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ABSTRACT 

Numerical solutions of high-speed microdroplet impact onto a smooth solid surface are computed, using the 
interFoam VoF solver of the OpenFOAM® CFD package. Toward the solid surface, the liquid microdroplet is 
moving with an impinging gas flow, simulating the situation of ink droplets being deposited onto substrate 
with a collimated mist jet in the Optomec Aerosol Jet® printing process. For simplicity and computational 
efficiency, axisymmetric incompressible flow is assumed here for the free-surface fluid dynamic problem. 
The computed values of maximum spread factor ξ, for the range of parameters relevant to Aerosol Jet® 
printing, are found in good agreement with some of the correlation formulas proposed by previous authors in 
the literature. A formula of improved accuracy is then obtained for evaluating ξ of Aerosol Jet® deposited 
droplets, by combining selected formulas from different authors with appropriate modifications. The 
computational results also illustrate droplet impact dynamics with lamella shape evolution throughout the 
spreading, receding-relaxation, and wetting equilibrium phases, consistent with that observed and described 
by many authors. This suggests a scale-invariant nature of the basic droplet impact behavior such that 
experiments with larger droplets at the same nondimensional parameter values may be applicable for studying 
microdroplet impact dynamics. Significant free surface oscillations can be observed with low viscosity 
droplets. The border line between free surface oscillations and aperiodic creeping to the capillary equilibrium 
shape appears at Oh ∼ 0.25. Droplet bouncing after receding is prompted with large contact angles at solid 
surface (as consistent with findings reported in the literature), but can be suppressed by increasing the droplet 
viscosity. 

Keywords: Drop impact; Microdroplet; Aerosol Jet®; Volume-of-fluid (VoF); Computational analysis. 

NOMENCLATURE 

Ca capillary number 
d droplet diameter 
H center height of free surface (in units of d) 
Oh Ohnesorge number  
R contact radius of free surface on solid 

surface (in units of d) 
Re Reynolds number  
U velocity of gas impinging flow 
We Weber number  

α phase fraction function  
γ surface tension 
µd droplet liquid viscosity 
µg gas viscosity 
ξ maximum spread factor 
θ0 static contact angle 
θA leading edge contact angle 
θR trailing edge contact angle 
ρd droplet liquid density 
ρg gas density 

1. INTRODUCTION

With the Aerosol Jet® direct-write technology, ink 
microdroplets generated by a liquid atomization 
process are deposited onto a substrate in a form of 
collimated mist stream (which can become less than 
10 µm in diameter having the ink mist 
concentration typically about 50 nL/cc) with 

considerable impinging velocity, e.g., 20 to 100 m/s 
(cf. Renn, 2006; Zollmer et al., 2006; Hedges et al., 
2007; Kahn, 2007; Renn et al., 2010; Christenson et 
al., 2011; Paulsen et al., 2012). Therefore, the ink 
mist can have sufficient momentum to impact the 
substrate several millimeters away from the 
deposition nozzle as directed by the high-speed jet 
flow (cf. Feng, 2015). The Aerosol Jet® functional 
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inks typically consist of suspensions of nano-
particles or polymer solutions formulated with 
appropriate properties such that they can be 
adequately aerosolized with a liquid atomizer. The 
ink droplet diameter is usually in a narrow range of 
1 to 5 µm with the volume mean diameter around 
2.5 µm, such that fine features as small as ∼ 10 µm 
can be produced by the additive manufacturing 
process. As with many industrial applications such 
as spray coating, inkjet printing, and so forth, 
understanding of droplet deposition behavior is 
important for achieving desired Aerosol Jet® print 
quality. Therefore, a detailed analysis of high-speed 
microdroplet impact on a solid surface can provide 
practically valuable insights. 

The process of droplet impact on a surface involves 
various free-surface fluid dynamics phenomena, 
ranging from spreading, receding, oscillating, to 
bouncing, splashing, etc. (Yarin, 2006). It has been 
a subject of intensive study by many authors (e.g., 
Ford and Furmidge, 1967; Foote, 1974; Chandra 
and Avedisian, 1991; Rein, 1993; Healy et al., 
1996; Bussmann et al., 1999, 2000; Sikalo et al., 
2002; Rioboo et al., 2001, 2002; Toivakka, 2003; 
Law, 2015, as well as references cited therein), for 
its relevance to a wide variety of applications. Yet, 
our understanding of the associated fluid dynamics 
may still be far from thorough, probably due to the 
difficulties in consistent characterizations of wet-
ting and surface properties as well as lack of agree-
able formulations of moving contact line boundary 
conditions for theoretical modeling. For example, 
numerous empirical and semi-empirical formulas 
were proposed for describing the maximum spread 
factor, defined as the maximum normalized contact 
diameter of the lamella at the end of spreading 
phase, for its practical importance (e.g., Scheller 
and Bousfield, 1995; Pasandideh-Fard et al., 1996; 
Toivakka, 2003; Attane et al., 2007; Roisman, 
2009; German and Bertola, 2009); each has an 
apparently different form and quantitative 
agreement with each other for a given case usually 
does not seem as good as one would hope (cf. 
Perelaer et al., 2009; Ravi et al., 2010; Visser et al., 
2012, 2015). This makes it very difficult to 
determine which formula to use for estimating the 
spot size as a result of deposition of each individual 
ink droplet on the substrate with parameters of 
interest. 

Because the Aerosol Jet® printing process involves 
micron-size droplets carried by a high-speed 
impinging gas jet at velocity typically around 50 
m/s, experimental investigations can be quite 
challenging and prohibitively expensive, if not 
impossible. Rather recently Visser et al. (2012, 
2015) have reported experimental measurements of 
microdroplet impact with an interferometic 
technique that enabled sub-micron spatial resolution 
at frame rates exceeding 107 per second, which still 
seems to be an order of magnitude short for the 
Aerosol Jet® situation. To date, computational 
analysis with numerical solutions of the governing 
equations may be the only option for gaining 
insights into the microdroplet impact at high 
velocity relevant to the Aerosol Jet® additive 

manufacturing process. 

Due to extensive free surface deformations involved 
in droplet impact process, numerical computations 
have remained challanging. Although the explicit 
interface tracking method with boundary-fitted 
moving mesh using an arbitrary Lagrangian-
Eulerian scheme offers the highest accuracy for the 
free-surface flow problem, it is usually effective for 
the types of problems with moderate free surface 
deformations without topology changes (e.g., Feng, 
2010, 2015) and becomes too complicated to be 
practically applicable to the situation of droplet 
impact problem where phase topology can change 
with significant free surface movement or even dis-
integration. On the other hand, the implicit Eulerian 
interface capturing methods such as volume of fluid 
(VoF) have been developed for effective 
computations of flows involving substantial 
topology changes with interface breaking (because 
the mesh does not need to move with the interface), 
despite some compromise of numerical accuracy. 
Among many versions of the VoF solvers, the 
interFoam of an  open-source CFD package called 
OpenFOAM® has been attractive to numerous users 
and validated by many authors (Berberovic et al., 
2009; Saha and Mitra, 2009; Deshpande et al., 
2012; Morgan, 2013; Hoang et al., 2013). Over 
years of code development and testing, the 
numerical algorithms implemented in interFoam 
have been continuously improved to enable 
reasonably accurate interface representation with 
effective advection treatment, handling large 
density ratios, reducing “spurious (parasitic) 
currents”, and so forth (Gopala and van Wachem, 
2008; Deshpande et al., 2012). The VoF method has 
also been used to include effects of heat transfer and 
phase change in simulations of the sem-imolten 
particle impact problem (Alavi et al., 2012). 

The purpose of the present work is to compute 
axisymmetric solutions of a droplet impact on a 
solid surface with parameters relevant to the 
Aerosol Jet® printing, using the well-established 
interFoam VoF solver. Through detailed 
comparisons of the computed results with the 
available formulas from previous authors, an 
accurate formula for the maximum spread factor 
can be assembled for predicting the deposition spot 
size on substrate due to an isolated individual 
droplet impact. Such spot sizes directly relate to 
achievable resolutions with the ink droplet size 
distribution involved in Aerosol Jet® printing. 
Moreover, the numerical solutions can also reveal 
other possible outcomes beyond spreading phase, 
such as oscillations, bouncing, etc. In what follows, 
section 2 briefly describes the computational 
method, section 3 presents the numerical results for 
various We, with implications for Aerosol Jet® 
printing discussed in section 4 and concluding 
remarks provided in section 5. 

2. COMPUTATIONAL METHOD 

Considered here is a liquid droplet of density ρd , 
viscosity µd , surface tension γ, and diameter d 
impacting a smooth solid surface as carried by a gas 
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impinging flow at velocity U (Fig. 1). The 
surrounding gas has density ρg and viscosity µg. 
Solutions to the Navier-Stokes equations for 
incompressible Newtonian fluids are computed 
using the interFoam VoF solver of the 
OpenFOAM® CFD package. 

 

 
Fig. 1. Schematics of a droplet moving with 

impinging gas flow at velocity U to impact a solid 
surface. 

 
With the volume-of-fluid (VoF) method, an 
indicator function α (also called the phase fraction 
function) is used to represent the volume fraction of 
one of the phases. The discontinuity at a gas-liquid 
interface is represented by a gradient of the 
continuous function α. Therefore, the interface is 
rendered as a diffuse layer with finite thickness on 
the order of the finite volume cell size, and the 
interface location may not be determined precisely 
with sub-grid resolution. Two immiscible fluids are 
treated as one effective fluid throughout the 
problem domain, having a continuously distributed 
phase fraction function α (0 ≤ α ≤ 1) as well as 
distributed density ρ and viscosity µ according to 

   1gd
 and  1d g         (1)    

To improve the interface resolution, the transport 
equation for phase fraction function used in 
interFoam is of the form (Ubbink, 2002; Rusche, 
2002; Berberovic et al., 2009) 

   1 0 ,rt

   
     

u u            (2)             
 
 

where the velocity of the effective fluid and 
relativevelocity are respectively 

 1d g   u u u  and 
r d g  u u u  

Then, the momentum equation can be written as 

       
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
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
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where γ denotes the interfacial tension and κ the 
mean curvature of the free interface, determined 
from 




 
     

                                             (4)                                            

In (3), g is the value and eg the unit vector of 
gravitational acceleration, x is the position vector, 
and p the lumped (or piezometric) pressure defined 
as 

0 ,gp p g  e x  

with p0 denoting the thermodynamic pressure. For 
incompressible flow, the velocity field also satisfies 
the continuity equation 

0  u                                                          (5)        
As illustrated in Fig. 1, no-slip boundary condition  
(u = 0) is applied at the solid surface (z = 0), and a 
uniform-fixed-value velocity (u = −Uez) is 
specified at the inlet (z = 10 × d), where ez denotes 
the unit normal vector in z-direction. At the outlet (r 
= 5 × d), a fixed-value pressure is specified with 
the pressureInletOutletVelocity boundary condition 
for flow velocity. At the three-phase contact line, 
the dynamicAlphaContactAngle condition according 
to 

    uuwRA /tanh0                         (6) 

is used with the static contact angle θ0, leading edge 
contact angle θA, trailing edge contact angle θR, and 
velocity scaling uθ being specified. The contact line 
moving velocity along the solid wall is denoted by 
uw in (6), which becomes part of the solution when 
specifying the contact angle condition related to ∇α 
at the contact line that is implicitly allowed to move 
(or “slip”) in the local cell (cf. Saha and Mitra, 
2009; Linder et al., 2013). Without complete 
agreement on the boundary conditions to be 
implemented at the moving contact line for 
modeling (Yarin, 2006), the parameter values for 
dynamicAlaCophntactAngle are selected somewhat 
arbitrarily in the present work only for 
demonstrating the possible fluid dynamics 
phenomena. 

More often than not in Aerosol Jet® operations, the 
collimated mist stream is arranged to impinge 
perpendicularly onto the substrate. With the mist 
stream wrapped in a thick gas sheath and substrate 
typically located more than 10× the nozzle diameter 
away from nozzle exit, the individual ink droplets 
can be reasonably assumed to impact substrate 
perpendicularly with negligible deviations. Because 
the relevant droplet impact problem can be 
simplified to an axisymmetric configuration with a 
simple rectangular domain as shown in Fig. 1, a 
mesh with wedge cells is generated with the 
blockMesh utility to take advantage of 
axisymmetry. To ensure adequate resolution of the 
droplet free surface profile, the impaction region 
contains finite volume quadrilateral cells with side 
length less than 0.01 × d (comparable to that used 
by Toivakka, 2003; Dinc and Gray, 2012, for VoF 
computations of drop impact problems). Initial 
position of the droplet center is set at 5 × d with the 
droplet initial velocity set as the impinging gas jet 
velocity U, using the funkySetFields utility of 
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swak4foam with OpenFOAM®. 

For the nominal setting, the surrounding gas (e.g., 
nitrogen—the typical mist carrier gas used in 
Aerosol Jet® process—under ambient temperature 
and pressure) is assumed to have ρg = 1.2 kg m−3 
and µg = 1.8 × 10−5 N s m−2, whereas the liquid 
droplet typically have ρd = 2 × 103 (but may vary 
between 1× and 4× 103) kg m−3 and µd in a range 
between 1 × 10−3 and 1 N s m−2, representing the 
typical inks used in Aerosol Jet® printing. The 
surface tension of the droplet γ is assumed to be 
constant with a nominal value of 0.04 (but may vary 
between 0.02 and 0.08) N m−1. 

As usual in fluid dynamics analysis, 
nondimensional parameters can be conviniencely 
utilized. If ρ and µ are respectively measured in 
units of ρd and µd , length in units of d, velocity in 
units of U, time in units of d/U, and pressure in 
units of µdU/d, three parameters would appear in 
the nondimensionalized (3) such as the Reynolds 
number Re ≡ ρdUd/µd in front of the first and 
second terms on left side, the inverse capillary 
number 1/Ca ≡ γ/(µdU) in place of γ and 
ρdgd2/(µdU) ≡ Bo/Ca in place of g on right side, 
with Bo denoting the Bond number ρdgd2/γ. 
Because the value of Bo/Ca (as the ratio of the 
terminal velocity under gravity and impacting 
velocity U) even for a droplet of d = 10−5 m, ρd = 
5×103 kg m−3 and µd = 10−3 N s m−2 at U = 10 m/s 
with g = 9.81 m s−2 is < 5 × 10−3, the effect of 
gravity in Aerosol      Jet ®ink droplet deposition 
(where U is typically > 20 m/s) should be rather 
negligible. Thus, only Re (≡ ρdUd/µd ) and Ca (≡ 
µdU/γ) need to be specified as independent 
parameters in computing numerical solutions. 

3. NUMERICAL RESULTS 

Since the diameter of ink droplets rarely exceeds 5 
µm in Aerosol Jet® printing, we start by examining 
cases with a droplet of d = 5 µm, ρd = 2 × 103 kg 
m−3, µd = 10−3 N s m−2 (or 1 cp). As a reference, at 
U = 100 m/s (which represents the high end of mist 
jet velocity in Aerosol Jet® printing) and γ = 0.04 N 
m−1, the value of Re and Ca are 1000 and 2.5, 
respectively. When studying the droplet im-pact 
problem, many authors often refer to the Weber 
number We ≡ ρdU2 γ = ReCa and the Ohnesorge 
number Oh ≡ µd /ඥ݀ߛ ݀ߩ  =ඥܽܥ/ܴ݁  (Yarin, 
2006), which will also be used here as derived 
dimensionless parameters in discussion. (Among 
Re, Ca, We, and Oh, once two of them are specified 
as independent parameters the other two can then be 
calculated from the specified two.) Corresponding 
to Re = 1000 and Ca = 2.5, we have We = 2500 
and Oh = 0.05 which represent cases of low 
viscosity ink drops of large sizes at high impact 
velocity relevant to Aerosol Jet® printing. In 
another extreme with an ink droplet of d = 1 µm, ρd 
= 1 × 103 kg m−3, µd = 0.1 N s m−2 (or 100 cp), the 
values of Re and Ca for γ = 0.08 N m−1 and 
impacting at U = 20 m/s become 0.2 and 25, 
yielding We = 5 and Oh = 11.18. Here, the results 
with plots are typically presented in terms of 
dimensionless parameters with length measured in 

units of d, velocity in units of U, and time t in units 
of d/U, for generality. The condition at contact line 
(6) is specified as a static contact angle θ0 with θA = 
θ0 + 5o, θR = θ0 − 5o and uθ = 1 m/s for interFoam 
computations. 

With transient terms discretized using a first-order 
implicit Euler scheme, the time step is controlled by 
setting the maximum Courant number to 0.01 
(which is much finer than “< 0.5” as recommended 
by many authors to avoid significant spurious cur-
rents). For post processing the numerical results, an 
open-source multi-platform data analysis package 
called ParaView (available at www.paraview.org) 
for scientific visualization is used in the present 
work. 

 

 
Fig. 2. Spreading: shapes of a droplet of d = 5 

µm, ρd = 2000 kg m−3, and µd = 1 cp with γ = 0.04 
N m−1, at U = 100 m/s, with θ0 = 90o for time t = 

4, 5, 6, 7, and 9 (in units of d/U = 0.05 µs), from z 
= 5 at t = 0. The coordinates r and z are labeled 
in units of d. The free surface profile data came 
from the output csv file of the ParaView contour 

for α = 0.5. 
 

3.1   Cases of We = 2500 

Droplets at large We (e.g., We = 2500) are expected 
to have relatively more significant dynamical 
deformations and to exhibit more dramatic fluid 
dynamics phenomena. Shown in Fig. 2 are the free 
surface profiles of a droplet impacting a solid 
surface and spreading as the contact radius 
increases with time at Re = 1000 and Ca = 2.5, for 
θ0 = 90o (with θA = 95o, θR = 85o, and uθ = 1 m/s). 
It appears that the droplet has little deformation be-
fore impacting the solid surface, because the value 
of the Weber number based on gas flow Weg ≡ 
(ρg/ρd ) × ReCa is only 1.5, as consistent with the 
findings of Feng (2010) that noticeable 
deformations of liquid droplet moving in a gas 
medium are not expected for Weg < 5. Soon after 
the droplet (with radius of 0.5 in units of d) contacts 
the solid surface, it spreads to a maximum contact 
radius about 1.85 at t ≈ 9 (in units of d/U = 0.05 µs 
for d = 5 µm and U = 100 m/s). It should be noted 
that the center of droplet is initially located at z = 5 
at t = 0 moving at dimensionless velocity 1 (in units 
of U) toward the solid surface (at z = 0); therefore, 
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the droplet bottom pole reaches the solid surface 
around t = 4.5. From t = 4.5 to 5, the contact line 
moves from r = 0 to r = 1 (as indicated in Fig. 2) 
with an estimated average speed of ∼ 2. Then, the 
speed of contact line motion is reduced to ∼ 0.6 
from t = 5 to 6 and to ∼ 0.2 from t = 6 to 7 as the 
droplet becomes a lamella, and thereafter further 
down to 0 at t ≈ 9. The time for spreading process, 
which is sometimes called the “spreading time” 
(e.g., Antonini et al., 2012), is ≈ 4.5 × d/U (= 0.225 
µs). 

After spreading to the maximum contact radius, the 
lamella enters the receding (or relaxation) phase 
with the contact radius shrinking with time from t ≈ 
9 until t ≈ 80, as shown in Fig. 3. In the re-ceding 
process, a growing bulged rim forms around the 
contact line as it moves toward the center at an 
average speed of ∼ 0.018, much slower than that in 
the spreading process. The inner edge of the bulged 
rim collapse at the center around t = 44 and 
thereafter the droplet center is pushed to move 
upward quickly. At t = 55, the contact line arrives 
the neighborhood of its equilibrium position r ≈ 
0.63. Because of large Re = 1000, the contact radius 
continues to recede past its equilibrium position 
toward r ≈ 0.46 at t = 80. At the same time, the 
upper pole of free surface reaches its maximum 
height of z ≈ 1.03. 

 

 
Fig. 3. Receding: as in Fig. 2 but for t = 11, 30, 

44, 55, and 80. 
 

What follows the receding of contact radius is the 
sessile droplet oscillation up and down around its 
equilibrium hemispherical shape with a contact 
radius ≈ 0.63. Even at t = 103 when the contact 
radius and upper pole are close to their equilibrium 
value (0.63), the free surface appears to still deviate 
noticeably from its equilibrium hemispherical 
shape. But the oscillation amplitude will decay 
quickly with time by viscous damping, which can 
clearly be seen in Fig. 5. 

The center height H and contact radius R (in units 
of d) versus time are shown in Fig. 5 for the case of 
We = 2500. When Re = 1000 and Ca = 2.5 
(corresponding to that shown in Figs. 2–4), the 
droplet exhibits significant oscillations after 
impaction. Since the initial oscillation amplitude is 
quite large, the waveform does not appear to be 
simply sinusoidal (non-sinusoidal oscillations were 

also shown in experimental results of Ravi et al., 
2010). 

 

 
Fig. 4. Oscillating: as in Fig. 2 but for t = 83, 93, 

103, 113, and 123. 
 

 

 
Fig. 5. Plots of the center height H (z-value at r = 
0 of free surface) and contact radius R (r-value at 

z = 0 of free surface) versus t (in units of d/U = 
0.05 µs), for droplets of d = 5 µm, ρd = 2000 kg 
m−3, with µd = 1, 2, 5, and 10 cp, at U = 100 m/s 

for θ0 = 90o. 
 

But the oscillation amplitude decays with time due 
to viscous damping. If the droplet viscosity is in-
creased to 2 cp (at Re = 500 and Ca = 5) the 
amplitude of free surface oscillation diminishes 
rather quickly due to viscous damping after about 
one cycle. Oscillations do not seem to occur for µd 
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> 5 cp (for Oh > 0.25) indicating the deformed free 
surface after impaction creeps aperiodically to the 
equilibrium shape of a hemisphere. 

After impaction, the center height H appears to 
decrease monotonically with t when Re is large 
reaching its minimium value right before the bulge 
rim collapse at the center. For example, the values 
of Hmin are 0.0266 at t = 36 and 0.0231 at t = 41 for 
Re = 1000 and 500, respectively. But with reducing 
the value of Re (corresponding to increasing 
viscosity µd ) the value of Hmin tends to occur at 
smaller t and then slowly increase. For example, 
when Re = 200 and 100 Hmin = 0.0858 at t = 9 and 
Hmin = 0.0998 at t = 9, respectively. 

Immediately after the impaction, the contact radius 
R (which is equivalent to one half of the so-called 
‘spread factor’) increases according to a square-root 

law, such as R ∝ ට *t for t∗≡ t − t0 with t0 denoting 

the time for the impacting droplet to initiate contact 
to the substrate, typically referred to as the 
kinematic phase when material points in the droplet 
mainly move in the z−direction rather than 
r−direction (Rioboo et al., 2002). For the cases of 

We = 2500 in Fig. 5, a curve fit of R = 1.1ට *t for 

t0 = 4.51 appears to be quite accurate for 0 ≤ t∗≤ 
0.15, just as expected with the kinematic phase 
(usually considered for t∗<< 1). As a reference, 
some fittings of experimental data showed R = 

1.4ට *t  (Rioboo et al., 2002), yet others had R = 

0.675ට *t  (e.g., Gupta and Kumar, 2010). 

During the kinematic phase, the droplet typically 
takes the shape of a ‘cut sphere’, similar to that at t 
= 5 in Fig. 2, until a lamella—radially expanding 
film bounded by a rim—forms in the spreading 
phase (like the profiles shown in Fig. 2 for t > 6). 
All curves of R versus t in Fig. 5 exhibit a common 
feature with a quick increase of R immediately after 
the impact at t ∼ 4.5 until t ∼ 9 where R reaches a 
peak value, and then R decreases with t at a much 
slower rate. The spreading phase ends when the 
spreading velocity approaches zero, which usually 
corresponds to R arriving at its peak value. 
Following the spreading phase the lamella may 
begin to recede, which is sometimes called the 
relaxation phase because the receding contact line 
now is moving at a relatively much lower speed (as 
shown in Figs. 3 and 5). After the relaxation phase, 
the impact kinetic energy is almost dissipated by the 
viscous effect, and the droplet will go through a 
slow lengthy ‘wetting equilibrium’ phase (e.g., R(t) ∝ t1/10 according to Tanner, 1979) toward the 
capillary equilibrium determined by the static con-
tact angle. 

Among many variables involved in droplet impact 
dynamics, the maximum spread factor ξ ≡ 2Rmax, 
characterizing the maximum value of contact 
diameter normalized with the droplet diameter d, 
has often been considered in the literature for 
describing the impaction dynamics as well as for 
comparing results. It can be brought to bear on 

various practical applications such as inkjet 
printing, spray coating, pesticide application, etc. 
where the actual droplet coverage area directly 
corresponds to maximum spreading with rapid 
solidification at contact line, liquid absorption into 
porous substrate, con-tact line pinning on a textured 
surface, and so on so forth. According to an 
empirical correlation by Scheller and Bousfield 
(1995), it may be expressed as (cf. Yarin, 2006) 

 0.16620.61 .Re Oh                                         (7) 

Another semiempirical relation was proposed by 
Roisman (2009) which, out of numerous 
possibilities, is presented here in a modified form as 

1 2
5 50.35 / ,Re Re We                              (8)                                

with the original factors 0.87 and 0.40 replaced here 
by 1.0 and 0.35 for a better match to the values of 
present computational results. 

A comparison of (7) and (8) with the present results 
is given in Table 1 (for a constant We = 2500), which 
shows remarkably good agreements. As reasonably 
accurate as they may seem though, neither (7) nor (8) 
explicitly accounts for the contact angle effect, which 
was somehow justified by experiments (cf. Scheller 
and Bousfield, 1995). According to Rioboo et al. 
(2002), immediately after the droplet touches the 
substrate (and thoughout most part of the spreading 
phase) the contact line motion is controlled by the 
dominant kinetic energy, irrespective of the physical 
properties of the liquid and solid such as the contact 
angle. 
 

Table 1 Comparison of the computed values of ξ 
with that of (7) and (8) at We = 2500 (U = 100 

m/s), for droplets of d = 5 µm, ρd = 2000 kg m−3, γ 
= 0.04 N m−1 with various µd (cp), for θ0 = 90o 

Eq.(8) Eq.(7)   Ca Re d  

3.870 3.676 3.696 2.5 1000 1 

3.382 3.276 3.281 5 500 2 

2.827 2.814 2.796 12.5 200 5 

2.468 2.508 2.462 25 100 10 

1.567 1.711 1.714 250 10 100 

 

 
Fig. 6. Plot of R versus t, as in Fig. 5, with µd = 1 

cp, but for θ0 = 45o 90o, and 135o, as labeled. 
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Fig. 7. Streamlines associated with a droplet impaction at Re = 1000 and Ca = 2.5 (We = 2500 and Oh = 
0.05, as in Fig. 2), but for contact angle θ0 = 135o (θA = 140o, θR = 130o) for spreading at t = 3, 5, 8 in the 

upper row, and receding to bouncing at t = 15, 51, and 80 in the lower row. 

 
 

To test the validity of (7) and (8) for contact angles 
other than θ0 = 90o, computations of cases for θ0 = 
45o (with θA = 50o and θR = 40o) while other 
parameters remain unchanged from those in Table 1 
are also performed. The results show that ξ = 3.827 
for µd = 1 cp (Oh = 0.05), 3.396 for 2 cp (Oh = 
0.1), 2.849 for 5 cp (Oh = 0.25), 2.484 for 10 cp 
(Oh = 0.5), and 1.724 for 100 cp (Oh = 5), with a 
spreading time ≈ 6.5 × d/U (= 0.325 µs) which is 
about 0.1 µs longer than the case of θ0 = 90o. 
Results for θ0 = 135o (with θA = 140o and θR = 
130o) show that ξ = 3.624 for µd = 1 cp, 3.231 for 2 
cp, 2.782 for 5 cp, 2.448 for 10 cp, and 1.705 for 
100 cp, with a spreading time ≈ 3.5×d/U (= 0.175 
µs). Hence, the computed values of ξ (at We = 
2500) are indeed insensitive to the contact angle 
variations, as consistent with the experimental 
findings of Scheller and Bousfield (1995). 

However, the contact angle may drastically 
influence the dynamics of free surface deformation 
after the completion of spreading phase (as 
described by Rioboo et al., 2002). Fig. 6 shows that 
a droplet with contact angle θ0 = 45o (at Re = 1000 
and Ca = 2.5) recedes very slowly in contrast to the 
case of θ0 = 90o with considerable oscillations after 
receding, while the droplet with θ0 = 135o recedes 
rapidly with great momentum such that it bounces 
off the solid surface (around t = 51). 

Physically, bouncing can occur when kinetic energy 
of impact remains sufficiently large in the receding 
phase if the viscous dissipation effect is relatively 
weak such that the shrinking lamella con-tact line 
virtually disappears near the impact point (Yarin, 
2006). Fig. 7 shows the snapshots of such free 
surface shape evolution from spreading to receding-
bouncing, with streamlines being also displayed to 
illustrate external gas flow field interaction with the 

free surface deformation at different stages. Clearly, 
the liquid droplet impact dynamics can influence 
the external gas flow significantly. In view of the 
flow streamlines, the droplet, having about the same 
velocity as the surrounding gas at t = 0, moves 
ahead the decelerating gas due to its inertia as it 
approaches the substrate at t = 3. The fast moving 
liquid droplet tends to drag nearby gas at an 
increased local velocity during the spreading phase, 
e.g., at t = 5. Toward the end of droplet spreading, 
e.g., at t = 8, as the liquid phase motion diminishes, 
the gas phase around free surface recovers its 
natural impinging jet type of flow structure. During 
the relatively slow receding process, e.g., at t = 15 a 
somewhat stagnant zone in the gas phase develops 
near the free surface. As the droplet leaving the 
substrate during bouncing, a low velocity wake 
appear behind it, e.g, at t = 51 and 80. The 
bouncing droplet is moving against a gas jet flow 
that tends to push it back toward the substrate. 
Thus, the bouncing droplet will eventually come 
back to reattach to the substrate with the impinging 
jet flow. 

An examination of the effect of liquid viscosity µd 
for a droplet with contact angle θ0 = 135o indicates 
that the dynamics after spreading is also controlled 
by the value of Reynolds number Re. Fig. 8 shows 
that receding momentum decreases with increasing 
µd (namely, reducing Re), and bouncing would not 
occur when Re = 250 (for R never reaches zero). At 
Re = 333 the droplet detaches from the substrate 
around t = 93, but reattaches to the substrate around 
t = 143 for lack of bouncing momentum. Reducing 
Re tends to increase the time from the droplet 
impact to its detaching from substrate, if bouncing 
occurs. For example, a droplet with Re = 1000 
impacts the substrate at t = 4.5 and detaches from 
the substrate at t ≈ 53, with Re = 500 at t ≈ 63, and 
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with Re = 333 at t ≈ 96. As expected, liquid 
viscosity has an effect of retarding the free surface 
flow during receding bouncing. 

 

 
Fig. 8. Plot of R versus t, as in Fig. 6, with µd = 1, 

2,3, and = 4 cp, for θ0 = 135o.  
 

If a droplet of d = 5 µm with viscosity µd = 1 cp 
has a density ρd = 4000 kg m−3 and surface tension 
γ = 0.08 N m−1, the values of Re and Ca for U = 
100 m/s become 2000 and 1.25, which lead to We = 
2500 and Oh = 0.025. The computed ξ now 
becomes 4.177, while (7) and (8) predict 4.124 and 
4.4267, respectively. This may be considered as an 
extreme case for relatively weak droplet viscous 
effect compared to the inertial and surface tension 
effects in Aerosol Jet® ink droplet deposition. Be-
cause of the reduced viscous effect, enhanced free 
surface deformations and opportunity for bouncing 
can be observed even at θ0 = 90o. 

 

 
Fig. 9. Detaching and reattaching: as in Fig. 2 

but for ρd = 4000 kg m−3 and surface tension γ = 
0.08 N m−1 (Re = 2000 and Ca = 1.25, or We = 

2500 and Oh = 0.025) with θ0 = 90o at t = 40, 100, 
110, 140, and 160. 

 
Figure 9 shows a phenomenon of detaching and 
reattaching, after a droplet impact for Re = 2000 
and Ca = 1.25 (or We = 2500 and Oh = 0.025) with 
θ0 = 90o. Entrapped bubbles can be seen to form 
during the receding phase, as indicated in the free 
surface profile at t = 40. The center height H 
reaches its peak value 1.779 at t = 83. The contact 
radius R shrinks to zero at t = 106 corresponding to 

the time for complete detachment of the droplet 
from substrate, when the free surface pinches off at 
the end of a tail formed at the droplet bottom (cf. 
the free surface profile at t = 100). The tip of such 
tail moves rapidly upward into the bulk of the 
droplet, due to the action of surface tension, leaving 
a deep dimple on the droplet bottom at t = 110. 
While moving downward and oscillating with a 
considerable amplitude, the bottom of the detached 
droplet reattaches the substrate at t = 140. 
Thereafter, the attached droplet exhibits oscillatory 
motions with larger amplitudes than that in Fig. 4, 
as a consequence of stronger effects of fluid inertia 
and surface tension. 

3.2   Cases of We = 100 

If the droplet of d = 5 µm, ρd = 2000 kg m−3, µd = 1 
cp, and γ = 0.04 N m−1 has an impact velocity of 20 
m/s, the values of Re and Ca become 200 and 0.5 
such that We = 100 and Oh = 0.05. The spreading 
time for We = 100 is around t = 2.0, corresponding 
to a dimensional time of ≈ 2.0 × d/U (= 0.5 µs for d 
= 5 µm and U = 20 m/s), which seems to be 
consistent with the experimental findings of drop 
impact scaling time t ×d/U ∝We−0.25 by Antonini et 
al. (2012). 

 

 

 
Fig. 10. As in Fig. 5, but at U = 20 m/s (We = 100) 

with t in units of d/U = 0.25 µs. 

 
The effect of increasing liquid viscosity µd on 
dynamics of a droplet of d = 5 µm, ρd = 2000 kg 
m−3, and γ = 0.04 N m−1 with U = 20 m/s is shown 
in Fig. 10 for the center height H and contact radisu 
R versus t. It is interesting to note that the curves in 
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Fig. 10 are quite similar to those in Fig. 5 
corresponding to the same values of Oh, despite 
more than an order of magnitude reduction of We. 
Be-cause there is a factor of 5 difference in the 
reference time scale d/U (due to a factor of 5 
reduction of U), t = 60 in Fig. 10 has the same 
dimensional time 15 µs t = 300 in Fig. 5. This is 
expected in view of the fact that the impact velocity 
U only pro-vides the initial free surface deformation 
that sets the droplet into free oscillatory motion, the 
characteristics of which is actually determined by 
ρd, d, and γ (Landau and Lifshitz, 1959). 

Noteworthy here is that Oh  d d d    is 

independent of U, unlike Re, Ca, and We. The fluid 
viscosity contained in Oh is responsible for the 
decay of oscillation amplitude, whereas ρd, d, and γ 
are the key ingredients for capillary driven 
oscillations. Similar to the case of We = 2500, the 
oscillatory motion seems to also diminish for Oh > 
0.25 at We = 100. 

Similar to that shown in Fig. 5, H decrease with t 
after impaction. But the lamella at We = 100 is 
thicker (with larger Hmin) than that for the same 
value of Oh at We = 2500. For example, the values 
of Hmin are reached as 0.0353 at t = 9.6 for Re = 
200, 0.1097 at t = 7.8 for Re = 100, 0.1940 at t = 
6.8 for Re = 40, and 0.2881 at t = 6.2 for Re = 20 
and 500, respectively. While the oscillatory 
characteristics following the spreading phase appear 
independent of U (and We), the thickness of the 
spreading lamella as well as ξ are strongly 
influenced by the value of We. 

The computed values of ξ for We = 100 at various 
Re corresponding to various values of µd for 
droplets of d = 5 µm, ρd = 2000 kg m−3, γ = 0.04 N 
m−1 with U = 20 m/s are given in Table 2, along 
with that of (7) and (8). Again, the agreement is 
quite reasonable. It should be noted that the value of 
ξ for the case of µd = 100 cp (Re = 2) is actually 
smaller than that at capillary equilibrium for θ0 = 
90o (namely, 1.26). The value of ξ in this case may 
not be literally regarded as the “maximum spread 
factor”. What is given here is actually the peak 
value of the spread factor 2R marking the end of the 
rapid spreading phase. In this case, R may decrease 
slightly for a while from its peak value in the 
relaxation phase, and then slowly increases to-ward 
its capillary equilibrium value 0.63. 

 
Table 2 As in Table 1, but at We = 100 

(U = 20 m/s) 

Eq.(8) Eq.(7)   Ca Re d  

2.594 2.154 2.415 0.5 200 1 

2.291 1.920 2.149 1 100 2 

1.938 1.649 1.819 2.5 40 5 

1.705 1.470 1.606 5 20 10 

1.103 1.003 1.143 50 2 100 
 

To check the validity of (7) and (8) for contact 
angles other than θ0 = 90o, cases for θ0 = 45o and 
135o (while other parameters remain unchanged 

from those in Table 2) are also computed. The 
results show that ξ = 2.647 and 2.272 for µd = 1 cp 
(Oh = 0.05), 2.293 and 2.064 for 2 cp (Oh = 0.1), 
1.905 and 1.796 for 5 cp (Oh = 0.25), 1.632 and 
1.596 for 10 cp (Oh = 0.5), and 1.143 and 1.143 
for 100 cp (Oh = 5). A trend seems to indicate 
diminishing difference between the values of ξ for 
θ0 = 45o and 135o with increasing Oh which is a 
measure of relative strength of the viscous effect. 
In general, the computed values of ξ (at We = 100) 
are insensitive to the contact angle variations, as 
consistent with the findings of Scheller and Bous-
field (1995) and reasoning of Rioboo et al. (2002) 
for insignificant influence of contact angle to ξ. 

However, the dynamics of free surface flow after 
initial spreading can be quite sensitive to the contact 
angle for We = 100, similar to that shown for We = 
2500. A droplet with θ0 = 45o recedes very slowly 
whereas the contact line of that with θ0 = 135o 
moves rapidly during receding such that bouncing 
can occur. Noteworthy here is that the same droplet 
of d = 5 µm, ρd = 2000 kg m−3, γ = 0.04 N m−1 with 
viscosity µd = 5, (Oh = 0.25) and θ0 = 135o would 
bounce (i.e., detach) from substrate at t = 26.8 for U 
= 20 m/s (We = 100) but remain attached to the 
substrate at U = 100 m/s (We = 2500, as indicated 
in Fig. 8). This appears to be consistent with the 
trend shown by Durickovic and Varland (2005) for 
water drop impact on a solid surface and by Law 
(2015) in a general description of droplet impact 
dynamics that bouncing is expected at lower We. 

3.3   Cases of We = 5 

For a relatively small droplet of d = 1 µm, ρd = 
1000 kg m−3, µd = 1 cp, and γ = 0.08 N m−1 with U 
= 20 m/s, the values of Re and Ca become 20 and 
0.25 such that We = 5 and Oh = 0.1118. For the 
same values of Re and Ca, we can compute 
solutions with the same (dimensional) OpenFOAM 
mesh for d = 5 µm, ρd = 200 kg m−3, µd = 1 cp, and 
γ = 0.08 N m−1 with U = 20 m/s. 

Figure 11 shows the variations of droplet surface 
pro-file with time for We = 5 and Oh = 0.1118. In 
contrast to Figs. 2—4 for We = 2500 and Oh = 
0.05, the droplet surface in Fig. 11 does not form a 
commonly observed thin lamella with a bulged rim 
formed at the beginning of receding phase (t = 5.6) 
due to lack of impact momentum. The maximum 
contact radius at t = 5.6 is 0.6995 while the center 
height reaches its minimum value of 0.4571,(which 
is much larger than 0.0266 for We = 2500 and Oh = 
0.05). Following the end of spreading phase, the 
contact radius recedes and then oscillates with a 
small amplitudes. Increasing liquid viscosity µd, for 
a droplet of d = 5 µm, ρd = 200 kg m−3, and γ = 
0.08 N m−1 with U = 20 m/s, further reduces the 
magnitude of free surface deformations. The value 
of R could not even reach its capillary equilibrium 
value during the spreading phase for µd ≥ 5 cp (Oh 
≥ 0.5590); rather it slowly creeps toward 0.63 in the 
lengthy wetting equilibrium phase. However, even 
for the case of µd = 10 (Oh = 1.1180) the center 
height H still exhibits noticeable oscillatory 
motions, because of weaker viscous damping effect 
in the thick lamella away from the solid wall. 
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Fig. 11. As in Fig. 2 but for ρd = 200 kg m−3, µd = 
1 cp, and γ = 0.08 N m−1 (Re = 20 and Ca = 0.25, 
or We = 5 and Oh = 0.1118) with θ0 = 90o at t = 

4.0, 4.8, 5.6, 7.8, and 10.0. 
 

If the liquid viscosity µd is increased to 10 cp (Re = 
2 and Ca = 2.5), the receding and oscillation phase 
disappears, with R increasing monotonically with 
time t as shown in Fig. 12. However, there still 
seems to be a spreading phase corresponding to a 
rapid increase of R, i.e., with a relatively large 
dR/dt, followed by a relaxation phase with 
diminishing dR/dt toward capillary equilibrium R ≈ 
0.63. Because there are no local extrema for R, the 
end of spreading phase cannot be clearly defined. 
The fact that the profile at t = 10.0 with a 
monotonically increasing contact radius R has a 
center height H slightly greater than that at t = 5.6 
around the end of spreading suggests an ensuing 
oscillation of the free surface. 

 

 
Fig. 12. As in Fig. 11 but for µd = 10 cp (Re = 2 
and Ca = 2.5, or We = 5 and Oh = 1.1180) at t = 

4.0, 4.8, 5.6, 10.0, and 40.0. 
 

Table 3 shows the computed ξ for We = 5 at various 
Re with various values of µd for droplets of d = 5 
µm, ρd = 200 kg m−3, and γ = 0.08 N m−1 at U = 20 
m/s, along with that of (7) and (8). Again, the 
agreement is generally reasonable. For cases of Re 
≤ 4, the value of ξ is taken as the (normalized) 
contact diameter at the end of spreading phase 
rather than literally the maximum contact diameter. 
However, the end of spreading phase may not be 
clearly defined. At Re = 4, a local extremum (or 

peak) of R exists; so such a local peak value of R is 
used for calculating ξ. But for Re = 2 and 0.2, R(t) 
increases monotonically without local extrema; the 
end of spreading phase can only be estimated based 
on the slope change. These estimated ξ in Table 3 
are marked by an approximation sign (∼). 

 
Table 3 As in Table 1, but at We = 5 (U = 20 m/s), 

for droplets of d = 5 µm, ρd = 200 kg m−3,(or 
equivalently d = 1 µm, ρd = 1000 kg m−3), 

γ = 0.08 N m−1 

Eq.(8) Eq.(7)   Ca Re d  

1.302 1.146 1.399 0.25 20 1 

1.192 1.022 1.285 0.5 10 2 

1.047 0.878 ~1.12 1.25 4 5 

0.942 0.782 ~1.05 2.5 2 10 

0.643 0.534 ~0.84 25 0.2 100 

 
If computations are performed for cases of We = 5 
with θ0 other than 90o (while other parameters 
remain unchanged from those in Table 3), the 
results for ξ seems to still be reasonably close to 
those for θ0 = 90o, especially when µd is large. For 
example, with θ0 = 135o for µd = 5 cp (Oh = 
0.5590) and 10 cp (Oh = 1.1180) a local extremum 
appears with the peak value of contact radius Rmax = 
0.503 or ξ = 1.006 and Rmax = 0.469 or ξ = 0.938, 
which are especially close to predicted values of 
1.047 and 0.942 by (8). The value of ξ remains the 
same at 0.835 for the case of µd = 100 cp (Oh = 
11.1803) at θ0 = 135o. But for µd = 1 cp (Oh = 
0.1118) and µd = 2 cp (Oh = 0.2236), the values of 
Rmax for θ0 = 135o become 0.5985 or ξ = 1.1970 
and 0.5558 or ξ = 1.1116, which are more than 10% 
off the corresponding values in Table 3 for θ0 = 90o. 
Similarly with θ0 = 45o and µd = 1, the computed ξ 
= 1.656 is ∼ 18% off 1.399 in Table 3. Hence, the 
effect of contact angle θ0 on maximum spread 
factor ξ seems to become more noticeable at small 
values of We (e.g., We< 10), especially for less 
viscous droplets. 

As shown with the cases of We = 2500 and 100, 
bouncing tends to occur for droplet impact onto a 
hydrophobic surface. However, for We = 5 with θ0 
= 135o, droplet bouncing after impact only hap-
pens when the liquid viscosity is very low, e.g., µd 
= 1 cp (Re = 20). Thus, the simple trend of 
bouncing at relatively smaller We (e.g., Durickovic 
and Varland, 2005; Law, 2015) may not be general 
enough to cover all cases. For example, the obvious 
effect of liquid viscosity on the likelihood of 
bouncing illustrated in Fig. 8 cannot be explained 
by considering the Weber number alone. 

4. DISCUSSION 

Generally speaking, (7) and (8) seem to describe the 
maximum spread factor ξ fairly accurately over a 
wide range of parameters for high-speed 
microdroplet impact. with (8) being slightly more 
favorable in comparison with the present results. 
Noteworthy here is that many different empirical, 
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semiempirical formulas were proposed in the 
literature, with substantial discrepancies among 
each other (as illustrated by Perelaer et al., 2009; 
Ravi et al., 2010; Visser et al., 2012, 2015). After 
comparing with several of the available formulas, 
(7) and (8) are selected because their agreement 
with the present results appears to be quite 
consistent across the ranges of parameters relevant 
to Aerosol Jet®printing. However, neither (7) nor 
(8) explicitly accounts for the contact angle effect, 
which tends to become more noticeable with 
reduced We and small Ca (e.g., We = 5 and Ca < 
1). Unlike (7) and (8), the formula derived by 
Pasandideh-Fard et al. (1996) based on energy 
balance contains the contact angle θ0 as 

 
  CaWe

We

4cos13

12

0 






                    

 (9) 

Despite its discrepancy from our computed ξ, (9) 
indeed suggests that the effect of θ0 diminishes 
when Ca ×We becomes close to 100 or greater. It 
also predicts the trend of decreasing θ0 effect on ξ 
with increasing Ca (or µd ) as consistent with the 
present results. In view of the general accuracy of 
(8) and reasonable account for the trend of contact 
angle effect with (9), a straightforward combination 
of the two yields 
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For example, in the case of a droplet with d = 1 
µm, ρd = 1000 kg m−3, γ = 0.08 N m−1, and µd = 1 
cpimpacting the substrate at U = 20 m/s (We = 5 
and Ca = 0.25) and θ0 = 135o, the computed ξ = 
1.197 and that from (10) is 1.149 whereas 1.302 
from (8). If µd is increased to 2 cp (We = 5 and Ca 
= 0.5), the computed ξ = 1.112 and that from (10) 
is 1.076 whereas 1.192 from (8). With θ0 = 45o for 
µd = 1 and 2 cp (Ca = 0.25 and 0.5), the computed 
ξ are 1.656 and 1.379 while that from (10) are 
1.539 and 1.356, much improved from 1.302 and 
1.192 by (8). Thus, (10) can be a useful formula 
with improved accuracy for the range of 
parameters of interest to the Aerosol Jet® direct-
write technology. 

While ξ provides a practically useful correlation be-
tween the Feret diameter of deposited individual 
droplets on a dry substrate and the droplet diameter 
d. other dynamic outcomes of droplet impact can be 
relevant to Aerosol Jet® ink deposition, too. 
Although not computed with the present 
axisymmetric model, the splashing phenomenon 
usually observed in droplet impact with large We 
and Re is also of great importance to Aerosol Jet® 
printing for being a possible source of undesirable 
over-sprays and uncontrolled satellites. Historically, 
the first study of splashing after droplet impact was 
carried out by Worthington (1876). Splashing of 
large milk and mercury droplets onto smooth glass 

plates was observed and the corresponding 
fingering pat-terns were sketched, with the number 
of fingers increasing with both droplet size and fall 
height being noted. Several investigations on 
surface roughness effect on splashing behavior 
suggested that splashing at atmospheric pressure 
only occurs when 

2 5 s

We
K K

Oh
   with  

0.63

3.76
649s

a

K
R

    ,       (11)

                

 

where Ra denotes the nondimensional roughness 
parameter in units of d (Stow and Hadfield, 1981; 
Mundo et al., 1995; Cossali et al, 1997; Yarin, 
2006). Thus, Ks → 649 as Ra →   for a very 
rough surface, whereas Ks increases to infinity as 
Ra → 0 for an extremely smooth surface. 
However, other forms for splashing criteria had 
also been proposed in the literature (e.g., Moreira 
et al, 2010; Mandre and Brenner, 2012; Stevens, 
2014), but little agreement had been shown among 
different criteria which often contradict one 
another (Visser et al., 2015). While careful 
examining the validity of each proposed criterion 
is out of scope of the present work, (11) may be 
used as a tentative reference for a brief discussion 
here. 

For Aerosol Jet® ink droplets of d = 5 µm, Ra = 
0.1 (which leads to Ks = 665, only slightly greater 
than 649) corresponds to a roughness length scale 
(0.5 µm) around the wavelengths of visible light 
which is usually considered as a fairly smooth 
surface with most of realistic substrate surfaces. 
For caseswith U = 100 m/s (We = 2500), as those 
in Table 1, the values of K are all exceeding 649 
(or 665), ranging from 1313 for Re = 10 to 8286 
for Re = 1000. Thus, when operating at a very 
high jet® speed (e.g., U = 100 m/s) under 
atmospheric pressure, the Aerosol Jet® ink 
droplets of d = 5 µm are expected to disintegrate 
as a consequence of splashing after impacting the 
substrate. If the ink droplet d is reduced to 2 µm 
with µd = 100 cp at the same U, the value of K can 
become 437 (< 649). Even for an ink droplet of d 
= 1 µm with µd = 5 cp (for ρd = 2000 kg m−3 and 
U = 100 m/s), the value of K is 631, barely below 
the reference splashing thresh-old value 649. 
Thus, to avoid ink droplet splashing upon 
deposition in Aerosol Jet® printing with high-
speed jet, it is preferrable to keep the droplet size 
small and viscosity high (which may be 
accomplished by enabling effective in-flight mist 
solvent evaporation). 

5. CONCLUDING REMARKS 

In view of the challenges with required high 
spatial and temporal resolutions for 
experimentally analyzing the ink droplet 
deposition behavior during Aerosol Jet® printing 
(with microdroplets of d = 1 to 5 µm and U = 20 
to 100 m/s), numerical solutions for high-speed 
microdroplet impact perpendicularly onto a 
smooth solid surface are computed in the present 
work using the interFoam VoF solver of the 
OpenFOAM® CFD package. The computed 
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results illustrate droplet impact dynamics with 
lamella shape evolution throughout the spreading, 
receding-relaxation, and wetting equilibrium 
phases, consistent with what have been observed 
and described in various previous studies. This 
fact agrees with the conclusions of Visser et al. 
(2015) that the basic droplet impact behavior is 
scale-invariant; in other words, experiments with 
larger droplets at the same nondimensional 
parameter values should be able to describe the 
phenomena with much smaller droplets. When the 
droplet viscosity is relatively low, significant 
oscillations in the free-surface flow can be 
observed. But the free surface oscillatory motion 
seems to diminish as the droplet viscosity µd 
becomes relatively high. The border line between 
periodic free surface oscillations and aperiodic 
creeping to the shape of capillary eqibrium 
following spreading appearsat Oh 

 d d d    about 0.25. 

The computed results show that substrate surface 
properties such as the contact angle can 
drastically influence the dynamics of free surface 
deformation after the spreading phase. For 
example, droplet bouncing (i.e., rebound) is 
prompted with large contact angles at solid 
surface (i.e., hydrophobic surface, consistent with 
findings reported by Rio-boo et al., 2001; 
Durickovic and Varland, 2005), but its likelihood 
can be reduced by increasing the droplet viscosity 
due to enhanced kinetic energy dissipation. At 
some intermediate viscosity values, reattachmet 
of the bouncing droplet to the solid surface can 
be observed within a short time. When using a 
high-speed jet flow to direct the ink droplet 
deposition in Aerosol Jet® printing, droplet 
bouncing after impact on substrate is generally 
undesirable for causing unintended ink placement 
such as “satellite”, “overspray”, etc. 

Special attention has been paid to the value of 
maximum spread factor ξ, which can be 
accurated determined from the numerical 
solutions. For the range of parameters of practical 
interest to the Aerosol Jet® printing, the values of 
computed ξ agree quite well with the empirical 
correlation of Scheller and Bousfield (1995) 
based mostly on experimental data and the 
semiempirical relation proposed by Roisman 
(2009) based on an analytical theory for inertia 
dominated situations (with a slight modification 
of the coefficient values). Majority of the 
computed cases show insignificant variations of ξ 
with changes of contact angle θ0, as expected 
when the inertial effect dominates the spreading 
dynamics. The weak dependence of ξ on θ0, more 
noticeable at relatively small Ca and We, can be 
accounted for with a straightforward modification 
of a combined formulas of Pasandideh-Fard et al. 
(1996) and Roisman (2009). The resulting 
formula of maximum spread factor can be used 
for first-order evaluations of the Feret diameter of 
deposited individual ink droplets for Aerosol Jet® 
technology development. 
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