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ABSTRACT 

The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty 
fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are 
reduced to a convenient form by primitive variable transformations (PVF) and then integrated numerically by 
employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal 
Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat 
transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact 
that the water-particle mixture reduces the rate of heat transfer, significantly. 
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1. INTRODUCTION

Surface-tension-driven convection occurs when 
there is temperature or concentration differences on 
the surface of the fluid and the fluid will flow from 
region having low surface tension (high temperature 
region) to region having high surface tension (cold 
temperature region). In thermocapillary convection, 
the surface tension varies with temperature. 
However, small amounts of certain surfactant 
additives are also known to drastically change the 
surface tension. Surface-tension induced convection 
is of significant importance because it causes 
undesirable effects in industrial processes. The class 
of problems having surface tension driven 
convection or also known as Marangoni convection, 
is of prime importance in industrial, biomedical and 
daily life applications such as coating flow 
technology, microfluidics, surfactant replacement 
therapy for neonatal infants, film drainage in 
emulsions and foams, drying of semiconductor 
wafers in micro electronics and in numerous fields of 
micro-gravity sciences and space processing. 
Napolitano (Napolitano (1978)-Napolitano (1979)) 
was the first who observed the existence of such 
dissipative layers that can be formed along the 
interface of two immiscible fluids, in surface driven 
flows. With the advancement of space 
experimentation under microgravity conditions, the 

Marangoni effect has attracted much attention. There 
was an expectation that heat convection in molten 
systems would disappear completely under 
microgravity conditions and that high quality 
crystals could thus be obtained as a consequence (for 
details see Ref. Napolitano (1978)). Marangoni 
(thermocapillary) convection may also arise in laser 
melt pools during epitaxial laser metal forming 
Drezet et al. (2004). With mass transfer present also, 
solutal Marangoni convection arises wherein the 
flow is caused by surface tension gradients 
originating from concentration gradients. 
Thermocapillarity is flow caused by surface tension 
gradients originating from temperature gradients. 
Studies of these problems are also motivated by their 
importance in terrestrial materials processing, and 
oceanography Skarda et al. (1998). Batishchev 
Batishchev et al. (1989) discussed Marangoni 
boundary layer degeneration at the outer boundary 
and the generation of a counter stream zone, also 
considering convective flows with directed 
crystallization, in the absence of mass forces. 
Napolitano and Russo Napolitano and Russo (1984) 
identified similarity solutions for Marangoni 
boundary layers arising for the case where interface 
temperature gradient varies as a power of the 
interface arc length. The significance of dissipative 
layers in liquid metal and semiconductor processing 
is shown to be particularly strong and is a major 
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factor in guiding the control of industrial processes. 
However, although extensive work has been done in 
investigating the Marangoni convection, the state of 
the art is still somewhat unsatisfactory in what 
concerns preliminary questions of general and basic 
nature. In this context, it was proved by Napolitano 
Napolitano (1982) that, similar to that of classical 
boundary layers (also knows as non-Marangoni 
layers), while using the arc length x and the distance 
normal to the interface as coordinates, the field 
equations in the bulk fluids do not depend explicitly 
on the geometry of the interface. This includes, 
however, the average curvature of its hydrostatic and 
dynamic shapes and produces the kinematic, thermal 
and pressure couplings for the flow fields of two 
fluids. Afterwards, it was shown in Napolitano and 
Golia (1981) that, such coupling of the fields may be 
removed, when i) the viscosity ratio of the two fluids, 
and ii) the momentum and thermal resistivity ratios 
of the two layers, are strictly less than unity. The 
authors in Napolitano and Golia (1981) reported 
some interesting facts about Marangoni boundary 
layers, and proved that the existence of similar 
solutions for the class of Marangoni convection 
problems is only possible if temperature gradient at 
the surface varies as a power of arc length of the 
geometry. Besides, Christopher and Wang 
Christopher and Wang (2001) have examined the 
effect of Prandtl number to see the relative thick-ness 
of momentum and thermal boundary layers. 
Furthermore, the detailed numerical as well as an-
alytical solutions for Marangoni boundary layers 
were discussed by several authors under various 
practical situations (For details see Golia and Viviani 
(1986) Zueco and Bèg (2011)). 

In all above-mentioned studies, attention has been 
given to viscous fluid which is free from all 
impurities (clear fluid). But, pure fluid is rarely avail-
able in many practical situations, for instance, 
common fluids like air and water contain impurities 
like dust particles. Therefore, investigations on flow 
of fluids with suspended particles have attracted the 
attention of numerous researchers due to their 
practical applications in various problem of 
atmospheric, engineering and physiological fields 
(see Rudinger 1980). In this regard, Farbar and 
Morley Farbar and Morley (1957) were the first to 
analyze the gas-particulate suspension on 
experimental grounds. After that, Marble Marble 
(1963) studied the problem of dynamics of a gas 
containing small solid particles and developed the 
equations for gas-particle flow systems. Singleton 
Singleton (1964) was the first to study the boundary 
layer analysis for dusty fluid and later on several 
attempts were made to conclude the physical insight 
of such two-phase flows (see Ref. Michael and 
Miller (1966) Siddiqa et al. (2016)) under different 
physical circumstances. 

It is noteworthy to mention that the irregular 
surfaces, say, vertical or horizontal wavy surfaces 
have been considered vastly in the literature (see Ref. 
Yao (1983) Siddiqa et al. 2016). Through these 
analysis, it has been reported that such surfaces 
serves practically in engineering applications (for 
instance in solar collectors, grain storage containers, 

industrial heat exchangers and condensers in 
refrigerators). Motivated by the previous works and 
possible applications, thermal Marangoni convection 
of two phase dusty fluid is modeled along a vertical 
wavy surface in the present study. From the present 
analysis we will interrogate whether i) the roughness 
element and ii) the presence of dust particles in base 
fluid affect the Marangoni natural convection and 
alter the physical characteristics associates with the 
vertical wall or not? The upcoming section contains 
the elementary field equations of fluid mechanics as 
partial differential equations in terms of physically 
important unknown parameters such as velocity, 
pressure and energy variable for two-phase dusty 
fluid. To study the effects of surface-tension-driven 
convection, it is assumed that the temperature 
gradients for both phases at the wavy surface are in 
the form of power law function. In addition, dusty 
fluid flow equations are developed by considering 
the assumption made by Marble in Marble (1963). 
The governing equations for two-phase model are 
then transformed into dimensionless boundary layer 
equations by incorporating a set of suitable 
transformations. After that, coordinate 
transformation (primitive variable formulation) is 
employed to transform the twophase boundary layer 
model into a convenient form, which are solved 
numerically by hiring an implicit finite difference 
method along with the Thomas Algorithm (For 
details see Ref. Siddiqa et al. 2016). Afterwards, 
results and discussion section is given, in which, 
computational data is presented graphically in the 
form of skin friction coefficient, heat transfer rate, 
velocity and temperature profiles, streamlines and 
isotherms by varying several controlling parameters. 
A tabular comparison of wall skin friction and rate of 
heat transfer for pure and dusty fluid is also given in 
the result and discussion section. Besides, the effect 
of Marangoni convection parameter, dust particle 
loading parameter and surface waviness parameter 
are taken into account and presented graphically. 
Lastly, important results from the present analysis 
are summarized in the conclusion section. We 
believe that the present results are a new addition to 
the open literature on thermal Marangoni convection 
in dusty fluids. 

2. MATHEMATICAL FORMULATION 

Considerations have been given to steady coupled 
problem of thermal Marangoni natural convection 
along an isothermal vertical wavy surface, as shown 
in Fig. 1. The shape of the wavy surface, σ( ),x is 
arbitrary, but our detailed numerical work will as 
sume that the surface exhibits sinusoidal 
deformations. Thus, the wavy pattern of the vertical 
surface is described by: 

2π
σ( ) sinw

x
y x a

L
    
 

                                         (1) 

where a¯ is the dimensional amplitude of the wavy 
surface and L the characteristic length associated 
with the uneven surface. The working fluid is taken 
to be viscous, dusty and incompressible, which is 
originally at rest along a vertical heated wavy 
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surface. Initially, the system is having a uniform 
temperature T∞. Suddenly, the surface of the vertical 
plate at y¯ = 0 is heated to a temperature T + ∆T and 
natural convection starts due to this. The temperature 
gradients for both phases are in the form of power 
law function. Under the assumptions of the dusty 
fluid flow given in (For details see Ref. Saffman 
1962, Siddiqa et al. 2015), the governing system of 
equations is developed as: 
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For the particle phase: 
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Fig. 1. Physical model. 

 

where ( , ),u v T , ρ, ,pc  βT α, µ are respectively the 

velocity vector in the ( , )x y direction, temperature, 

density, specific heat at constant pressure, 
volumetric expansion coefficient, thermal diffusivity 
and kinematic viscosity of carrier fluid. Similarly, 
( , ),p pu v  ,pT  ρp  and sc corresponds to the 

velocity vector, temperature, density and specific 
heat for the particle phase. In addition, g is the 
gravitational acceleration, τm ( τT ) is the 

momentum relaxation time (thermal relaxation time) 
for dust particles. The fundamental equations stated 
above are to be solved under appropriate boundary 
conditions to determine the flow fields of the fluid 
and the dust particles. Therefore, the boundary 
conditions for the problem under considerations are: 

For gas phase: 
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For particle phase: 
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Here, ,T
T x


 


 where   is the surface tension 

which is assumed to be given by the linear relation: 

( )m T T T                                                  (12) 

where m  is the surface tension at a reference 

temperature T∞ and assumed to be constant. In order 
to transform all the above-mentioned quantities in 
Eqs. (1)-(12) in uniform order of magnitude, the 
following continuous dimensionless variables have 
been employed: 
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By incorporating Eq. (13), the dimensional 
continuity, momentum and temperature equations 
for both phases will be transformed in underlying 
form. For the gas phase: 
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For the particle phase: 
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The corresponding boundary conditions for gas and 
particle phase becomes: 

For gas phase: 
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For particle phase: 
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where, 3/4λ / LMa Gr is a function of Marangoni 

number and Ma takes the form as: 0 / ν.Ma T L    

The dimensionless mathematical expressions for the 
interaction of two-phases are gives as: 
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where, γ, ρD , αd are respectively symbolizing the 

specific heat ratio of the mixture, mass concentration 
of particle phase and the dust parameter. It is 
important to mention here that for different mixtures, 
the interaction term γ may vary between 0.1 and 10.0 
(For details see Rudinger (1980)). It can also be 
observed that for αd = 0.0, the flow governs by the 
natural convection in the absence of the dusty 
particles (i.e carrier phase only). Further, the Eqs. 

(15) and (19) respectively indicate that the pressure 
gradient of the gas and the particle phase along the y 

direction are of 1/4( )O Gr which implies that the 
lowest order pressure gradient of both phases along 
the x direction can be determined from the inviscid 
flow solution. In the present problem, this pressure 
gradient is zero because there is no externally 
induced free stream. Moreover, Eq. (15) shows that 

1/4 /Gr p y  is of O (1) and can be determined by the 
left hand side of this equation. Thus, the elim-ination 
of ∂p/∂y from Eqs. (15) and (16) leads to: 
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On the similar lines, removal of /pp y  from Eqs. 

(19) and (20) results into: 
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Now, for numerical treatment for the present 
problem, we have employed the implicit finite 
difference (Thomas Algorithm). For this, first we 
introduce the following transformations to reduce the 
system of boundary layer equations into some 
convenient form: 
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By incorporating the transformation defined in Eq. 
(27), the above system of dimensionless boundary 
layer equations can be further mapped into the non 
conserved form as follows: 

For gas phase: 
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The transformed boundary conditions can be written 
as: 

For gas phase: 
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For particle phase: 
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A numerical solution for the coupled system of non 
linear partial differential Eqs. (28)-(35) by a finite 
difference method is straightforward, since the 
computational grids can be fitted to the body shape 
in (X, Y) coordinates. The discretization process is 
carried out by exploiting the central difference 
quotients for diffusion terms, and the forward 
difference for the convection terms. The 
computational process is started at X = 0.01 as the 
singularity at this point has been removed by the 
scaling. At every X station, the computations are 
iterated until the difference of the results, of two 
successive iterations become less or equal to 10−6. 
In order to get accurate results, we have compared 
the results at different grid size in Y direction and 
reached at the conclusion to choose ∆Y = 0.003. In 
this integration, the maximum value of Y is taken to 
be 30.0. A detail description of discretization 
procedure and numerical scheme is presented in 
Siddiqa et al. (2016). 

The measurable physical quantities like local skin 
friction coefficient, τ ,w  and rate of heat transfer, 

,wQ are used to express the solutions of the cur-rent 

scenario. These quantities are much significant from 
an engineering point of view, as both can be served 
to improve many equipment in aerodynamics. After 
some algebraic manipulations, the dimensionless 
expressions for skin friction coefficient and heat 
transfer rate are obtained as: 
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In the upcoming section, the obtained results are 

graphed and discussed. 

3. RESULTS AND DISCUSSION 

The main purpose of present analysis is to investigate 
the effects of thermal Marangoni convection on two 
phase dusty fluid flow past a vertical wavy surface. 
We performed two-dimensional simulations in order 
to obtain solutions of mathematical model presented 
in terms of primitive variables given in Eqs. (28) (35) 
from the two point implicit finite difference method. 
Numerical results are reported for the overall 
effectiveness of mass concentration of dust particles 
in fluid which is moving along a transverse 
geometry. Particularly, the solutions are established 
for the water particulate suspension (i.e, Pr = 7.0, 

ρD = 10.0 and γ = 0.1). The parametric values for 

dusty water are taken from study of Apazidis (1990). 
While the numerical computations are performed by 
setting the values of other parameters as: λ = 1.0, αd

= 0.1, 0.5, 1.0 and a = 0.3, 0.4, 0.5. The numerical 
values of τw and Qw for clear and dusty fluid are 
entered in Table 1. It is important to mention here 
that, ρD  = 0.0, recovers the model for one phase 

flow. The quantitative data clearly shows the 
influence of mass concentration of dust particle 
parameter on the skin friction and rate of heat 
transfer. The data for τw  and wQ  indicates that the 

both physical quantities are maximum for clear fluid 
and reduces due to the increment in values of particle 
loading parameter Dρ. 

 

Table 1 Numerical values of τw  and wQ for 

 ρD  = 0.0, 5.0, Pr = 0.7, γ = 0.1, αd = 0.1, λ = 1.0 

and a = 0.3 

 

 
Graphical presentation of τw  and wQ is given in 

Fig. 2 for water particle mixture. For comparison, 
skin friction coefficient and rate of heat transfer are 
plotted for the suspension without dust particles 
(clear fluid). In Fig. 2, it can be seen that both the 
skin friction coefficient and rate of heat transfer 
decreases by increasing the value of mass 
concentration parameter ρ .D Such behavior is 

expected because the carrier fluid loses the kinetic 
and thermal energy by interacting with the dust 
particles and this leads to decrease the velocity of 
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carrier fluid as compared to pure fluid case. 
Ultimately the velocity gradient for the carrier fluid 
decreases at the surface of the wavy plate. 
Particularly, it can be seen from Fig. 2(b) that the rate 
of heat transfer shows a considerable decline by 
increasing the mass concentration parameter, ρ ,D  

for water particulate suspension. Therefore, it 
happened subject to the interaction of the two phase 
flow. 

 

 
Fig. 2. (a) Skin friction and (b) Rate of heat 
transfer for ρD  = 0.0, 10.0 while Pr = 7.0, 

γ = 0.1, αd  = 0.1, λ = 1.0 and a = 0.3. 

 

Figure 3 is plotted to visualize the effect of 
amplitude of wavy surface on the distribution of 
physical quantities, namely, τw  and .wQ The 

change in surface contour is followed by raise and 
fall of the curves. As it can be visualize from Fig. 
3(a), that the influence of amplitude a, on average, 
is to reduce the rate of skin friction. Similar 
behavior is recorded for the rate of heat transfer 
(see Fig. 3b). As a whole, the rate of heat transfer, 

,wQ  reduces when the amplitude of the sinusoidal 

waveform increases. As the amplitude increases the 

shape of the wave gradually changes from 
sinusoidal wave-form to the unusual shape. The 
reduction in the magnitude of the temperature 
gradient happened due to the simultaneous 
influence of centrifugal and buoyancy force. 
Furthermore, we notice that the change in rate of 
heat transfer is more pronounced for larger values 
of the amplitude a and this factor acts as a retarding 
force for heat transfer coefficient. 

 

 
Fig. 3. (a) Skin friction and (b) Rate of heat 
transfer for a = 0.3, 0.4, 0.5 while Pr = 7.0, 

Dρ = 10.0, γ = 0.1, αd  = 0.1 and λ = 1.0. 

 

Figure 4 displays the variation in quantities: τw and 

.wQ  that are brought by changing the value of dust 

parameter ( αd ) of the water suspension. It is 

interesting to infer from this figure that the skin 
friction coefficient remains insensitive but rate of 
heat transfer shows reduction within the boundary 
layer region when αd increases. The presence of inert 
particles in water are responsible for reduction of

.wQ  Higher the value of dust parameter, smaller will 

be the rate of heat transfer. As observed from the 
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expression of αd that dust parameter is inversely 
proportional to the velocity relaxation time ( τm ). 

Therefore, for τm >> 1 the dust parameter will be 

small, i.e., αd << 1, on the other hand, for τm  << 1 

the dust parameter must be large enough. Keeping 
this in mind, the numerical results displayed in Fig. 
4 ranges from 0.1 to 5.0. 

 

 
Fig. 4. (a) Skin friction and (b) Rate of heat 
transfer for αd  = 0.1, 1.0, 5.0 while Pr = 7.0, 

ρD = 10.0, γ = 0.1, λ = 1.0 and a = 0.5. 

 

Figure 5 is plotted to visualize the detailed scenario 
of velocity and temperature profiles of carrier and 
particle phases for various values of amplitude of 
wavy surface a. As it can clearly seen form Fig. 
5(a), that the velocities for both phases decreases 
significantly owing to increase in value of 
amplitude a. Such behavior is expected, because 
when amplitude of the wavy surface increases, the 
water particulate suspension between crust and 
trough of the waves undergoes more resistance to 
flow and hence fluid velocity decreases. As, small 
values of a offers no resistance to flow and 
suspension quickly attains its asymptotic value in 
the boundary layer region. However, the parameter 

a has reverse affect on temperature profile (see Fig. 
5(b)). This may happens due to the fact that, the 
dust particles near the surface attains the thermal 
energy from the hotter surface of large amplitude 
and ultimately give rise to the temperature of dusty 
fluid in whole convective regime. 

In order to illustrate the influence of mass 
concentration of dust particles parameter, ρD  on 

streamlines and isotherms for water particulate 
suspension, Figs. 6 and 7 are plotted. For 
comparison, suspension without particle cloud (pure 
water) is also presented in Figs. 6(a) and 7(a). It is 
observed that by loading the dust particles, the 
velocity and the temperature of dusty fluid reduces 
significantly as compared to clear fluid (pure water) 
as shown in Fig. 6(a) and 7(a). When particles are 
loaded extensively, (i.e, ρD  = 10.0), the base fluid 

loses the kinetic and thermal energy due to inter-
collisions of particles, which ultimately decrease the 
overall velocity and temperature into the boundary 
layer region. 

 

 
Fig. 5. (a) Velocity and (b) Temperature profiles 
for a = 0.3, 0.4 while Pr = 7.0, ρD  = 10.0, γ = 0.1, 

αd = 0.1, λ = 1.0 and X = 10.0. 
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Fig. 6. Streamlines for (a) Dρ = 0.0, (b) ρD  = 

10.0 for Pr = 7.0, γ = 0.1, αd  = 0.1, λ = 1.0 and 

a = 0.3. 
 
 

 

 
Fig. 7. Isotherms for (a) Dρ = 0.0, (b) ρD = 10.0 

for Pr = 7.0, γ = 0.1, αd  = 0.1, λ = 1.0 and a = 0.3. 
 

4. CONCLUSION 

In this study, detailed numerical solutions are 
obtained for thermal Marangoni convection of two 
phase dusty boundary layer flow, induced by the 
semi-infinite vertical wavy surface. Coordinate 
transformations (primitive variable formulations) are 
applied to switch the governing equations of the 
carrier and the dispersed phase into another set of 
equations. Two-point finite difference solutions are 

obtained for the whole length of the irregular surface. 
The focus of this study is to analyze the behavior of 
thermal Marangoni convection on dusty fluid flow 
along an uneven surface. Effect of various emerging 
parameters are explored by expressing their 
relevance on skin friction coefficient and rate of heat 
transfer. Numerical results give a clear insight 
towards understanding the response of the present 
physical situation. Velocity and temperature 
distributions are plotted and visualized as well 
through streamlines and isotherms. From this 
analysis, it is observed that mass concentration 
parameter and amplitude of wavy surface parameter 
reduces the rate of heat transfer within the boundary 
layer region. 
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