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This review focuses on the biologic importance of the vitamin D binding protein (DBP)

with emphasis on its regulation of total and free vitamin D metabolite levels in various

clinical conditions. Nearly all DBP is produced in the liver, where its regulation is

influenced by estrogen, glucocorticoids and inflammatory cytokines but not by vitamin

D itself. DBP is the most polymorphic protein known, and different DBP alleles can

have substantial impact on its biologic functions. The three most common alleles—Gc1f,

Gc1s, Gc2—differ in their affinity with the vitamin D metabolites and have been variably

associated with a number of clinical conditions. Although DBP has a number of biologic

functions independent of vitamin D, its major biologic function is that of regulating

circulating free and total levels of vitamin D metabolites. 25 hydroxyvitamin D (25(OH)D)

is the best studied form of vitamin D as it provides the best measure of vitamin D status.

In a normal non-pregnant individual, approximately 0.03% of 25(OH)D is free; 85% is

bound to DBP, 15% is bound to albumin. The free hormone hypothesis postulates that

only free 25(OH)D can enter cells. This hypothesis is supported by the observation

that mice lacking DBP, and therefore with essentially undetectable 25(OH)D levels,

do not show signs of vitamin D deficiency unless put on a vitamin D deficient diet.

Similar observations have recently been described in a family with a DBP mutation.

This hypothesis also applies to other protein bound lipophilic hormones including

glucocorticoids, sex steroids, and thyroid hormone. However, tissues expressing the

megalin/cubilin complex, such as the kidney, have the capability of taking up 25(OH)D still

bound to DBP, but most tissues rely on the free level. Attempts to calculate the free level

using affinity constants generated in a normal individual along with measurement of DBP

and total 25(OH)D have not accurately reflected directly measured free levels in a number

of clinical conditions. In this review, we examine the impact of different clinical conditions

as well as different DBP alleles on the relationship between total and free 25(OH)D, using

only data in which the free 25(OH)D level was directly measured. The major conclusion

is that a number of clinical conditions alter this relationship, raising the question whether

measuring just total 25(OH)D might be misleading regarding the assessment of vitamin

D status, and such assessment might be improved by measuring free 25(OH)D instead

of or in addition to total 25(OH)D.

Keywords: vitamin D binding protein, vitamin D, free 25(OH)D, free hormone hypothesis, megalin, polymorphisms,

liver cirrhosis, pregnancy
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INTRODUCTION

Vitamin D enters the body either from its production in the
skin or absorption from the intestine. In either case, vitamin
D must be transported to tissues such as the liver where it
is metabolized to its major circulating form, 25(OH)D, by a
variety of enzymes with 25-hydroxylase activity, the major one
being CYP2R1. 25(OH)D is then transported to tissues such as
the kidney where it gets further metabolized to its biologically
active metabolite 1,25 dihydroxyvitamin D (1,25(OH)2D) by the
mitochondrial based CYP27B1. CYP24A1, found in most tissues,
is the major enzyme catabolizing 1,25(OH)2D, thus controlling
its impact on a cell specific basis. Vitamin D binding protein
(DBP) is the key transport protein which, along with albumin,
binds over 99% of the circulating vitaminDmetabolites. Formost
cells it is the unbound 25(OH)D that enters cells (free hormone
hypothesis), but at least in some cells such as in the kidney, and
likely in the parathyroid gland and placenta, DBP participates in
the transport of the 25(OH)D into the cell via a megalin/cubilin
complex. Although our focus will be on the transport function of
DBP and how that relates to the total and free vitamin D levels
in different physiologic and pathophysiologic conditions, DBP
has a number of functions independent of its role as a vitamin
D transport protein. These functions will be briefly reviewed as
they do contribute to the role DBP plays in health and sickness
independent of its role in vitamin D transport. DBP is a highly
polymorphic protein with at least 120 isoforms distinguished by
electrophoresis. Of these, three major isoforms have received the
most interest—Gc1f, Gc1s, and Gc2. Their structural differences
affect DBP function in ways that have an impact on a number of
clinical conditions that will be reviewed.

VITAMIN D BINDING PROTEIN

Genomic Regulation
The human DBP gene is located on chromosome 4q12-q13. It
is 35 kb in length and comprised of 13 exons encoding 474
amino acids including a 16 amino acid leader sequence, which
is cleaved before release. Numerous tissues express DBP, but the
liver is the major source (1). The expression of DBP is increased
by estrogen (2) as appreciated with the rise in DBP during
pregnancy (3, 4) and with oral contraceptive administration (5).
However, the exact mechanism for this induction is not clear
as a response element for the estrogen receptor in the DBP
promoter has not been identified. Androgens, on the other hand,
do not appear to affect DBP expression (2). Dexamethasone and
certain cytokines such as IL-6 also increase DBP production,
whereas TGFβ is inhibitory (6). As for estrogen, the mechanism
underlying such regulation is unclear. However, these cytokines
and glucocorticoids are likely to play a role in the increase
in DBP production following trauma (after an initial decrease
in levels due to actin clearance, see below) (7) and acute
liver failure (8), which we will discuss subsequently. Primary
hyperparathyroidism, on the other hand, is associated with
a reduction in DBP levels, likely contributing to the lower
25(OH)D levels in these patients as the free 25(OH)D is not

reduced (9). Vitamin D itself or any of its metabolites do not
regulate DBP production (10).

Structure and Polymorphisms
Themature human DBP is approximately 58 kD in size, although
differences in glycosylation of the protein for different alleles
alter the actual size. DBP is the most polymorphic gene known.
Before the appreciation of its role as a carrier of the vitamin
D metabolites these polymorphisms in DBP were used by
population geneticists to track different populations, referring
to the protein as Gc globulin. Over 120 variants have been
described based on electrophoretic properties (11) as noted above
with 1,242 polymorphisms currently listed in the NCBI database
(12). Of these variants, the Gc1f and Gc1s (rs7041 locus) and
Gc2 (rs4588 locus) are the most common (Figure 1). Gc1f and
Gc1s involve two polymorphisms, one at aa 432 (416 in the
mature DBP) and one at 436 (420 in the mature DBP). The
1f allele encodes the sequence of aa between 432 and 436 as
DATPT, the 1s allele encodes the sequence EATPT. This subtle
difference in charge makes Gcf run faster (fast) than the Gcs
(slow) during electrophoresis. The Gc2 allele encodes DATPK
which runs slower still. Glycosylation further distinguishes the
Gc1 variants from the Gc2 variant. The threonine (T) in Gc1
binds N-acetylgalactosamine to which galactose and sialic acid
bind in tandem. The lysine (K) in comparable position in Gc2
is not glycosylated (13, 14). This affects the conversion of DBP
to DBP-MAF (macrophage activating factor), which involves a
partial deglycosylation removing the galactose and sialic acid by
the sequential action of sialidase and β-galactosidase by T and
B cells (15). The significance of this for the biologic function is
described below.

DBP is comprised of 3 structurally similar domains. The first
domain is the binding site for the vitamin D metabolites (aa 35–
49). Fatty acid binding utilizes a single high affinity site for both
palmitic acid and arachidonic acid, but only arachidonic acid
competes with 25(OH)D for binding (16, 17). The actin binding
site is located at aa 373–403, spanning parts of domains 2 and
3, but part of domain 1 is also involved (18, 19). The C5a/C5a
des Arg binding site is located at aa 130–149 (20). DBP serves
as a cochemotactic factor for C51/C5a des Arg in its regulation
of neutrophil functions (21). Membrane binding sites have been
identified in aa 150–172 and 379–402 (22).

Biologic Function
Binding to and Transport of Vitamin D Metabolites
DBP was discovered by Hirschfeld in 1959 (23), and originally
called group specific component (Gc-globulin), but it was not
until 1975 that its function as a vitamin D transport protein
was appreciated (24). In normal individuals,∼85% of circulating
vitamin D metabolites are bound to DBP. Albumin binds
∼15% of these metabolites and does so with much lower
affinity. Approximately 0.4% of total 1,25(OH)2D3 and 0.03%
of total 25OHD3 are free in serum from normal non-pregnant
individuals. The affinity of DBP for the vitamin D2 metabolites
is somewhat less than that for the vitamin D3 metabolites (25).
The designation of “bioavailable” vitaminDmetabolite is the sum
of the free vitamin D metabolite and that bound to albumin,
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FIGURE 1 | The major DBP alleles. The amino acid differences between the three major DBP alleles are depicted. These differences affect not only their

electrophoretic properties but also their glycosylation pattern. In particular Gc2 is not glycosylated, which prevents it from forming the DBP-macrophage activating

factor (DBP-MAF). Other biologic differences are discussed in the text.

thus measuring around 15% in normal individuals [review in
(26)]. However, the degree to which the albumin fraction is
truly bioavailable is not clear (27). The free hormone hypothesis
postulates that only the non-bound fraction (the free fraction)
of hormones that otherwise circulate in blood bound to their
carrier proteins is able to enter cells and exert their biologic
effects. However, at least for some tissues, a transport system
has been identified that takes up the 25(OH)D (and presumably
other vitamin D metabolites) attached to DBP. That system
involves megalin/cubilin.

The role of megalin for vitamin D metabolism was discovered
by Nykjaer et al. (28), who found extensive loss of DBP in
the megalin knockout mouse and 25(OH)D in its urine. These
mice have very poor survival rates. More recently, a kidney
specific knockout of megalin was developed with a good survival
rate, enabling longer term studies that demonstrated reduced
circulating levels of the vitamin D metabolites, hypocalcemia,
and osteomalacia (29). Cubilin, together with megalin, forms
part of the complex facilitating this transport mechanism [review
in (30)]. Other tissues express the megalin/cubilin complex
including the parathyroid gland and placenta, but its role
outside the kidney has received little interest (30). Moreover,
activated monocytes may be able to accumulate DBP by a
megalin independent process, although this too needs further
study (31, 32).

The physiologic role of DBP is well-illustrated in the DBP
knockout mouse. In these mice the vitamin D metabolites are
presumably all free and/or bioavailable as albumin levels are
normal. Unlike the megalin knockout mice, mice lacking DBP
do not show evidence of vitamin D deficiency unless placed
on a vitamin D deficient diet despite having very low levels of
serum 25(OH)D and 1,25(OH)2D and increased loss of these
metabolites in the urine (33). Tissue levels of 1,25(OH)2D were
normal in the DBP knockout mice, and markers of vitamin
D function such as expression of intestinal TRPV6, calbindin
9k, PMCA1b, and renal TRPV5 were maintained. Moreover,
injection of 1,25(OH)2D into these DBP knockouts showed a

more rapid increase in the expression of Cyp24A1, TRPV5,
and TRPV6 than in DBP intact controls (34). However, on
a vitamin D deficient diet they quickly developed vitamin D
deficiency. More recently, a family has been described to have
a mutation in the DBP gene deleting it from the homozygous
patient and decreasing its concentration to 50% of normal
in a heterozygous sibling (35). The homozygous patient had
nearly undetectable levels of total 25(OH)D, although the free
concentration measured directly was comparable to that of
the normal sibling, as was that of the heterozygote sibling.
Parathyroid hormone, calcium, and phosphate were all normal.
Thus, DBP does not appear necessary for getting the vitamin D
metabolites into cells, supporting the free hormone hypothesis,
but DBP clearly serves as a critical reservoir for the vitamin
D metabolites, reducing the risk of vitamin D deficiency when
intake or epidermal production is limited.

The DBP alleles have been reported to differ in their affinity
to 25(OH)D. Gc1f was initially reported as having the highest
affinity and Gc2 the lowest among the common alleles (36),
but results from other laboratories have not confirmed these
differences, and the results from later studies themselves are
inconsistent (37, 38). In one such study evaluating the half life of
25(OH)D in serum, subjects homozygous for the Gc1f allele were
found to have the shortest half life indicating a reduced affinity
(39). On the other hand, serum containing the Gc1f variant of
DBP reduced the ability of 25(OH)D and 1,25(OH)2D to induce
cathelicidin in monocytes more than that of serum with the Gc2
allele, suggesting the opposite order of affinity (31). Schwartz
et al. (40) recently reported that DBP haplotype had significant
effects on total 25(OH)D, free 25(OH)D, and DBP levels. The
lowest total and free levels of 25(OH)D were seen with the Gc
2/2 haplotype which also tends to have the lowest DBP levels.
Other studies have also found lower total 25(OH)D levels in
subjects with the Gc2 allele (41–45). The reason the Gc2 allele
is associated with lower DBP levels is unknown. DBP haplotype
also affected percent free 25(OH)D. The lowest free percentage
was seen with the 1s/1s haplotype and the highest one with the
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1f/1f haplotype, suggesting that in this survey the Gc1s allele
had a higher affinity for 25(OH)D than the Gc1f allele, with
the Gc2 allele in between. Furthermore, the different Gc alleles
affect the response to vitamin D supplementation. Individuals
with the Gc2 variant have been shown to respond to vitamin
D supplementation with a more robust increase in 25(OH)D
(46). Moreover, within the Gc2 polymorphic region (rs4588),
individuals in an Iranian population with an AA genotype within
this polymorphic region showed a greater increase in 25(OH)D
levels following vitamin D supplementation than those with
the GG genotype did (47). Similar results were found with a
different polymorphism at rs2282679 in Caucasian women (48).
Rs2282679, an intronic polymorphism in the DBP gene that
does not alter DBP structure, was previously shown in GWAS
studies to be associated with lower 25(OH)D and DBP levels in
several different populations (49–51). The clinical significance
of these allelic differences is unclear. Differences in these alleles
were not found to contribute to a difference in fracture rate
in a large study including African Americans and Caucasians
(52) or other calcemic and cardiometabolic diseases in the
Canadian Multicentre Osteoporosis Study (50). However, as
reviewed by Malik et al. (13) and Speeckaert et al. (53), a large
number of chronic diseases including type 1 and 2 diabetes
(54–56), osteoporosis (57–59), chronic obstructive lung disease
(60), endometriosis (61), inflammatory bowel disease (62),
some cancers (63–66) [although see (66–68)], and tuberculosis
(69) have been associated with DBP variants. Other SNPs at
rs4588 have been associated with susceptibility to the metabolic
syndrome (70). At the Gc1 locus (rs7041) the G allele is associated
with increased susceptibility to hepatitis C viral infection (71).
Karras et al. (72) has summarized a number of studies showing
the impact of DBP andDBP polymorphisms on various outcomes
of pregnancy. These studies demonstrate the recent interest in
the impact of polymorphisms on DBP function, but it remains
to be seen whether these initial results will be generalized across
different populations.

Actin Scavenging
A major function of DBP that has received considerably less
interest than that of vitamin D metabolite binding is its role
in actin scavenging. Following trauma (7), sepsis (73–75), liver
trauma (8, 76, 77), acute lung injury (78), preeclampsia (79),
surgery (80, 81), and burn injuries (82), large amounts of
actin are released from the damaged cells forming polymerized
filamentous F-actin that, in combination with coagulation factor
Va, can lead to disseminated intravascular coagulation and
multiorgan failure unless cleared (83). The actin scavenging
system consists of gelsolin and DBP. Gelsolin depolymerizes F-
actin to G (globular) actin. DBP, with its high affinity for G-actin
(Kd = 10 nM), prevents the repolymerization and clears it from
the blood (84, 85). No clear difference among the major DBP
variants has been observed regarding binding to G-actin (53).
The DBP-actin complexes are rapidly cleared (half life in blood
approximately 30min) (81), primarily by the liver, lungs and
spleen. These tissues have receptors for the DBP-actin complexes
(86). The acute conditions result in a fall in DBP levels, potentially
decreasing the bioavailability of the vitamin D metabolites (8, 87,

88), with a rise in the DBP-actin complexes (7, 73, 77, 78). The
ability of the organism to respond to the insult by increasing DBP
production is correlated to survival (7, 8, 89), and has led to the
consideration of the use of DBP therapeutically (90, 91).

Neutrophil Recruitment and Migration With

Complement 5a (C5a) Binding
Neutrophil activation during inflammation increases their
binding sites for DBP (92), and DBP binding to these sites
facilitates C5a induced chemotaxis (21) as well as other
chemoattractants such as CXCL1 during inflammation (93).The
interaction with C5a involves residues 130–149 of DBP, a region
which is common to all major DBP alleles (20), and no difference
in these alleles has been found with respect to their promotion of
C5a mediated chemotaxis (21). Binding of 1,25(OH)2D but not
25(OH)D blocks the promotion by DBP of C5a activity (94).

Fatty Acid Binding
DBP binds fatty acids but with lower affinity (Ka= 105-106M−1)
than albumin and via a single binding site (16, 95). Most of the
fatty acids binding to DBP are mono-unsaturated or saturated,
with only 5% poly-unsaturated. However, only poly-unsaturated
fatty acids such as arachidonic acid and linoleic acid compete
with vitamin D metabolites for DBP binding (17, 96). This
suggests that the different fatty acids alter the configuration
of DBP affecting the binding of the vitamin D metabolites
rather than directly competing with the vitamin D metabolites
for their binding site. The role of DBP in fatty acid transport
appears limited.

Formation of the DBP-Macrophage Activating Factor

(DBP-MAF) and its Functions
As described above, DBP-MAF is formed from certain alleles
(Gc1s and 1f) of DBP following deglycoslyation during
inflammatory processes (97). These deglycosylation steps are
required for the role of DBP in macrophage activation (15), but
further removal of the N-acetyl-galactosamine (NaGal) reduces
this activity (98). DBP-MAF is able to activate osteoclasts (99)
independent of its 25(OH)D binding function, and it has been
shown to stimulate bone resorption in the osteopetrosis (OP)
and the incisor absent (IA) rat (100). DBP-MAF has also shown
efficacy in a number of tumor models (101–103). Removal of
NaGal by α-NaGalase blocks DBP-MAF formation contributing
to the loss of immunosuppression in cancer patients (104). α-
NaGalase is produced in the liver, and appears to be directly
related to tumor burden (105). Preparations of DBP-MAF may
have therapeutic potential (14).

FREE HORMONE HYPOTHESIS

As previously noted, the free hormone hypothesis postulates that
only the non-bound fraction (the free fraction) of hormones
that otherwise circulates in blood bound to their carrier proteins
is able to enter cells and exert their biologic effects (Figure 2).
Examples include the vitamin D metabolites, which we are
discussing in this review, sex steroids, cortisol, and thyroid
hormone. These are lipophilic hormones assumed to cross
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FIGURE 2 | The Free Vitamin D hypothesis. As noted in the text, vitamin D (OH) metabolites are bound to D Binding Protein (DBP) and to a lesser extent albumin in

the circulation. These cross the cell membrane as the free (unbound) metabolite in most tissue. However, In the kidney, parathyroid gland, and placenta, the

megalin/cubilin complex can transport bound D (OH) metabolites into cells.

the plasma membrane by diffusion and not by an active
transport mechanism. One of the earliest clinical examples
leading to the formulation of the free hormone hypothesis
came from observations by Recant and Riggs (106) that patients
with protein losing nephropathy developed quite low levels of
thyroid hormone (PBI) along with increased urinary losses but
without evidence of hypothyroidism. Subsequent studies have
established the free hormone hypothesis for the thyroid and
steroid hormones (107, 108), and measurements of the free
concentrations of thyroid hormone, estrogen, and testosterone
are standard practice. As will be discussed subsequently, this is
likely to become the case for free 25(OH)D. As noted earlier,
mice lacking DBP lost substantial amounts of the vitamin
D metabolites in the urine with marked reductions in their
circulating levels of 25(OH) D, but they did not develop evidence
of rickets until put on a low vitamin D diet. Such results indicate
the importance of the free fraction of 25(OH)D for biologic
functions and the role of DBP as a circulating reservoir (33).

To address the clinical relevance of the free hormone
hypothesis for vitamin D metabolites, a method to measure
the free concentration needed to be developed. This was
originally performed by centrifugal ultrafiltration to directly
determine the free levels of 25(OH)D and 1,25(OH)2D (109,
110) in various clinical situations. However, this method is
labor intensive and has recently been replaced at least for
free 25(OH)D by a two-step ELISA that directly measures
free 25(OH)D (Future Diagnostics Solutions B.V., Wijchen,
Netherlands) using monoclonal antibodies from DIAsource
Immunoassays (Louvain-la-Neuve, Belgium). The antibody in

the current assay does not recognize 25(OH)D2 as well as
25(OH)D3 (77% of the 25(OH)D3 value), so underestimates
the free 25(OH)D2. However, under most situations where
the predominant vitamin D metabolite is 25(OH)D3, the data
compare quite well to those obtained from similar populations
using the centrifugal ultrafiltration assay (111, 112). The initial
studies with the centrifugal ultrafiltration method established
affinity constants for DBP and albumin binding to 25(OH)D and
1,25(OH)2D in a healthy young adult (DD Bikle) and may not
be generalizable to a broad range of individuals from different
ethnic backgrounds or in different clinical conditions. However,
prior to the development of a high throughput ELISA assay to
measure the free concentration directly, these affinity constants
proved useful in calculating the free concentrations (113, 114)
from measurements of DBP, albumin and the total vitamin D
metabolite of interest according to the formula:

free vitamin D metabolite =
total vitamin D metabolite

1+
(

Kaalb∗albumin
)

+ (KaDBP∗DBP)

As noted previously, the affinity of 25(OH)D for albumin is
much less that than for DBP, leading some to consider albumin-
bound 25(OHD) to be essentially “free” or “available” and define
“bioavailable 25(OH)D” as free 25(OH)D plus albumin-bound
25(OH)D. Given that the albumin bound 25(OH)D (15%) is
considerably higher than the free level (0.03%), this would imply
that approximately 500 times as much 25(OH)D is available to
cells than if only the free fractions were available. There is little
evidence to support albumin bound 25(OH)D as being readily
available to cells.
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In sera from normal healthy younger individuals, the
calculated values of free 25(OH)D and 1,25(OH)2D using
DBP measured with polyclonal antibodies correlate reasonably
well with the directly measured free levels using centrifugal
ultrafiltration for both metabolites or the ELISA assay for
25(OH)D. However, when applied to clinical populations with
altered DBP levels either during physiologic (e.g., pregnancy)
or pathologic (eg. liver disease) conditions, the calculated values
no longer are consistent with those measured directly by either
centrifugal ultrafiltration or the newly developed ELISA (115).
Part of this is due to the disparity between assays for both
the vitamin D metabolite (e.g., 25(OH)D) and DBP, each of
which have generally relied on immunoassays. However, mass
spectroscopy is becoming the gold standard for measurement
of the vitamin D metabolites (116, 117) and is being developed
for the measurement of DBP and its various isoforms as well
(42, 118). The adoption of mass spectroscopy should reduce the
variation in these measurements from different laboratories. But
a major problem in attempting to calculate the free fraction of
vitamin D metabolites is the assumption that all DBP alleles
have the same affinity for the vitamin D metabolites, and that
this is invariant under varying clinical conditions. As noted
previously, the rank order of affinity of the different alleles for the
vitaminDmetabolites remains controversial, but differences have
been found. Regardless, these potential differences in measured
affinity do not begin to explain the large differences between the
calculated and directly measured free metabolite levels in various
disease states (40). Although there are statistically significant
correlations between calculated and directly measured free
25(OH)D, the relationship accounts for only 13% of the variation.
Calculated free 25(OH)D concentrations are consistently higher
than directly measured concentrations in a variety of studies,
such as those performed during the third trimester of pregnancy
and in patients with liver disease or cystic fibrosis (115, 119–
122). These studies suggest changes in the affinity of 25(OH)D
to DBP independent of allelic variations in at least some of these
clinical conditions.

CLINICAL STUDIES

Healthy Populations
Determinations of free 25(OH)D concentrations in healthy
populations show highly significant correlations with total
25(OH)D concentrations whether measured directly or
indirectly. Assays to directly measure free 25(OH)D are not
currently available for use in clinical care but have been used
in research investigations. As noted above, calculated 25(OH)D
values are usually higher than when measured directly, which
is based on multiple unsubstantiated assumptions such that
results obtained with the two methods can differ markedly in
different clinical conditions. For these reasons only results from
studies with directly measured free 25(OH)D will be discussed.
When measured with the direct immunoassay, free 25(OH)D
levels have been reported to be between 0.02 and 0.09% of
total 25(OH)D concentrations and generally range from 0.5
to 8.1 pg/mL in 95% of healthy adults (Figure 3). However,
clinical conditions that alter either DBP, the affinity of DBP for

FIGURE 3 | Distribution of free 25(OH)D in Adults and Selected Patient

Groups. Distribution of directly-measured free 25(OH)D in normal adults (in

green), pregnant women (pink), cirrhotics (orange), and nursing home

residents (gray). Distributions are shifted leftward toward lower free 25(OH)D

concentrations in pregnant women in the 2nd and 3rd trimesters concordant

with increased DBP while decreased synthetic function and DBP in cirrhotics

shifts free 25(OH) concentrations to the right toward higher levels. The

mechanism for higher free 25(OH) concentrations in Nursing home residents is

likely related to D supplementation, somewhat lower, albumin, and the

pro-inflammatory state of frailty. Figure generated form data in

Schwartz et al. (40).

25(OH)D metabolites or albumin, or disposition of vitamin
D, may alter free 25(OH)D concentrations or relationships
between free and total 25(OH)D concentrations. In this regard,
a number of medications, hormones, and smoking have been
shown to affect DBP levels (123). Thus, as shown in Figure 3, the
free concentration of 25(OH)D varies among different clinical
conditions. DBP haplotypes have also been hypothesized to
alter the affinity between total 25(OH)D and free 25(OH)D,
although, as shown in Figure 4, the variation in percent
free 25(OH)D levels is less affected by DBP haplotype than
clinical condition.

Free 25(OH) D in Conditions That Alter DBP
Pregnancy
As pregnancy progresses there are time dependent changes
in DBP with almost two-fold increases between the second
and third trimesters. Despite these marked DBP changes,
mean free 25(OH)D may be the same as or only slightly lower
than in non-pregnant women but with less variability than
in other groups (40, 124). The slope of the free 25(OH)D
vs. total 25(OH) D relationship, however, is significantly
less steep than in healthy individuals. The same conclusion
was drawn from earlier studies with measurements of free
1,25(OH)2D (109). These results suggest that the affinity
of DBP for vitamin D metabolites is decreased during
pregnancy, perhaps compensating for increased DBP
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FIGURE 4 | Percent free 25(OH)D in adults by clinical condition or DBP Haplotype. Percent free 25(OH)D concentrations for selected clinical groups on the left panel

(community outpatients, NH=nursing home patients, cirrhotics, pregnant women, prediabetics, and normal individuals) and by DBP haplotype on the right . Boxplots

show 10th, 25th, median, 75th, and 90th percentile values. Individual points represent values above the 90th and below the 10th percentiles. Both clinical subgroup

and DBP genotype significantly effect percentage free 25(OH)D. Between group comparisons for clinical conditions were significant for all but healthy persons

compared with pregnant women or outpatients, or for pregnant women compared with outpatients. For DBP haplotypes, smaller but significant differences were

detected between the 1s/1s haplotype and the 1s/1f,1f/2, 1f/1f, and 1s/2 haplotypes and between the 1s/2 and 1f/2 and 1f/1f haplotypes and between the 1s/1f and

1f/1f haplotypes. Data are reproduced with permission from Schwartz et al. (40).

concentrations and the needs of both the mother and fetus
for calcium.

Liver Disease
Liver diseases that are associated with impaired protein synthetic
function such as cirrhosis and acute liver failure result in
reductions in DBP and albumin. In addition, the relationship
between free 25(OH)D and total 25(OH)D is significantly steeper
in patients with cirrhosis than in healthy people indicating altered
affinity of DBP for 25(OH)D (40) (Figure 4). The net result
is that directly measured free 25(OH)D is higher and shows
greater variability in patients with cirrhosis compared to healthy
individuals and stable outpatients with other chronic conditions
(40, 110, 115) despite lower total 25(OH) D concentrations.
Results regarding the effects of cirrhosis or acute liver failure
on the relationship of total to free 25(OH)D are consistent,
creating a strong argument for assessment of free 25(OH)D to
assess vitamin D status in the presence of liver pathology as total
25(OH)D measurements may be misleading.

Renal Disease
Nephrotic syndrome, acute renal failure, acute tubular necrosis,
or chronic kidney disease associated with renal tubular necrosis
may have decreased transport capacity for DBP from the
glomerular filtrate into the renal tubules. Heavy proteinuria
can lead to loss of DBP as well as 25(OH)D in the urine as
the maximal transport capacity of the megalin/cubulin system
is saturated. Reports in the literature have not included direct
measurement of free 25(OH)D in these conditions, but a small
study of nephrotics showed lower total and free 1,25(OH)2D
compared to people with normal renal function (125).

Clinical Conditions Not Associated With
Altered DBP Levels
Obesity
High BMIs are associated with reductions in total and free
25(OH)D but not DBP or elimination of half-life measurements
of 25(OH)D (126). The underlying mechanism for these changes
is unknown but may be related to the pro-inflammatory state
and circulating cytokines present in obesity, although increased
volume of distribution (into fat) has also been invoked.

DBP Haplotypes
Investigations using direct measurements of free 25(OH)D have
detected statistically significant but not marked differences in free
25(OH)D concentrations between healthy individuals with the
six common DBP haplotypes (Figure 4). This is in contrast to the
marked differences between haplotypes reported with calculated
free 25(OH)D levels (122, 127). As noted previously with directly
measured free 25(OH)D, the lowest free 25(OH)D is seen with
the Gc 2/2 haplotype and the highest levels with the 1s alleles. Per
cent free was highest with the 1f/1f haplotype in our studies (40)
(see Figure 4).

Nursing Home Subjects
In a vitamin D dose titration study (128) of nursing home
residents, who are older, have more chronic co-morbidities, and
receive more medications than younger people or community-
dwelling elderly, free 25(OH)D levels rose along with increases
in total 25(OH)D. The per cent free was higher than in younger
adults. Relationships between free and total 25(OH)D were also
steeper than those of normal subjects or younger outpatients
suggesting altered affinity of 25(OH)D to DBP in this group.
Slightly lower albumin concentrations may have also had a
small contribution. Inflammation and/or elevated cytokines that
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accompany very old age or multiple morbidities may have
also contributed to altered affinity of 25(OH)D to DBP in this
group (129).

Associations With Markers of Vitamin D Biologic

Function
PTH is generally found to be negatively correlated with
free 25(OH)D as well as total 25(OH)D. Reports variably
conclude that one or the other shows a slightly more
significant relationship, but neither explains more than a small
amount of the variability in the relationship. Moreover, if
the megalin/cubilin complex is operative in the parathyroid
gland as it is in the kidney, PTH levels may not be able to
distinguish between free and total 25(OH)D with respect to
biologic action. However, further insight into the impact of free
vs. total 25(OH)D on PTH levels may be gained from several
recent studies showing that with high dose D supplementation,
changes in iPTH were significantly related to changes in directly
measured free 25(OH)D but not to changes in total 25(OH)D
(128, 130, 131), suggesting that free 25(OH)D might be a better
marker of the biologically available fraction at higher total
25(OH)D concentrations or when 25(OH)D is changing. Data on
relationships between directly measured free 25(OH)D and bone
density or markers of bone turnover are inconsistent.

Other Conditions
There are limited data on the effect of oral contraceptives or
hormone replacement therapy with estrogen, but free 25(OH)D
levels and relationships between total and free 25(OH)D do not
appear to be significantly influenced by the use of these agents
at currently prescribed dosages and routes of administration.
Similarly, stable medical conditions such as hypertension,
prediabetes, diabetes, osteoporosis, or mild renal disease do
not appear to significantly alter relationships between free and
total 25(OH)D.

Summary of Clinical Studies
The impact of clinical conditions on free 25(OH)D is that the
absolute level, the percent free 25(OH)D and the relationship
between free and total 25(OH)D concentrations, differ in
pregnant women, 336 people with cirrhosis, and elderly people
with multiple morbidities compared to normals or community-
dwelling outpatients. These relationships are affected to a much
smaller extent by BMI in all groups. It is key that while DBP
haplotype variation is associated with differences in per cent free

25(OH)D, the DBP haplotype effects are far smaller in magnitude
than those of pregnancy, cirrhosis, or very old nursing home
residents with multiple chronic conditions. Thus, total 25(OH)D
measurements may be misleading in persons with altered total-
to-free relationships, although for other clinical conditions
the relationship between total and free 25(OH)D may be
less affected.

CONTRIBUTION TO THE FIELD

25(OH)D measurements in the blood currently provide the
standard assessment of vitamin D status. Nearly all 25(OH)D
circulates as the bound form, with the vitamin D binding protein
(DBP) accounting for approximately 85% of the binding, with
albumin accounting for most of the rest. However, it is the very
small percentage that is not protein bound (0.03% in normal
individuals) that is able to cross the membrane of most cells.
Conditions that alter levels of DBP or its binding to 25(OH)D
alter the relationship between free and total levels. If the free
concentration provides a more accurate assessment of vitamin D
status, measuring only total 25(OH)D levels may be misleading
in situations where the relationship between total and free
25(OH)D levels is altered as in liver disease and pregnancy or in
individuals with different DBP alleles. This review examines the
impact of different DBP alleles and clinical conditions that do the
relationship between free and total 25(OH)D levels, concluding
that in a number of clinical situations measuring the free level
may provide a better index of vitamin D status than total levels in
such situations.
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