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ABSTRACT 

The problem of the onset of double diffusive convection in a couple-stress fluid saturated with a porous medium 
is studied under the effects of magnetic field, rotation and suspended dust particles. Linear stability analysis 
based on the method of perturbations of infinitesimal amplitude is performed using the normal mode technique 
for the case of free-free boundaries. The governing hydrodynamic and hydromagnetic equations of fluid flow 
are governed by the Brinkman model. The stability analysis examines the effects of various embedded 
parameters for the stationary mode both analytically and graphically. The principle of exchange of stabilities 
holds good in the absence of solute gradient parameter. Also, the sufficient conditions responsible for the 
existence or non-existence of overstability are obtained. 
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NOMENCLATURE  

t  time coordinate,  
d thickness of porous fluid layer, 

 
q fluid velocity vector having 

components 
 

dq suspended particle velocity having 

components
 p pressure  

0T reference temperature

0S reference concentration 

T temperature
S concentration
K  stokes’ drag coefficient 

 
0N  number density of dust particles 

1k Darcy-brinkman medium permeability 

Tk coefficient of heat conduction
 

Sk coefficient of solute concentration

D differential operator
m mass of suspended particles 
n frequency of the harmonic disturbance 

iX gravitational acceleration vector  

sc heat capacity of solid material  

vc specific heat of the fluid at constant 

volume  
w vertical fluid velocity 

 s  vertical particle velocity 
 *w  complex conjugate of  

H  horizontal magnetic field having 
components  

h perturbation in magnetic field 
strength  

X  vertical component of current 
density after applying normal mode 
method 

W  vertical component of fluid velocity 
after applying normal mode method 

K  vertical component of magnetic 
field after applying normal mode 
method 

Z vertical component of vorticity after 
applying normal mode method 

xk wave number in x direction 

yk wave number in y direction 

k Resultant wave number

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200877328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


K. Kumar et al. / JAFM, Vol. 10, No. 2, pp. 681-692, 2017.  
 

682 

 
p  pressure gradient term 

0  density of fluid  

s  density of solid material  

  fluid viscosity 
  couple-stress fluid viscosity 

ef  effective viscosity
 

ef  effective kinematic viscosity  

e  magnetic permeability 

T  thermal expansion coefficient
 

S   solute expansion coefficient
 

T  adverse temperature gradient
 

S  solute concentration gradient 

   electrical resistivity  
Θ temperature component after applying 

normal mode method 
  solute component after applying 

normal mode method 
p  perturbation in fluid pressure p 

  perturbation in fluid density    

  kinematic viscosity  
  kinematic viscoelasticity 

T  thermal diffusivity
 

S  solute diffusivity 

  z-component of vorticity  

  z-component of current density 
Ω  horizontal rotational vector having 

components 
2

 
3-dimensional Laplacian operator 

  growth rate of harmonic disturbance 
after applying normal mode method 

  perturbation in temperature T
   perturbation in solute concentration S

 
  Suspended particles radius 

i  vertical unit vector
 

 
Non-dimensional Parameters 
a  dimensionless wave number

 
lP  dimensionless medium permeability

 
1p  thermal Prandtl number

 
2p  magnetic Prandtl number

 
1q   Schmidt number

 
B  suspended particle parameter 

1Q  modified Chandrasekhar’s number 

1AD  modified Darcy-Brinkman number 

1R  modified Darcy-brinkman thermal 

Rayleigh number 

1S  modified solute Rayleigh number 

1AT
 

modified Taylor’s number 

  Darcy-Brinkman medium porosity 

1  modified couple-stress parameter 

1. INTRODUCTION 

The study of fluid dynamics is of great importance 
for scientific researchers and engineers to understand 
various significant and fascinating applications of 
fluid mechanical phenomena such as calculating 
forces and moments on aircrafts, determining the rate 
of mass flow in oil industry through pipelines, 
forecasting weather patterns, understanding nebulae 
in interstellar space and in traffic engineering by 
considering traffic as a continuously distributed 
fluid. Copious literatures (Lin, 1955; Batchelor 
1967; Rajagopal, 1978; Drazin and Reid, 1981; 
Bansal, 2004; Gupta and Gupta, 2013) are available 
that provide a basic theoretical and experimental 
support for various fluid dynamical phenomena as 
well as hydrodynamic stability of Newtonian and 
non-Newtonian fluids. The influence of magnetic 
field and rotation on thermal instability of an 
incompressible Newtonian fluid layer has been the 
subject matter of great interest over the years since 
the pioneering work by Chandrasekhar (1981) within 
the framework of linear stability theory. In double 
diffusive (when the fluid layer is simultaneously 
heated and soluted from underside) phenomena, 
convection process is induced by the combined 
effects of temperature difference and concentration 
difference which have different diffusion rates. 
Double diffusive (thermosolutal) convective 
phenomena through a porous medium frequently 

occur in seawater flow, mantle flow in earth’s crust, 
ground water hydrology (underground disposal of 
nuclear wastes), astrophysics (helium acts like a salt 
in raising the density in stellar case), oceanography, 
soil science (transportation of soil, solid waste and 
mud particles into the rivers and lakes), solar system 
(where heat and helium diffuse at differing rates), 
atmospheric science and limnology.  

The presence of waste matter in water or air is 
responsible for certain chemical reactions helpful to 
understand several mass transport processes such as 
groundwater pollution and transportation of nuclear 
wastes, food processing industry, contaminated air 
transport in atmosphere (presence of dust particles in 
atmosphere), manufacturing of glassware and in 
polymer production. Nearly all fluid flow 
mechanisms happening in the universe involve 
circulation or rotational effects which have 
applications to a greater or lesser extent in a number 
of processes which include large scale circulations in 
the atmosphere and oceans, motion of a hurricane, 
tornado and tsunami and in many small scale flows 
like stirring of tea in a cup. Thermo-convective 
phenomenon in a rotating system is of practical 
significance and finds its applications in rotating 
machinery, crystal growth, food processing industry, 
centrifugal casting of metals and in thermal power 
plants (to generate electricity by the rotation of 
turbine blades). Greenspan (1969) studied the theory 
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of rotating fluids which has applications in various 
technological situations which are governed by the 
action of coriolis force. The double diffusive 
convective problems of couple-stress fluid through 
an anisotropic porous medium considering rotational 
effect have been discussed in the references by 
Malashetty and Kollur (2011) and Malashetty et al. 
(2011). A major part of the universe is filled with 
charged particles and magnetic field is present in and 
around the heavenly bodies. Magnetic field plays a 
dominant role in several clinical purposes such as in 
neurology and orthopaedics for examining the 
internal organs of the body in various diseases like 
tumours detection, heart and brain diseases, stroke 
damage etc. The theory of magneto-hydrodynamics 
(MHD) has several scientific and practical 
applications in geophysics (in the study of earth’s 
core), atmospheric science (solar wind is governed 
by MHD), astrophysics, plasma physics, space 
sciences etc. Thermal instability problem of an 
electrically conducting couple-stress fluid heated 
from below through a porous medium in the presence 
of a uniform magnetic field has been investigated by 
Sharma and Thakur (2000). Sharma and Sharma 
(2004) have considered the effect of suspended 
particles on couple-stress fluid heated from below in 
the presence of vertical rotation and vertical 
magnetic field and noted that the effect of rotation is 
to stabilize the system, whereas suspended particles 
have destabilizing effects. Thermosolutal convective 
problem for a couple-stress fluid through a porous 
medium under the influences of uniform vertical 
magnetic field and uniform rotation has been studied 
by Singh and Kumar (2011), whereas the effect of 
suspended particles on couple-stress fluid heated and 
soluted from below through a porous layer has been 
noted by Sunil et al. (2004). 

Couple-stress theory due to Stokes (1966) is of vital 
importance to understand different aspects including 
the lubrication mechanism and functioning of 
synovial joints during human locomotion and opened 
new vistas in several areas of scientific and technical 
research. Shivakumara et al. (2011) illustrated the 
linear and nonlinear stability problem of double 
diffusive convective phenomena for couple-stress 
fluid through a porous layer. Kumar et al. (2015a, b, 
2016) considered, theoretically, thermal convection 
problems for both couple-stress fluid and ferrofluid 
to include the effects due to magnetic field, rotation, 
compressibility, variable gravity and heat source 
strength through Darcy as well as Brinkman porous 
medium. Thermal as well as thermosolutal 
convective instability problems through a porous 
medium have extensive attention over the years and 
also recognized as the problems of  fundamental 
importance in solidification and chemical processing 
industry, bio-medical sciences, geophysical fluid 
dynamics, soil sciences, petroleum industry and 
filtering technology. Extensive reviews related to 
thermal and thermosolutal convective problems 
through a porous medium have been covered in the 
books by Ingham and Pop (2005), Vafai (2000, 
2005), Nield and Bejan (2006) and Vadasz (2008). 
McDonnel (1978) has conducted extensive and 
systematic studies regarding the impact of porosity 
in astrophysical situations because a greater part of 

the universe is filled with fine dust particles. It is well 
known that the Darcy equation fails to give 
satisfactory results for high permeability porous 
medium. So, the consideration of non-Darcy 
(Brinkman) model, which take care of boundary and 
inertia effects, is of practical interest for high 
permeability porous medium. Kuznetsov and Nield 
(2010) analyzed the thermal instability problem in a 
porous layer saturated by a nanofluid employing the 
Brinkman model for the porous medium. Mahajan 
and Sharma (2012) studied the asymptotic stability 
and also determine the stability bounds for both 
equilibrium and arbitrary flows of a couple-stress 
fluid in a Brinkman flow. Recently, the linear and 
nonlinear stability analysis of double-diffusive 
reaction convection in an anisotropic Darcy-
Brinkman porous layer is performed by Gaikwad and 
Dhanraj (2016).  

Therefore, the Brinkman model, which is physically 
more realistic than the other ones, is considered for 
the porous medium to include effects due to 
horizontal magnetic field and horizontal rotation in 
a dusty couple-stress double-diffusive convection. 
Some previous published works by Sharma and 
Thakur (2000), Sharma and Sharma (2004), Sunil et 
al. (2004) and Singh and Kumar (2011) can be 
recovered from the present investigation.  

2. MATHEMATICAL FORMULATION 

Consider an infinite, horizontal porous layer of 
thickness d of an incompressible couple-stress 
fluid with dust particles heated and soluted 
from below through a porous medium of 
porosity   and permeability 1k . The fluid 

layer is acted upon by a uniform horizontal 
magnetic field  ,0,0HH and a uniform 

horizontal rotation  ,0,0 Ω . The fluid layer 

is heated and soluted from below such that an 

adverse temperature gradient 
T

dT

dz
 

 
 

 and 

concentration gradient 
S

dS

dz
 

 
 

 are 

maintained. The coriolis effect has been taken 
into account by including the coriolis force 
term  2 q ×  in the momentum equation, 

whereas the Centrifugal force term 
21

grad
2

r
   
 

× can be realized as a gradient 

of a scalar and, therefore, has been absorbed 

into the pressure term 21

2fp p r    
 

× . 

The term fp  stands for the fluid pressure and 

  denotes the angular velocity of rotation. 
The Brinkman model is employed for the 
porous medium and the fluid density variation 
is based on Boussinesq approximation (1903). 
The boundaries are taken to be free maintained 
at uniform temperatures and the porous layer  
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Fig. a. Geometrical Sketch of the Physical Problem. 

 

 

is extended infinitely in x and y  directions 

and the z axis is taken vertically upward with 
the origin at the lower boundary.  The pressure
p , density  , viscosity  and viscoelasticity
 depend upon the vertical co-ordinate z- 
only. 

The basic equations in a double diffusive 
convection for an incompressible couple-stress 
fluid saturating a Brinkman (1947a, b) porous 
medium under Boussinesq approximation are 
defined as 

The density equation of state is given by 

   0 0 01 T ST T S S              
(1)  

Equations of momentum and mass conservation are 
defined as 

 

 
 

   

2
0

1

20 0 0

1

21
.

4

ef

e

p
k

K N

t

  

  




       
 
                      
 

    
  

i

d

X q

q
q q q Ω q

q q H H



   

                                                                 (2)

 

. 0 q                                                                     (3) 

Neglecting the variations in pressure force, Darcian 
force, magnetic field and buoyancy force (due to 
gravity) on the particles, the equations of motion and 
continuity for the particles are as 

   0 0
1

.mN K N
t

        
d

d d d
q

q q q q

           

(4) 

 0
0. 0

N
N

t


  

 dq                                            (5) 

Assuming that the suspended particles and the fluid 
particles are in thermal and solute equilibrium, the 
equations for temperature and solute concentration 
can be presented as 

   

 

0 0

2
0

1 .

.

v s s v

pt T

T
c c c T

t

mN c T k T
t

  
       

        
d

q

q
              (6) 

   

 

0 0

2
0

1 .

.

v s s v

pt S

S
c c c S

t

mN c S k S
t

           
        

d

q

q

           (7) 

where, , , andv s pt Sc c c k   denote the analogous 

solute coefficients. 

The Maxwell’s (1866) electromagnetic equations 
yield 

  2

t


    

H

q H H                                (8) 

and . 0 H                                                          (9) 

3. PERTURBATION TECHNIQUE 
AND LINEAR STABILITY 
ANALYSIS 

Here, the stability of the basic state of system has 
been examined by using the perturbation technique. 
Let the perturbations in the basic variables such as 

fluid velocity  0,0,0q , particle velocity 

 0,0,0dq , temperature T, pressure p , density  , 

particle number density 0N and magnetic field H  
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be denoted by  , ,q u v w ,  , ,dq l r s ,  , p , 

, N ,  , ,x y zh h h h , respectively. 

After linearizing the system of Eqs. (1) – (9) and 
following Boussinesq approximation, the 
perturbation equations obtained after eliminating the 
pressure gradient term are as follows 

  0T S                                                        (10) 

 
 
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w
ζ

ζ ζ
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 (12) 

 2

t x
              
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z

h w
H h                         (13) 

 2

t x
              

ξ ζ
H ξ

                             
(14)

 

   2
T TE b b

t
          

w s
            

(15) 

   2
S SE b b

t
            
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where, 
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Differential Eqs. (11) – (16) can be solved using the 
method of normal modes. Suppose that the 
perturbations in various physical quantities have a 
solution with a dependence on x, y and t of the form 

 
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(17) 

Using expression (17), the Eq. (11) – (16) into non-
dimensional form reduce to (after dropping the 
asterisk for convenience) 
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(21)
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(23)  

where, the following non-dimensional quantities 
with the scaling have been used in Eqs. (18) – (23) 

2
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             
 



The boundary conditions appropriate for the case of 
two free boundaries are defined as

 2    0 and 1. 

on a perfect conducting bounda

0,

0 ry    ,   

W D W X tD

DX K

zZ a      


  
(24) 

Eliminating          , , andz  z , Z z X z K z from 

Eqs. (18)–(23) and considering an appropriate 
solution for W (vertical component of fluid velocity) 
of the form 

0 sin ,W W l z                                               (25) 

a dispersion relation is obtained as follows 
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(26)
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where,

 
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T T

T

g d
R

 


 (Darcy-Brinkman thermal Rayleigh  

number)
 

 

4
S S

S

g d
S

 


  (Solute Rayleigh number)  

2 4

2

4
A

d
T




Ω
  (Taylor’s number)  

2 2

04
e d

Q

 


H

 (Chandrasekhar’s number) 

Equation (26) is the required dispersion relation 
accounting the effects of suspended particles, 
horizontal magnetic field, horizontal rotation, 
medium permeability and medium porosity on 
thermosolutal instability of a couple-stress fluid 
saturating a Brinkman porous medium. 

4. THE STATIONARY STATE 

In a stationary convection, the marginal state occurs 
when 0  (i.e. growth rate vanishes). Substituting

0  in Eq. (26), the stationary Rayleigh number 

1R  in terms of various parameters and the square of 

wave number x  is obtained as 
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                                                                             (27) 

The effect of various parameters on thermosolutal 
convection can be realized analytically by evaluating 

the following derivatives 
1

1 1 1 1

1
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dR dR dR dR

dT dS d dB
.
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Equation (27) yields 
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where,  1
11 1 .

AD
G x

             
  

From the derivatives (28) - (35), it is clear that the 
Taylor’s number and solute gradient rule out the 
possibility of the onset of convection, whereas 
suspended particles and medium porosity 
accelerate the onset of convection. The magnetic 
field, couple-stress and Darcy-Brinkman parameter 
have stabilizing (or destabilizing) effect and the 
medium permeability has a destabilizing (or 
stabilizing) on thermosolutal instability if 

     
1

22 2 2
11 cos 1 cosAx G Q Px or T P x x        

  respectively. In the absence of rotation

 1
. . 0Ai e T  , magnetic field, couple-stress and 

Darcy-Brinkman parameters always postpone the 
onset of convection, whereas medium permeability 
assures the destabilizing effect on the system. The 
variation in Rayleigh number 1R

 
for the stationary 
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state against various values of parameters such as 
rotation, solute gradient, medium porosity, 
suspended particles, magnetic field, couple-stress, 
Brinkman number and medium permeability on 
double-diffusive convection saturating a Brinkman 
porous medium are depicted graphically in Figs. 1-

8, respectively for 45 .  
 

 

 
Fig. 1. Variations of 1R  with x for various 

values of rotation parameter 
 

1AT 1000,5000,10000,20000, 40000 and 

11 15, 200, 2, 3, 20, 20,AB S P D      

1 200, 45 .Q     

 

 
Fig. 2. Variations of 1R  with x for various 

values of solute gradient parameter

 1 100, 200,300, 400,500S  and 

1 1 110, 10, 5, 25, 25, 200,AB P D Q      

1
10,000, 45 .AT     

 

5. PRINCIPLE OF EXCHANGE OF 
STABILITIES 

Here, the conditions have been derived, if any, under 
which principle of exchange of stabilities (PES) 
holds true and also the possibility of oscillatory 
modes.  

 
Fig. 3. Variations of 1R  with x for various 

values of medium porosity  2, 4,6,8,10 and 

11 1 15, 3, 200, 200, 20, 20,AB P S Q D      

1
4000, 45 .AT   

 
 

 
Fig. 4. Variations of 1R  with x for various 

values of suspended particles  5,10,15, 20, 25B 

and 
1 11 120, 5, 25, 25, 500, 20,A AP D Q T      

1000, 200, 45 .S     

 

Fig. 5. Variations of 1R  with x for various 

values of magnetic field

 1 2 0 , 4 0 , 6 0 , 8 0 ,1 0 0Q  and 

1 1110, 2, 20, 20, 20, 10,A AB P D T      

1000, 500, 45 .S     
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Fig. 6. Variations of 1R with x for various values 

of couple-stress parameter  1 3,5,7,9,11 and 

1 1 15, 5, 15, 10, 40,000, 500,A AB P D T S     

1 100, 45 .Q     

 

Fig. 7. Variations of 1R with x for various 

values of Darcy-Brinkman parameter
 

1
4,8,12,16,20AD and 13, 2, 15, 5,B P    

1 1 120,000, 500, 100, 45 .AT S Q     
 

 
Fig. 8. Variations of 1R  with x for various 

values of permeability  10,20,30,40,50P 

and 
1 1 110, 2, 10, 5, 40,AB D Q     

1 110,000, 500, 45 .AT S      

For this purpose, multiplying Eq. (18) by W  and 
then integrated over the range of z. Using Eqs. (19)-
(23) with the help of boundary conditions (24) gives 
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(36) 

Substituting, r ii   
 
in Eq. (36) and equating 

real and imaginary parts leads to 
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and 
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(38) 

where, the positive defined integrals
 1 12I I  are 

defined below as 
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Equation (37) implies that either 0 or 0r r   , 

meaning that the modes of the system may be 
unstable or stable, respectively. Thus, it is concluded 
that the modes may be oscillatory or non-oscillatory. 

Equation (38) implies that i  may be either zero or 

non-zero, which signifies that the modes may be non-
oscillatory or oscillatory, respectively.  

In the absence of solute concentration  . . 0Si e   , 

Eq. (38) gives Eq. (39). 

As the terms inside the bracket in Eq. (39) are 
positive. So, 0i   which assures that the oscillatory 

modes are not allowed and also confirms the validity 
of the PES in the absence of solute concentration 
gradient with the condition that 1B  . 

Hence, the oscillatory modes are dominant due to the 
presence of solute concentration gradient S only. 
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(39) 

6. OVERSTABILITY CASE 

Here, the possibility whether the observed 
instability may actually be overstability has been 
examined. 

Rewriting Eq. (26) in the following form 
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(40) 
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Equating the real and imaginary parts of Eq. (40) 
gives 
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 (42) 

where, the symbols †
1 31andG L L are defined as 
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          (43) 
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Eliminating R1  from Eqs. (41) and (42) and assuming
2

1 z  , an eight degree polynomial in z is obtained 

as 

 8 7 6 5 4 3 2
0 1 2 3 4 5 6 7 8 0z z z z z z z z                

(44) 

where, 
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0 2 1 2 1 1 2 1p p q E E x x                                    (45) 
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The coefficients 1 2 3 4 5 6 7, , , , , and      
 

are 

quite large and also of trivial importance in 
determining the overstability of the system. Since 1
should be real for overstability to occur, therefore, all 
the roots of Eq. (44) should be positive.  

From Eq. (44), the product of roots 8

0



 

  
 

i.e. 

positive and this has to be negative for the non-

happening of overstability. Since 0 is always 

positive as obvious from Eq. (45) and 8 will be 

negative if 

 

† †
1 1 2 1 1 2

†
1 1 1 2 1

1, 1, , ,

, 2 1 .A

B G p E p G p E p

p E q E G Q T x

   

   
     (47) 

Thus, the aforementioned inequalities are the 
sufficient conditions for the non-occurrence of 
overstability, the violation of which does not assure 
the possibility of overstable modes. 

7. CONCLUSION 

The onset of double-diffusive convection in a 
couple-stress porous fluid layer with the 
presence of magnetic field, rotation and 
suspended particles was analyzed analytically 
using the linear stability theory. The Brinkman 
model is employed for the momentum equation. 
For the stationary state, it is found that the 
stable solute gradient and rotational parameter 
rule out the possibility of the onset of 
convection, whereas suspended particles and 
medium porosity accelerate the onset of 
convection. For a rotating medium, the 
magnetic field, medium permeability, couple-
stress and Darcy-Brinkman parameter have 
dual effects, whereas for a non-rotating system, 
the parameters like magnetic field, couple-
stress and Darcy-Brinkman have stabilizing 
effects and medium permeability has a 
destabilizing effect and these effects are also 
depicted both analytically and graphically. The 
principle of exchange of stabilities is found to 
hold true in the absence of solute gradient 
parameter for 1B  . Hence, the oscillatory 
modes are dominant due to the presence of 
stable solute gradient parameter  S only. 

Also, the sufficient conditions for the non-
happening of overstability are obtained.  
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