12) through a second-order Runge-Kutta scheme, 
assigning different values of the flow depth at the 
channel inlet (hU). The hU value has been varied 
between 0.5 and 0.9 hc, considering that Eq. (12) has 

a singularity at h0 = hc. In what follows the values 
hU = 0.5 and hU = 1.5 are preliminary considered, 
along with the uniform case. 

The dimensionless channel length is L = 640 and the 
adopted mesh spacing is x = 0.1. Fig. 2, in which 
for sake of clarity only a part of the channel has been 
shown, reports the calculated accelerated and 
decelerated initial profiles, along with the uniform 
one. As far as the shear-thinning fluid is concerned, 
Fig. 2a indicates that the uniform condition is 
essentially reached for both profiles in the first 30 
channel length units, while this distance reduces to 
approximately one half in the shear-thickening case 
(Fig. 2b). 

 

 

 
Fig. 2. Unperturbed uniform and gradually 

varying profiles: a) Shear-thinning fluid 
(n = 0.4); b) Shear- thickening fluid (n = 1.5). 

 
In the simulations, the generation of natural roll-
waves has been triggered by perturbing the discharge 
at the inlet with a random white-noise disturbance 
with a prescribed r.m.s. of 5%. All simulations have 
been performed with the numerical method 
described in the previous section with a constant 
spatial resolution (12800 volumes). The time step, 
for all cases, is equal to t = 1/2048, which 
guarantees a maximum value of the CFL order of 10-

2. As far as the simulation of roll-waves in turbulent 
clear-water is concerned, Bohorquez and Rentschler 
(2011) indicated that with such a CFL number value 
the performance of second-order discretization is 
comparable to that of a fifth-order WENO scheme. 
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Starting from initial unperturbed conditions, 
simulations have been carried out for a 
dimensionless duration of 4096. In the post-
processing phase, the first 128 time units have been 
discarded to exclude the initial transient, in which the 
developing perturbation interests only part of the 
channel. Time-series of flow depth perturbation at 
selected locations were processed in order to 
compute basic statistics of the observed waves, that 
were detected based on the zero down-crossing 
method. The following statistical properties have 
been considered: the mean perturbation height at 
crests (h'max), the skewness parameter S = h'max/ h'min, 
h'min being the mean height at the troughs, the mean 
period of waves (T') and the mean asymmetry 

parameter (Babanin et al., 2007) 
















N'

m m

m

t

t

N'
A

1 ,2

,11
1  (25) 

In Eq. (25) t1,m denotes the time interval between the 
zero up-crossing and the wave peak of the m-th wave, 
t2,m the time interval between the peak and the zero 
down-crossing time and N' the number of observed 
waves (N' > 100 in all simulations). The asymmetry 
and skewness parameters allow analyzing the non-
linear waves evolution together with the breaking 
waves occurrence (Babanin et al., 2007). In particular, 
a wave with the front face steeper than the rear one 
implies a positive value of A while the limiting value 
A = 1 refers to the occurrence of downstream moving 
waves with shocks.  

For the sake of clarity, the natural roll-waves 
development in uniform conditions is firstly 
discussed in the following subsection, while the case 
of the gradually varying unperturbed profiles is 

postponed to subsection 4.2. 

4.1 Natural Roll-waves Development in 
Uniform Flow Condition 

In Fig. 3, the profiles of the statistical properties, 
namely h'max (Fig. 3a), S (Fig. 3b), A (Fig. 3c) and T' 
(Fig. 3d), are shown for the shear-thinning fluid. In 
Fig. 3a, for the sake of comparison, the exponential 
growth predicted by the linearized near wave-front 
analyses (WF), with the N growth rate given by 
(A15), is also reported.  

Downstream x ~ 10 and up to x ~ 60 the perturbations 
starts developing with a nearly exponential 
amplification (Fig. 3a), maintaining an almost 
skewness-free shape S ≈ 1, i.e. perturbations at peaks 
and troughs have the same mean magnitude (Fig. 
3b). The roll-waves growth (Fig. 3a) is in good 
agreement with the theoretical results of the wave-
front analyses. The A parameter is very small, 
indicating that the front and rear of the waves are 
approximately equally sloped (Fig. 3c). The mean 
wave period only slightly increases, confirming that 
the non-linear frequency reduction mechanism is 
paltry taking place (Fig. 3d). In conclusion, in this 
first part of channel, the non-linear effects are 
negligible and the main mechanism which governs 
the roll-waves spatial evolution is the instability of 
the base flow. 

 
Fig. 3. Roll-waves statistical parameters in 

uniform condition: Shear-thinning fluid 
(n = 0.4). 

 
Downstream x ~ 60 and up to x ~ 200, the amplitude 
of the perturbation is so high that non-linear 
interactions among the waves take place. The waves 
begin to be non-symmetric (Fig. 3b), with the height 
at the crest larger than that at the trough. A decrease 
in the spatial growth-rate of peaks height is also 
observed (Fig. 3a). The wave period pronouncedly 
increases (Fig. 3d) suggesting that significant wave 
merging and coarsening processes are occurring. 
Finally, the asymmetry parameter rapidly increases 
reaching approximately a unitary value (Fig. 3c), 
enlightening that the front face of the waves is 
becoming always steeper than the rear one. 
Therefore, in this part of channel the non-linear 
interaction among the waves governs the spatial roll-
waves evolution.  

Downstream x ~ 200 a neat decrease in the growth-
rate of crests is observed (Fig. 3a). The waves are 
characterized by an appreciable skewness (Fig. 3b), 
which increases in the downstream direction. Such a 
result is essentially associated to a constant value of 
the mean trough height h'min along the channel 
(results not shown herein). Figure 3c shows that the 
asymmetry coefficient A remains constant at values 
very close to one, witnessing that nearly almost all 
the waves are breaking. The wave period (Fig. 3d) 
continues to increase approximately with a constant 
rate during this phase, indicating that considerable 
wave overtaking and coalescence, typical of roll-
waves trains, are taking place. From x ~ 200, 
borrowing the terminology introduced by Brock 
(1967), the final phase of the roll-waves starts. 

Figure 4 depicts the time evolution of the flow depth 
perturbation close (x ~ 50, Fig. 4a) and far (x ~ 510, 
Fig. 4b) from the channel inlet, showing the 
coarsening and breaking processes moving along the 
channel, along with the increment of perturbation 
amplitude (approximately two orders of magnitude). 
Simulations carried out doubling and halving the 
disturbance r.m.s. (results not shown herein), 
indicate that the main features of the above described 
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processes are essentially independent of the 
perturbation magnitude, which however influences 
the spatial propagation along the channel, by shifting 
the abscissa at which the different evolution phases 
start to take place. 

 

 
Fig. 4. Time evolution of free-surface 

perturbation: a) x ~ 50; b) x ~ 510. 

 

 
Fig. 5. Roll-waves statistical parameters in 
uniform condition. Shear-thickening fluid 

(n = 1.5). 
 
Figure 5, which is the counterpart of Fig. 3 for the 
shear-thickening fluid, shows that the above 
described roll-waves evolution process, i.e. 
instability, merging, coarsening and breaking, is also 
found for the n = 1.5 case, therefore sharing strong 
similarities with the experimental evidence of 
Balmforth et al. (2005). In fact, the Authors, 
reproducing the roll-waves in cornstarch 
suspensions, observed that close to the chute inlet the 
waves were regular, and that they very quickly grew 
reaching relatively large amplitudes. In their 
evolution down the chute, a wave merging process 
was observed, ultimately leading to the coarsening of 
breaking waves.  
 
The instability mechanism observed for both fluids 

in the first part of the channel complies with the 
results achieved by Trowbridge (1987) on linearized 
depth-integrated momentum equations for both 
Newtonian and Bingham fluids. As far as the 
stability of uniform flow is concerned, Trowbridge 
(1987) showed that the multiplier to the velocity 
perturbation, arising from the linearized source term, 
plays a key role in defining the instability threshold. 
Such a term is essentially due to the increase of 
bottom stress produced by a velocity perturbation 
(u') and it reads 

u
u N

b 

  (26) 

Indeed, according to Trowbridge (1987), flows with 
small values of the u' coefficient, i.e. b/u|N, are 
more susceptible to be unstable. A similar conclusion 
was drawn by Di Cristo et al. (2009) in studying the 
instability of dense granular flows and by Coussot 
(1994) and Di Cristo et al. (2013a), as far as and 
Herschel & Bulkley fluid is concerned. For the 
present rheology, the u' coefficient is b/u|N = n, 
and consistently FN

* increases with n as predicted by 
Eq. (24). Moreover, the comparison of Figs. 3 and 5 
shows that for a constant value of FN, the shear-
thinning fluid, to which the smaller FN

* is associated, 
also exhibits a more pronounced spatial growth of 
the perturbations.  

In the next subsection, the effect of a gradually 
varying profile on the pattern of roll-waves evolution 
from instability to breaking is addressed. As far as 
the initial stability phase is concerned, the 
Trowbridge conclusions, besides providing a 
physical explanation for uniform flow instability, 
will offer a simple and yet physically sound 
interpretation of the influence of the non-uniform 
profiles on the roll-waves spatial evolution (Section 
4.2). 

4.2 Natural Roll-Waves Development 
in Gradually Varying Flow Conditions 

The effect of the inlet boundary condition has been 
investigated by repeating the analysis with the 
previously described accelerated and decelerated flow 
profiles as the initial unperturbed conditions. The 
random perturbation at the inlet, along with the spatial 
and temporal resolutions of the numerical algorithm, 
has been kept equal to that used for the uniform 
simulations. The curves representing the evolution 
along the channel of the wave properties are 
represented in Figs. 6 and 7 for the shear-thinning and 
the shear-thickening fluids, respectively. As in the 
previous case, in Figs. 6a and 7a the curves describing 
the growth predicted by the near wave-front analysis 
in the linear regime are also reported, for the sake of 
comparison. Accounting for the small differences 
between 1 and 2 coefficients, as demonstrated in the 
Appendix (Fig. A1), only the results concerning the 
former are reported, which have been obtained 
through a second-order numerical quadrature of the 
integral in (A14). Finally, to highlight the effect of the 
accelerated/decelerated flow profiles, the curves of 
the corresponding uniform conditions are reported as 

a reference.  
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Fig. 6. Roll-waves statistical parameters in non-

uniform conditions. Shear-thinning fluid 
(n = 0.4). 

 
Figures 6 and 7 show that also with 
decelerated/accelerated profiles the development of 
natural roll-wave trains follows the same general 
pattern outlined for the uniform flow case. Flow 
instability governs the perturbation growth in the 
upstream reach of the channel. Similarly to the 
uniform case, Fig. 6a and 7a show that close to the 
channel inlet the numerical results follow the 
theoretical findings of the wave-front analysis. 
Moving downstream, the waves progressively 
undergo merging and coarsening, increasing their 
amplitude but with a growth-rate reduction, and 
finally evolve into trains of breaking waves. 
However, relevant differences appear in the response 
to non-uniform inlet condition for both shear-
thinning and shear-thickening fluids.  

As far as the shear-thinning case is concerned, the 
effect of the boundary condition on the instability-
dominated phase is evident. The accelerated initial 
profile slows down the growth of peaks, while the 
opposite behavior is observed for the decelerated one 
(Fig. 6a). Both skewness and asymmetry parameters 
(Figs. 6b,c) confirm such a conclusion and moreover, 
the minor growth of the wave period close to the 
channel inlet is also coherent with the stabilizing 
effect of the accelerated profile.  

The stabilizing (resp. destabilizing) effect of the 
accelerated (resp. decelerated) profile may easily 
explained looking at the linearized version of the 
momentum equation, i.e. the second equation of 
system (7): 
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By perturbing the initial condition in Eq. (27), i.e. 

setting u(x,t) = u0(x)+u'(x,t) and h(x,t) = h0(x)+h'(x,t) 
with u' << u0 and h' << h0, and by accounting for Eq. 
(12) the following linearized momentum equation 
can be easily deduced : 
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Equation (28) suggests that a spatial velocity 
variation in the initial condition, i.e. du0/dx generates 
an additional term proportional to u'. Accounting for 
the positivity of b/u|0 (Eq. (5)), such an additional 
term increases (resp. reduces) the magnitude of the 
u' coefficient in Eq. (28) in presence of accelerated 
(resp. decelerated) profiles. Therefore, accordingly 
with Trowbridge (1987) findings, the spatial 
variation of the velocity in the initial condition 
appears to be one of the main reasons for the 
increased (resp. reduced) stability of the accelerated 
(resp. decelerated) initial profiles. 

The different growth of the disturbance close to the 
channel inlet induces a shift downstream (resp. 
upstream) for the accelerated (resp. decelerated) 
profile of the location where the non-linear effects 
begin to be relevant, and therefore of the abscissa 
where the coarsening process starts to take place. 
Indeed, the change in the trend of the T' distribution 
is seen to occur, with respect to the uniform 
condition, upstream (resp. downstream) in the 
decelerated (resp. accelerated) condition (Fig. 6d). 
Figures 6b and 6c lead to a similar conclusion for 
both the S and A parameters.  

Starting from the channel abscissa at which the 
coarsening process begins, its successive 
evolution appears to be independent of the initial 
profile, as deduced also from Figs. 6b,c,d. Such a 
result may be explained considering that, 
independently of the initial profiles, in the channel 
section at which the coarsening process starts to 
take place the uniform condition has been 
recovered (Fig. 2a). Therefore, the coarsening 
process occurs with the same dynamics for all 
profiles, maintaining the shift occurred the initial 
phase.  As a matter of fact, the distance from the 
channel inlet at which permanent waves with 
shocks occur, i.e. where A ≈ 1, is more 
downstream (resp. upstream) in the accelerated 
(resp. decelerated) case than in presence of 
uniform profile (Fig. 7c).  

The same general trend can be deduced from Fig. 
7, where the shear-thickening medium is 
concerned. However, some quantitative 
differences may be detected, mainly regarding the 
interplay between instability and coarsening in 
determining the wave train development. Also in 
this case the decelerated unperturbed profile 
promotes the spatial growth of the roll-waves in 
the upstream part of the channel. However, the 
comparison between Figs. 6a and 7a indicates that 
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the effect of the decelerated profile is more 
magnified in the case of the shear-thickening fluid 
than in the shear-thinning one. This is consistent 
with the behavior of the 1 and 2 coefficients (see 
Fig. A1), which have larger values in the n = 1.5 
case for h0 < 1. As described in the Appendix in 
the framework of the linear assumption, these two 
coefficients play a key role on the growth/decay of 
an initial perturbation. For small values of the flow 
depth, while their values remain bounded for 
shear-thinning fluids, for shear-thickening ones 
they positively diverge. 

 

 

Fig. 7. Roll-waves statistical parameters in non-
uniform conditions. Shear-thickening fluid 

(n = 1.5). 
 

To further enlighten the effect of the initial profile on 
the roll-waves development, Fig. 8 depicts the 
profiles along the channel of the mean asymmetry 
parameter for different investigated inlet boundary 
conditions, for both the shear-thinning (Fig. 8a) and 
the shear-thickening (Fig. 8b) fluids. Figure 8 clearly 
indicates that an increase of the hU value induces a 
progressive monotone downstream shift of the 
portion of the channel where non-linearity onsets. 
This results is coherent with the monotonically 
decreasing behavior of the 1 and 2 coefficients 
(Fig.A1) observed both shear-thinning and shear-
thickening fluids for h0 > 0.5. Moreover, results of 
Fig. 8 confirms that, independently of the inlet 
boundary condition, the growth rate in the non-linear 
interaction phase is profile independent. 

Based on the above results, it appears possible, in 
steep slope channels, to alter the roll-waves 
development by prescribing an appropriate inlet 
boundary condition. Further theoretical analyses, 
with more sophisticated models than the von Kármán 
one, and experimental validations could provide a 
more detailed picture of the investigated 
phenomenon. However, the above findings clearly 
indicate that, for a given channel length, an inlet 
condition determining an accelerated (resp. 
decelerated) profile may be used to suppress (resp. 

promote) the final stage of the roll-waves 
development. Such a conclusion therefore supports a 
potential strategy for the passive control of roll-
waves in power-law fluids.  

 
Fig. 8. Spatial distribution of mean asymmetry 

parameter for different values of the inlet 
boundary condition: a) Shear-thinning (n = 0.4); 

b) Shear-thickening (n = 1.5). 

 

5. CONCLUSIONS 

In the present paper the potentiality of the inlet 
control of natural roll-waves development in 
hypercritical films of power-law fluid has been 
exploited. Both shear-thinning and shear-
thickening fluids have been considered. Owing to 
the hypercritical character of the base flow, the 
flow depth assigned at the inlet dictates, for a given 
discharge, the gradually-varying profile which may 
strongly differ from the uniform one. Initial 
accelerated, decelerated and uniform profiles have 
been investigated. The analysis has been carried out 
by numerically solving the von Kármán depth- 
integrated mass and momentum conservation 
equations, in the long-wave approximation, 
through a second-order finite volume scheme. For 
a given initial profile, the roll-waves have been 
generated perturbing the flow rate at the inlet with 
a small random white-noise and the spatial 
evolution of the perturbations has been analyzed. 
For both clear-water and granular flows, such a 
technique has been shown to be able to describe the 
main features of the natural roll-waves. The spatial 
evolution along the channel of the roll-waves has 
been represented evaluating the mean perturbation 
height at the crests, the wave mean period, the 
skewness and the asymmetry parameters. Under 
the same perturbation the effect of the inlet 
boundary condition on the roll-waves spatial 
evolution has been analyzed.  

Independently of the fluid rheology and of the initial 
condition, numerical simulations reproduce the 
initial rapid disturbance growth, the wave 
coalescence and the coarsening processes observed 
in laboratory. Furthermore, at the very beginning of 
their formation the numerically predicted growth-
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rates of the natural roll-waves comply with the 
theoretical ones coming from the linear analysis. 
Such a result confirms the validity of the linearized 
model to describe the roll-waves spatial growth in 
the first phase of their formation. 

The main conclusion of the present study is that roll-
waves spatial evolution is strongly affected by the 
initial profile, suggesting the possibility of a their 
passive control through inlet operations. 
Independently on the rheological parameter, a 
decelerated initial profile promotes the instability 
mechanism, whereas an accelerated one demotes it. 
This effect induces a shift, either upward or 
downward, of the abscissa where the non-linear 
waves interaction starts to take place. However, once 
the coarsening dynamics begins, it evolves in a 
similar way independently of the initial profile. 
Therefore, the aforementioned shift affects also the 
abscissa at which the final phase of the roll-waves 
development starts.  

In conclusion, the present results show that through 
a suitable boundary condition, it would be possible 
for a given channel length to inhibit or promote the 
roll-waves development. Therefore, inlet control 
may be an effective and promising strategy for the 
passive control of natural roll-waves development. 
Useful additional details on this aspect may be 
furnished by further theoretical/numerical analyses 
with more complex model and/or experimental 
tests.  

6. APPENDIX 

The present Appendix describes some details 
about the near wave-front expansion analysis 
applied for studying the stability of a gradually 
varying profile. Present developments extend the 
stability analysis of Campomaggiore et al. (2016a) 
to the case of a discontinuity on spatial derivatives 
of order larger than one. The technique considers 
that for any hyperbolic system a discontinuity of 
the unknown derivatives propagates in the (x,t) 

plane along the characteristic line with slope 
0 . 

The spatial evolution of a discontinuity on each 
derivative at x=0 may be analyzed, developing the 
unknown functions in Taylor expansion, close to 
the wave-front. Introducing the following variable 
transformation 

,x dxt  dd 0  (A1) 

the governing equations (Eq. (7)) in the new 
reference are: 
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Following the procedure developed in 
Campomaggiore et al. (2016a), the unknown vector, 
the matrix A and the source terms are expanded in 
powers of around = 0, whose substitution in 
(A2) leads tothe following system: 
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in which for sake of clarity the explicit  dependence 
has been omitted. Denoting with I the identity matrix 
and accounting for Eq. (12), at different powers of 
, Eq. (A3) generates the following systems: 

zero order: 

  0100  uAI  (A4) 

first order: 
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third order: 
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Owing to the 
0  and 

0l  definitions, the matrix 

 00 AI   is rank-deficient and moreover 

  01000  


i

T

uAIl  , for all ui+1 vectors. 

Therefore, once the ui-1 function is known, the 
system of equations for each ui may be easily 
deduced. In detail, the spatial evolution of u1 is 
described by Eq. (A4) and the following equation: 
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Known the u1 function, the u2 one may be evaluated 
solving Eq. (A5) along with the following equation:  
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Similarly, the governing equations for u3 are Eq. 
(A6) together with: 
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Of course, approximations at order larger than the 
third one may be easily found in a similar way. 

The stability of a gradually varying profile of a 
power-law fluid, at the first-order of approximation 
has been carried out in Campomaggiore et al. 
(2016a). In what follows only the major results will 
be reported. Eqs. (A4) and (A8) may be combined to 
deduce the following differential equation involving 
only the h1() function:  
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in which  
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where: 
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For small h1 values the non-linear term in Eq. (A11) 
may be neglected and its solution is 
(Campomaggiore et al., 2016a): 
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which enlightens the key role of the 1 coefficient on 
the growth or the decay of an initial perturbation, 
within the linear assumption. In particular, whenever 
the 1 coefficient is positive (resp. negative) the 
disturbance grows (resp. decays) along the entire 
channel, and therefore flow is unstable (resp. stable). 
In uniform conditions, the 1 coefficient is a constant 

and it reads: 
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Eqs. (A14) and (A15) suggests that an exponential 
growth (resp. decay) is expected in linear unstable 
(resp. stable) conditions of flow. A detailed 
discussion concerning the effects on the linear 
stability of initially gradually profiles for both shear-
thinning and shear-thickening power-law fluids may 
be found in Campomaggiore et al. (2016a). The same 
paper discusses also the role of the non-linear term 
appearing in Eq. (A11), which is responsible of non-
linear wave breaking, i.e. the divergence of h1 at a 
finite abscissa. 

The stability of the base flow to a discontinuity only 
in the second spatial derivative (an abrupt change in 
free-surface curvature) may be investigated based on 
Eqs. (A5) and (A9) assuming u1 = 0. Such an analysis 
has provided useful insights in studying the 
propagation of wave front in viscoelastic arteries 
(Holenstein et al., 1984) and it may offer useful 
information in studying the natural roll-wave 
formation, where a random disturbance is imposed. 
Indeed, using Eq. (A5), it easy to verify that the 
following relation holds: 
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Accounting for Eq. (A16) in Eq. (A9), along with the 
expressions of A2 and s2: 
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the following equation for the h2() function is 
deduced: 
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in which: 
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where  

000 uc     (A22) 

Differently from the first order case, Eq. (A19) is 
linear in h2 and therefore the discontinuity on the 
second-order spatial derivative cannot lead to a 
breaking wave.  

If a linear approximation (h1 → 0) is assumed in Eq. 
(A11), a comparison between the development of 
discontinuities of first and second derivatives 
analysis may be easily carried out comparing the 1 
and 2 coefficients. In uniform flow conditions (i.e. 
h0=1 and dh0/d = 0) 2 = 1 (Eqs. (A20)-(A21)), 
therefore the results pertaining to the first derivative 
discontinuity (Campomaggiore et al., 2016a) apply 
also to the second order one. In particular, stable 
conditions are characterized by Froude number 
values smaller than *

NF  given by Eq. (24).  

In order to enlighten the differences between the 
results of the first and the second order analyses, Fig. 
A1 compares the  and  coefficients dependence 
on the flow depth h0 for the shear-thinning (n = 0.4) 
and the shear-thickening (n = 1.5) fluids. The same 
flow condition of the previous sections, i.e. FN  = 3.0, 
is considered. 

 
Fig. A1. Growth rate coefficients as function of 

the flow depth. 

 

Figure A1 indicates that, for flow depths smaller than 
the uniform value (h0<1), the  and coefficients 
essentially coincide, while only small differences are 
visible for h0> 1. Even for a perturbation on the 
second derivative, although the uniform hypercritical 
condition is linearly unstable, the disturbance growth 
is inhibited by an accelerated profile, while it is 
promoted by a decelerated one. In the latter flow 
condition, the effect is magnified for shear-
thickening fluids, for which a divergence of the 
growth rate occurs for vanishing flow depth. Such a 
difference may be explained accounting for the 
different behavior of the free surface slope for 
h0 → 0. Indeed, Eq. (12) shows that for h0 → 0, while 
shear-thinning fluids are characterized by 
dh0/dx → 0, for the shear-thickening fluids the free-
surface slope diverges inducing an unbounded 
growth of both and coefficients, and in turn of 

the perturbation. Conversely, independently of the 
fluid rheology, for h0 → hc (hc = 2.15 shear-thinning 
case; hc = 2.23 shear-thickening case) the free-
surface slope diverges (see Eq. (12)) and therefore 
the negative values of both  and  coefficients are 
unbounded. 
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