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The non-coding DNA in eukaryotic genomes encodes a language that programs chromatin accessibility, transcription factor 
binding, and various other activities. The objective of this study was to determine the effect of the primary DNA sequence on 
the epigenomic landscape across a 200-base pair of genomic units by integrating 127 publicly available ChromHMM BED files 
from the Roadmap Genomics project. Nucleotide frequency profiles of 127 chromatin annotations stratified by chromatin 
variability were analyzed and integrative hidden Markov models were built to detect Markov properties of chromatin regions. 
Our aim was to identify the relationship between DNA sequence units and their chromatin variability based on integrated 
ChromHMM datasets of different cell and tissue types.
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Introduction

Since large-scale epigenetic datasets such as Encyclopedia 
of DNA Elements (ENCODE) or Roadmap Genomics 
became publicly available [1, 2], there has been a growing 
interest in predicting the function of non-coding DNA 
regions directly from their sequences [3-6]. The details of 
the dynamics of chromatin state conversions among different 
cell types reported that extensive signal variation exists in 
regulatory regions [7]. And recent studies based on 
ChromHMM datasets [8, 9] provided novel insights into 
n-gram probabilistic language models for non-coding DNA 
regions stratified by chromatin variability. 

As a follow-up to our preliminary study on ChromHMM 
datasets of ENCODE [10], we extend our discoveries and 
continue ongoing efforts to build comparative nucleotide 
frequency profiles stratified by the chromatin variability. We 
hope to detect Markov properties by analyzing datasets of the 
full range of 127 cell and tissue types provided by Roadmap 

Genomics.
We investigated whether some subsets of the annotated 

Roadmap Genomics 15-state model stratified by chromatin 
variability can be predicted by purely making n-gram models 
of DNA sequences. To do that, ChromHMM blocks of human 
genome were first dissected into nucleosome resolution of 
200-bp units, which accounted for 1,965,764,166 units (127 × 
15,478,458 of 200-bp units), and they were integrated into 
one BED file. Then each individual unit was assigned one 
dominant chromatin state, by analyzing the integrated BED 
file of ChromHMM. Next based on chromatin variability of 
each 200-bp unit—referred to as occurrence frequency—the 
number of different chromatin states in ChromHMM 
annotations we divided the units into two groups for each 
chromatin state: highly variable units and invariable units. 
By using highly variable 200-bp units as our control group, 
we were able to isolate some invariable chromatin units that 
showed strong Markov properties.
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Fig. 1. Combining the 127 BED files 
into an integrated single file. 

Methods

The process is explained in detail in the following sections 
and the basic steps include: combining 127 BED files into a 
single file, sorting 200-bp units by the frequency of 
chromatin variability, filtering out highly variable 200-bp 
units, building 5th order Markov Models, and evaluating 
prediction accuracy.

Combining 127 BED files into a single file

The Roadmap Epigenomics consortium has released a 
15-state model of BED files from a joint analysis of 111 
consolidated epigenomes with 16 additional epigenomes 
from the ENCODE project [2] in total 127 BED files for 
public download [11]. We downloaded 125 ChromHMM 
BED files from the Roadmap Genomics (E001.bed through 
E128.bed files). We excluded E60.bed and E64.bed files, as 
of August 20, 2017, to build comparative nucleotide 
frequency profiles (with human genome GRCh35/hg19) to 
detect their Markov properties.

The 15-state ChromHMM model consisted of eight active 
states and seven repressed states: active transcription start 
site (TSS), proximal promoter states (TssA, TssAFlnk), a 
transcribed state showing both promoter and enhancer 
signatures (TxFlnk), actively transcribed states (Tx, TxWk), 
enhancer states (Enh, EnhG), zinc finger protein genes 
(ZNF/Rpts), heterochromatin (Het), bivalent regulatory 
states (TssBiv, BivFlnk, EnhBiv), repressed Polycomb states 
(ReprPC, ReprPCWk), and a quiescent state (Quies) [2]. 

When making 15-state ChromHMM BED files, the 
Roadmap Genomics consortium used a core set of five 
chromatin markers [2]. We investigated whether some 

subset of the annotated Roadmap Genomics 15-state model 
can be predicted by making pure n-gram models of DNA 
sequences, in reverse. To do that, ChromHMM blocks of 
human genome were initially dissected into different 
nucleosome resolution of 200-bp units and each individual 
unit was assigned one dominant chromatin state, by 
analyzing the 127 BED files of ChromHMM. 

To elaborate on our method, BED format shown at the top 
of Fig. 1 shows a flexible way to define the data lines that are 
displayed in an annotation track. The four BED fields shown 
in each of the BED file represent chrom (the name of the 
chromosome), chromStart (the starting position of the 
feature in the chromosome), chromEnd (the ending position 
of the feature in the chromosome), and state (the 15 
chromatin states of Roadmap Genomics, ranging from 1 to 
15). For example, the chromatin state of E001 in Fig. 1, for 
the block from chr1: 9,800 to chr1: 10,600 is 9 (Het 
heterochromatin state), whereas the chromatin state of 
E002 in Fig. 1, for the block from chr1: 762,000 to chr1: 
763,000 is 1 (TssA proximal promoter state).

For our study, it became critical to develop a functional 
annotation framework that could be generalized to different 
cell types. To build good predictive models in making the 
Markov models of human genomes, we modified the original 
BED files by dissecting ChromHMM blocks in each BED file 
into 200-bp units. For example, the original unit of E001 cell 
line in Fig. 1, ranging from chr1: 9,800 to chr1: 10,600 (a unit 
size of 800-bp) was dissected into four units of 200-bp 
blocks (from chr1: 9,800 to chr1: 10,000; from chr1: 10,000 
to chr1: 10,200; from chr1: 10,200 to chr1: 10,400; and from 
chr1: 10,400 to chr1: 10,600), in a new BED file. Likewise, 
the original E002 unit in Fig. 1, ranging from chr1: 762,000 
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Table 1.  Frequency distributions of some exemplary 200-bp units: highly variable vs. invariable units

Chr-
om

Chrom-
Start

Chrom-
End

1_
TssA

2_
TssA-
Flnk

3_
TxFlnk

4_
Tx

5_
TxWk

6_
EnhG

7_
Enh

8_
ZNF/
Rpts

9_
Het

10_
TssBiv

11_
Biv-
Flnk

12_
Enh-
Biv

13_
Repr-
PC

14_
Repr-
PCWk

15_
Quies

Varia-
bility 
Count

Hidden-
State

 1 78148600 78148800 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 L
 1 110881800 110882000 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 L
 2 48133800 48134000 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 L
 6 30572200 30572400 0 0 0 121 3 0 0 0 0 0 0 0 0 0 0 2 L
 6 146285400 146285600 123 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 L
 7 99070200 99070400 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 L
 7 112580000 112580200 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 L
 9 66458600 66458800 17 1 0 0 4 0 0 2 4 61 6 7 11 10 1 11 H
10 102461600 102461800 0 0 0 0 0 0 0 0 0 0 0 0 0 115 9 2 L
14 61114600 61114800 11 2 4 0 1 0 1 0 0 18 17 58 9 1 2 11 H
16 3079200 3079400 0 1 0 2 12 6 7 0 0 1 5 58 23 8 1 11 H
18 11149400 11149600 14 5 0 0 0 0 2 1 1 58 15 2 7 13 6 11 H
18 43654800 43655000 0 0 0 1 123 0 0 0 0 0 0 0 0 0 0 2 L
19 58131600 58131800 0 0 0 2 0 0 0 122 0 0 0 0 0 0 0 2 L
20 26571200 26571400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 1 L
21 28214400 28214600 6 0 49 12 14 9 5 0 0 1 0 1 6 17 4 11 H
21 28214800 28215000 9 13 51 0 6 5 9 1 0 1 1 1 12 11 4 13 H
21 38378800 38379000 20 3 0 0 1 0 5 0 1 59 11 9 7 4 4 11 H
21 38379000 38379200 18 6 0 0 1 0 4 0 1 58 11 11 6 4 4 11 H
Y 13107200 13107400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 1 L

When counting frequencies of 200-bp units, “E116”, “E117”, “E123”, “E124”, “E126”, “E127” of ChromHMM BED files were assumed 
to be a female cell line.

to chr1: 763,000 (a unit size of 1,000-bp) was dissected into 
five units of 200-bp units. Profiling nucleotide frequency 
tables by units of 200-bp is a convenient way to build a 
general framework and test various Markov properties 
simply by joining these 200-bp frequency tables differently 
for specific outcomes and resolutions.

By dissecting the units uniformly, it became possible to 
combine all the annotations spread out through 127 different 
BED files, into a single integrated BED file, as shown in the 
bottom of Fig. 1. Each row of the integrated BED file is 
composed of eighteen entries from the original BED files: 
chromosome number, unit starting number, unit ending 
number, and the number of annotation occurrences of each 
of fifteen chromatin states. For example, chr1: 12,800‒
13,000 unit in bottom of Fig. 1 shows that this specific 
200-bp unit is annotated 28 times as state 5 (TxWK), 4 times 
as state 7 (Enh), and 94 times as state 15 (Quies) throughout 
the original 127 BED files, whereas occurrence count 
numbers of all remaining chromatin states for this unit are 
zero, for the 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, and 14 states. 

Filtering out highly variable 200-bp units 

Since the details of the dynamics of chromatin state 
conversions among different cell types was reported it was 
noted that extensive signal variation exists in regulatory 
regions [7]. So, we needed a way to quantify signal variation 
in regulatory regions. Thus, we defined the unit variability 

count of chromatin states of a given 200-bp unit as the 
number of states where counts of occurrences were 
non-zero, to define and compare the observed consistency of 
each chromatin state at any given genomic position across all 
127 epigenomes.

Table 1 shows some randomly chosen highly variable and 
invariable 200-bp units of the integrated BED file, sorted by 
chromosome number. The degree of chromatin variability is 
marked as ‘H’ (high) or ‘L’ (low), as in the last column of the 
table. According to the table, the chromatin state variability 
count of unit chr14: 61,114,600‒61,114,800 unit would be 
eleven, as there were eleven non-zero states (state 1, 2, 3, 5, 
7, 10, 11, 12, 13, 14, and 15), and this unit is marked as ‘H,’ 
or highly variable. 

We reasoned that we could use variability count statistics 
and the maximum likelihood decision rule to make optimal 
classifications for the Markov model, since uniform priors 
can be assumed if we only use 200-bp units with low 
chromatin state variability. In this way, highly variable 
200-bp units where different chromatin states were 
frequently switched to other states across different tissues 
and cell types could be either eliminated, or used as controls 
in datasets, in practicing Markov models.

Fig. 2 shows statistical distribution of variability counts 
across human genomes. Human genomes are dissected into 
200-bp units from the original 15,478,458 units. Among 
them, the variability counts of 1,721,585 units were one, 
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Fig. 2. Statistical distribution of 
variability counts of each chromatin 
state of 200-bp units.

Fig. 3. Initial two-state HMMs to 
differentiate non-enriched genomic 
regions from enriched ones for each 
of the 15 chromatin states for binary 
classification.

meaning that all 127 cell lines annotated the same state in 
these 200-bp units. The variability count of chromatin states 
of 1,808,431 units was two; meaning that all 127 cell lines 
were annotated as one of two states in these 200-bp units. 

Furthermore, if a state with the number of occurrence 
count fewer than five was discarded in each of the units, the 
average variability count of chromatin states drops dramatically. 
Variability counts of less than 3 states accounted for 93.64% 
(38.59% ＋ 36.87% ＋ 18.18%) of overall 200-bp units. This 
means that most of these 200-bp units have a strong 
preference for a certain chromatin state. 

Our model should not be based on a single cell line, 
therefore; it is critical to propose a new functional 
annotation framework that can be generalized to different 
cell types. This gave us good heuristic insight to design new 
Markov models for our study. A generalizable framework can 
be achieved through statistically-justifiable models. Based 
on the newly integrated BED file, we assigned a dominant 
chromatin state for each of the 200-bp unit, as was explained 
in the previous section. In this way, it was possible to assign 
just one or two dominant chromatin states for most of the 
200bp units of the entire human genome.

Building two-state fifth order Markov models for 
each of the 15 chromatin states

A Hidden Markov model (HMM) is a probabilistic model. 
The key property of a Markov chain is that the probability of 
each symbol xi depends only on the value of the preceding 
symbol xi−1 [i.e., P(xi |xi−1)], not on the entire previous 
sequence [i.e., P(xi |xi−1, . . . , x1)].

Usually, it consists of states corresponding to a biological 
meaning (e.g., chromatin states) and allows transitions 
between these states in a biologically meaningful way. The 
model can define a probability distribution on DNA sequences 
together with chromatin states. 

Our rationale for using HMMs was that invariable units 
contained in ChromHMM chromatin states can follow a 
regulatory grammar. They do not form a short fragment of 
motifs or DNA signatures, but form as a continuous, longer 
stretch of sequences.

Thus, the 200-bp units were subdivided into 15 chromatin 
states, based on dominant states. Then, based on chromatin 
variability of each 200-bp unit, we further divided the 200-bp 
units into two groups for each of the chromatin state: highly 
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Table 2. Prediction accuracy

Chromatin 
state

1_
TssA

2_
Tss-

AFlnk

3_
TxFlnk

4_
Tx

5_
TxWk

6_
EnhG

7_
Enh

8_
ZNF/
Rpts

9_
Het

10_
TssBiv

11_
BivFlnk

12_
EnhBiv

13_
ReprPC

14_
Repr-
PCWk

15_
Quies

Precision 85.3 70.4 66.1 63.1 58.7 69.1 69.1 65.5 60.2 84.1 82.9 81.5 70.1 50.8 59.1
Recall 89.7 76.7 66.8 68.3 47.1 72.0 78.1 40.3 67.6 91.0 90.2 88.0 75.2 38.7 91.0

Values are presented as percentage.

Table 3. Average occurrence frequencies of ‘L’ HMM models for each of the 15 chromatin state

Chromatin state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Average 
occurrence 
frequencies of 
‘L’ models

110.7 68.0 20.0 109.6 114.4 36.7 73.1 56.7 90.3 26.9 27.6 28.0 81.0 89.4 124.0 

variable units and invariable units.
Fig. 3 visualizes our approach. After we assigned a 

dominant chromatin state for each 200-bp unit, the 
integrated BED file was sorted according to chromatin 
variability count and frequency counts, for each of the 15 
chromatin states. Then, for each of the fifteen chromatin 
states’ top 1,000 units (‘L’ or invariable 200-bp units) and 
bottom 1,000 units (‘H’ or highly variable units) were 
selected for each of the 24 chromosomes. By trial and error, 
we rebuilt newer Markov chains by iteratively analyzing the 
variability count of chromatin states of a given 200-bp unit. 
Samples were stratified by chromosomes into strictly 
non-overlapping training, and testing sets. A total of 
720,000 200-bp units were trained were used for training 
HMM models:

1,000 units × 2 groups × 24 chromosomes × 15 states.

And an additional 72,000 200-bp units were tested for 
prediction accuracy. Mostly, we profiled each 200-bp with 
chromatin states and built new transition tables by training 
the 200-bp blocks with chromatin variability less than 2, if 
possible. 

Results

We directly investigated whether our HMMs based on 
invariable units have the discriminating power against 
control datasets of highly variable units. As these HMMs 
could be used as a binary Naive Bayes classifier, we 
calculated the sequence of each 200-bp unit that maximized 
our Markov models. For each chromatin state, the given 
HMM tries to capture the statistical differences in the two 
hidden states of ‘H’ (High) and ‘L’ (low). As was shown in 

Fig. 3; based on nucleotide frequency profiles and given a 
random sequence x1,x2,…,xn, we calculated sequences π1,
π2,…,πn of chromatin states that maximized the probability 
between highly-variable and invariable states, for the 15 × 2 
Hidden Markov models.

Table 2 shows the prediction accuracy for the 15 chromatin 
states. We defined a correctly predicted unit as one when 
predicted results matched the dominant chromatin state of 
annotations of each of the testing units against control 
datasets or highly-variable units.

According to Table 2, HMM trained from invariable 
1_TssA-dominant units shows the highest prediction 
accuracy of 85.3%. Investigating the dynamics of chromatin 
state conversions of highly variable units, we found that 
most significant state switches are between active states. 
Among eight active chromatin states, the order of prediction 
accuracy can be sorted as follows.

1_TssA ＞ 2_TssAFlnk ＞ 6_EnhG ＞ 7_Enh ＞ 3_TxFlnk ＞ 

8_ZNF/Rpts ＞ 4_Tx ＞ 5_TxWk 

Among seven inactive chromatin states, 10_TssBiv and 
11_BivFlnk, and 12_EnhBiv showed a high precision rate 
above 90%.

These results and additional properties of the model 
suggest that n-grams related to invariant chromatin regions 
are an inherent and biologically-informative feature of the 
genome. The framework enables us to infer about 
coordinated differences in marks by studying chromatin 
state variability of 200-bp units.

Discussion

We extended our previous study of conditional character-
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ization of the Markov property of publicly available 
chromatin states by building new Markov models of the 
active chromatin states. 

Table 3 shows average occurrence frequencies of a 
dominant state of invariant units for the 15 chromatin states. 
In doing so, we found that some inactive chromatin states 
were highly constitutive and marked in most of the 127 
epigenomes. For example, state 15 (Quiescent state) 
covered on average 68% of each reference epigenome. Thus, 
the occurrence frequencies of 15_Quies state for the top 
24,000 units were all 124.0 (e.g., chr Y: 13,107,200 to chr1: 
13,107,400 units in the bottom of Table 1). This explains the 
reason why recall of state 15 was relatively high (91.0% in 
Table 2). The average frequencies for the state three and six 
were 20.0 and 36.7, respectively. These states are not usually 
in a dominant state in most of the 200-bp units, and thus are 
not appropriate for HMM models.

One limitation of our study is that when building HMM 
models from 200-bp units of DNA sequences, we did not 
consider whether the unit should be read forward or in 
reverse, at this time. We just averaged the n-gram counts of 
both cases when building emission or transition tables. 

Another limitation of our study is that the unit length is 
set at 200 base pairs without exception. The states of HMMs 
models based on chromatin states can have an explicit length 
distribution of the sequence emitted in chromatin state. 
Future HMM models should consider the DNA sequences of 
states together with emission lengths. Due to the current 
lack of data availability this is beyond the scope of this paper.

In conclusion, identifying functional regions in the human 
genome is a major goal in human genetics. N-gram models, 
including the most notable n-gram model the Hidden 
Markov model, have been extensively studied in the field of 
bioinformatics. However, the Markov property of nucleotide 
sequences associated with chromatin states at whole human 
genome scale has rarely been reported in the literature. 
Consequently, little research has been carried out to explore 
n-gram models associated with whole genome-wide 
chromatin maps. 

It is important to note that we only used DNA sequences 
contained in epigenetic datasets in modelling Markov chains. 
Our study showed that some subsets of the invariable 
chromatin states possessed strong Markov properties. 
Though our study is preliminary, it is significant in that it has 
potential to be used to construct statistical models necessary 
for developing algorithms to predict function directly from 
sequence when combined with SNPs, motifs, and other 
resources in future studies.
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