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An autonomous robot performing tasks in a human environment needs to recognize

semantic information about places. Semantic mapping is a task in which suitable

semantic information is assigned to an environmental map so that a robot can

communicate with people and appropriately perform tasks requested by its users.

We propose a novel statistical semantic mapping method called SpCoMapping,

which integrates probabilistic spatial concept acquisition based on multimodal sensor

information and a Markov random field applied for learning the arbitrary shape of a place

on a map.SpCoMapping can connect multiple words to a place in a semantic mapping

process using user utterances without pre-setting the list of place names. We also

develop a nonparametric Bayesian extension of SpCoMapping that can automatically

estimate an adequate number of categories. In the experiment in the simulation

environments, we showed that the proposed method generated better semantic maps

than previous semantic mapping methods; our semantic maps have categories and

shapes similar to the ground truth provided by the user. In addition, we showed that

SpCoMapping could generate appropriate semantic maps in a real-world environment.

Keywords: semantic mapping, spatial concept, Bayesian model, unsupervised learning, symbol emergence in

robotics, ROS

1. INTRODUCTION

An autonomous robot performing tasks in our daily environment needs to recognize semantic
information regarding the place. For example, when an autonomous vacuum cleaner robot tries
to understand a command given by its user, e.g., “clean Joseph’s room,” the robot needs to be able
to locate “Joseph’s room” on its map of the environment in order to clean that place. In addition,
the places estimated by the robot need to have a region dealing with the shape of the environment.
Semantic mapping is the task through which suitable semantic information is assigned to a robot’s
map so that it can communicate with people and appropriately perform tasks requested by its
users (Kostavelis and Gasteratos, 2015).

Vocabulary used in daily human life depends on the environment a person is in, such as their
home or office; a robot is unable to completely understand this, including words used to describe it,
because the symbol system itself is a dynamic one (Taniguchi et al., 2016c). Many previous studies
on semanticmapping (Kostavelis andGasteratos, 2015; Goeddel andOlson, 2016; Sünderhauf et al.,
2016; Himstedt and Maehle, 2017; Brucker et al., 2018; Posada et al., 2018; Rangel et al., 2019) have
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been conducted based on the assumption that a list of labels
such as place names can be used as pre-existing knowledge;
thus, they have been unable to estimate the meaning of place
understood by a robot when is given a command including
an unknown place name like “Joseph’s room.” To deal with
various environments by adapting semantically to them, and
to collaborate with people, a semantic mapping method that
can deal with unknown words uttered by users is crucial for
service robots used in daily life. Therefore, this study proposes
a novel statistical semantic mapping method called spatial
concept formation-based semantic mapping (SpCoMapping) to
address these issues. An overview of the SpCoMapping is shown
in Figure 1.

Semantic mapping has been studied as a method to expand
maps obtained using simultaneous localization and mapping
(SLAM) into those including words. However, previous semantic
mapping methods have three disadvantages.

FIGURE 1 | Overview of SpCoMapping. The robot moves around in the environment to obtain RGB data, words, and self-position data. It then learns spatial

concepts by integrating multimodal information with a Markov random field and generates a semantic map.

1. The first is the overwrite problem, which is caused when
the method overwrites the labels painted in previous cycles.
For example, the image recognition results obtained when
entering a room from the corridor and when leaving the room
are different, even though the position is the same, because
the visual images obtained by the robot are different in the two
scenarios. Therefore, somemethods overwrite the labels of the
cells on the map that were generated on entering the room
with new ones generated when the room is exited. However,
this information should not merely be overwritten but should
be stored statistically. Our proposed method solves this
problem by modeling the room using semantic information
from each cell on the map as a probabilistic variable.

2. Second, semantic maps generated by many previous methods
are based solely on a single source of information, for example,
depth or visuals. However, it can hardly be believed that people
distinguish regions of a house semantically based on single
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sources of information. The regions and types of semantic
categories on a semantic map formed in an environment
should not only be influenced by one type information; it
should also respond to multimodal information such as visual
and location data, user utterances, and even other modalities
such as sounds and smells. Our proposed method solves this
problem by using a multimodal categorization method as part
of the probabilistic generative model.

3. Third, many previous methods needed a list of place names
to be set. However, we cannot expect all place names and
features in our daily environment to be stored in the training
dataset. For example, we cannot expect a training dataset
generated for a typical house to include information on a
particular person’s room, e.g., “Joseph’s room.” In contrast,
our unsupervised learning method is based on a hierarchical
Bayesian model that can acquire words related to places from
sources such as user utterances. Therefore, it can obtain a
vocabulary of words corresponding to a place along with their
probability distributions.

A typical previous method is semantic mapping based on
convolutional neural network (CNN) (Sünderhauf et al., 2016).
Sünderhauf et al. (2016) proposed amethod of semantic mapping
with CNN that could convert RGB visual data into semantic
labels. Image recognition results were used as semantic labels for
mapping, and a robot painted the map generated by SLAM with
the labels obtained by the CNN. This simple visual recognition-
based approach also has the same problems.

Spatial concept formation methods have been developed to
enable robots to acquire place-related words as well as estimate
categories and regions (Ishibushi et al., 2015; Taniguchi et al.,
2016b, 2017, 2018). These methods can estimate the number
of categories using the Dirichlet process (Teh et al., 2005).
Taniguchi et al. (2016b) proposed a nonparametric Bayesian
spatial concept acquisition method (SpCoA). However, although
spatial concept formation methods can acquire unknown words
and deal with multimodal information, including the image
features typically extracted using CNNs, they cannot perform
semantically segment a map appropriately because the position
distributions corresponding to semantic categories are modeled
by Gaussian distributions. These methods cannot model the
various shapes of regions on semantic maps. In our method, we
adopt a Markov random field (MRF) to deal with various shapes
on the semantic maps.

SpCoMapping integrates probabilistic spatial concept

acquisition (Ishibushi et al., 2015; Taniguchi et al., 2016b) and

SLAM via an MRF to generate a map of semantic information.
It solves the overwrite problem by assigning each cell of
the semantic map a probabilistic variable. It also deals with
multimodal information using a multimodal categorization
method as part of the probabilistic generative model. In addition,
it does not need to set place names because we employ an
unsupervised learning method that can acquire words related to
places. Here, an unknown word implies that the word is not yet
grounded in the map. In other words, the robot does not know
the words related to a specific place on the map beforehand.
Unknown word discovery from spoken sentences was performed

in SpCoA (Taniguchi et al., 2016b); therefore, we obtained word
information from sentences or words given in the experiment
of this paper.

SpCoMapping has the following characteristics to solve the
problems discussed above.

1. SpCoMapping can solve the overwrite problem.
2. Each region on the semantic map can have an arbitrary shape.
3. The semantic map is generated on the basis of also word

information obtained through human-robot interactions as
well as visual information, i.e.,multimodal information.

4. SpCoMapping can relate multiple words to one place, without
pre-setting the list of place names, using the semantic
mapping process.

5. SpCoMapping can estimate the number of semantic categories
using the Dirichlet process (Teh et al., 2005) as the prior
distribution for semantic categories.

SpCoMapping was tested in two experiments, in simulation and
in the real-world environment.

The remainder of this paper is organized as follows. Section 2
introduces existing semantic mapping and spatial concept
acquisition methods. Section 3 describes our proposed method.
Section 4 shows the results of the experiment conducted in
a simulation environment. Section 5 shows the results of the
experiment conducted by placing a robot in a daily human
environment. Finally, section 6 concludes this paper.

2. RELATED WORK

2.1. Semantic Mapping
The task of semantic mapping includes map segmentation and
place recognition. Map segmentation is a task that categorizes
places by hypothesizing that regions can be found by looking at
the layout of free space (Fermin-Leon et al., 2017; Mielle et al.,
2018; Tian et al., 2018). Mielle et al. (2018) proposed a method
for segmenting maps from different modalities, which are able
to use for robot-built maps and hand-drawn sketch maps. Place
recognition is a challenging task for a robot; however, with CNNs
and a large scene dataset, robots can understand places using
image information (Guo et al., 2017; Xie et al., 2017; Xinhang
et al., 2017; Wang et al., 2018b). Wang et al. (2018b) applied
CNNs for omni-directional images for place recognition, and that
result was used to allow robots to navigate.

Some studies on semantic mapping using two-dimensional
(2D) maps such as topological maps (Garg et al., 2017; Liao
et al., 2017; Pronobis and Rao, 2017; Luperto and Amigoni,
2018; Wang et al., 2018a) and occupancy grid maps (Goeddel
and Olson, 2016; Sünderhauf et al., 2016; Himstedt and Maehle,
2017; Brucker et al., 2018; Posada et al., 2018; Rangel et al.,
2019), were also conducted. Wang et al. (2018a) proposed
a method that constructed a topological semantic map to
guide object search. In addition, some studies attempted to
provide methods that could correct topological semantic maps
by mitigating the effects of noise or incorrect place recognition.
Zheng et al. (2017, 2018) proposed a method that used
graph-structured sum-product networks. They showed that this
technique generates a semantic map from the results including
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incorrect nodes in place recognition. However, managing
tasks like cleaning a room, which needs a place region, is
difficult when a robot uses topological maps. Sünderhauf
et al. (2016) employed a CNN to recognize place categories
using visual information (i.e., RGB data) and laser-range
data to build maps on which place categorization results are
shown. They used the Places205 dataset (Zhou et al., 2014)
to train the CNN, so that did not require environment-
specific training. Unfortunately, this method could not deal with
semantic information that was not included in the pre-existing
training dataset.

In addition, three-dimensional (3D) semantic mapping
in an indoor environment was studied in terms of
performing tasks such as grasping or detecting an object
simultaneously (Antonello et al., 2018; Li et al., 2018; Sun
et al., 2018). Antonello et al. (2018) proposed a method that
constructed a 3D semantic map online using the result of
semantic segmentation. In addition, some studies assume that
place categories are generated by objects in that environment
and build semantic maps with object features (Stückler et al.,
2015; Sünderhauf et al., 2017). Sünderhauf et al. (2017) proposed
a method that built environment maps that included object-level
entities and geometrical representations. They employed a

single-shot multi-box detector (Liu et al., 2016) to detect objects
and 3D SLAM to generate environment maps.

In this paper, we propose amethod that generates 2D semantic
maps. This is because 2D semantic mapping is challenging and
a 2D semantic map can be applied to the autonomous vacuum
cleaner robot.

2.2. Spatial Concept Formation
Taniguchi et al. (2016a) proposed a method that estimated
words related to places and performed self-localization by
Monte Carlo localization (MCL) simultaneously. Ishibushi
et al. (2015) proposed a self-localization method that integrated
semantic information obtained from image recognition
performed by a CNN, following an idea proposed by Taniguchi
et al. (2016a). Taniguchi et al. proposed SpCoA and an
extension (Taniguchi et al., 2016b, 2018) that integrated a
generative model for self-localization and unsupervised word
segmentation in uttered sentences via the latent variables
related to the spatial concept. However, all spatial concept
acquisition methods assumed that the position information
of each spatial region expressed a Gaussian distribution, i.e.,
that each semantic region had an ellipse-like shape. Therefore,
these methods sometimes showed that the regions estimated

FIGURE 2 | Flow diagram of SpCoMapping. The robot gets histograms of word features from bag-of-words information, histograms of image feature from CNN

trained using the Places205 dataset (Zhou et al., 2014) and its position from the result of self-localization. We adopt word and image features and robot position for a

multimodal categorization method and visualize indices of spatial concepts as a semantic map.
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based on the Gaussian distribution exceeded the area of a
room. In contrast, SpCoMapping allows for arbitrarily shaped
regions by adopting an MRF that takes the shape of the
environment into account.

In addition, Taniguchi et al. (2017) proposed an online
spatial concept acquisition and simultaneous localization and
mapping (SpCoSLAM) method that integrates visual, position,
and speech information and performs SLAM and lexical
acquisition simultaneously. The complete learning process was
performed online. Hagiwara et al. (2018) extended the spatial
concepts as hierarchical categorizations. They showed that this
method could acquire spatial concept hierarchically using vision,
position, and word information. Our proposed method can
also be appropriately extended online and hierarchically such
as these methods.

3. PROPOSED METHOD

3.1. Overview
The flow diagram of the process for the learning and semantic
mapping is shown in Figure 2. The robot can create a map
of the environment in advance using SLAM. The robot first
moves around in an environment by self-localization using
MCL and obtains RGB data. As it moves around, the user
can talk to it by uttering the names of each place. In
addition, SpCoMapping employs a pre-trained CNN, similar
to that in Sünderhauf et al. (2016), to obtain a probability
distribution of the place labels to use as a feature vector of
the proposed probabilistic generative model. The speech signals
uttered by the user are recognized by a speech recognition
system, and the results are provided to SpCoMapping as
word information. We adopted bag-of-words (BoW) as word
information because the count of the words uttered in each
place represents a word feature. The robot next learns the
spatial concepts by integrating multimodal data and generates
a semantic map using the probabilistic generative model
shown in Figure 3.

The pseudo-code of SpCoMapping is shown in Algorithm 1.
The procedure of the method is described as follows:

1. The robot initializes Ci,j described by MRF from the
occupancy grid map. I and J represent the width and height
of the map, respectively (line 2 in Algorithm 1).

2. If a pixel on the occupancy grid map does not correspond to
free space, then there are no spatial concepts in this model,
and the robot retains the Ci,j value (line 6–7).

3. The robot converts xt , which denotes the coordinates obtained
by MCL, to (i, j), which denotes the pixel on the occupancy
grid map. The equation is shown in (11) (line 9).

4. For every free space on the occupancy grid map, the
robot obtains an index of the spatial concepts by
sampling (line 10–12).

5. The robot uses sampling to obtain the multinomial
distribution of the index of spatial concepts (line 16).

6. For each spatial concept category, the robot uses
sampling to obtain the multinomial distribution of image
features (line 18).

FIGURE 3 | Graphical model of SpCoMapping. Gray nodes indicate

observation variables and white nodes are unobserved variables.

Algorithm 1 Semantic mapping based on spatial concepts

1: initialization π , θ ,w
2: get C(1 : I,1 : J) from map
3: for h = 1 to iteration do

4: for i = 1 to I do
5: for j = 1 to J do
6: if Ci,j is occupied then

7: keep Ci,j value
8: else

9: convert xt to (i, j) //Equation (11)
10: t′ ∈ {t | Cconvert(xt) = l, t ∈ (1 :T)}
11: Ci,j ∼ MRF(Ci,j | C∂(i,j)|m; γ)Mult(Ci,j | π)

12: ×
∏

t′
[

Mult(st′ | xt′ ,wCi,j )Mult(ft′ | xt′ , θCi,j )
]

13: end if

14: end for

15: end for

16: π ∼ Dir(π |
∑I

i=1

∑J
j=1 Ci,j +

α
L )

17: for l = 1 to L do

18: θl ∼ Dir(θl |
∑

t′ ft′ + χ)
19: wl ∼ Dir(wl |

∑

t′ st′ + β)
20: end for

21: end for

22: save C,π , θl,wl

7. For each spatial concept category, the robot uses sampling
to obtain the multinomial distribution of vocabulary
features (line 19).

The details of the sampling process are described in section 3.3.

3.2. Definition of Generative Model and
Graphical Model
Figure 3 shows the graphical model of SpCoMapping, and
Table 1 shows the list of variables in the graphical model. We
describe the probabilistic generative process represented by the
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TABLE 1 | Definition of variables in the graphical model.

m Map of environment

xt A robot’s self-position information

ut Control information

zt Distance information

Ci,j Index of spatial concept in (i, j) pixel

ft Image feature

st Vocabulary feature (bag-of-words)

π Parameter of multinomial distribution for Ci,j

θl Parameter of multinomial distribution for ft

wl Parameter of multinomial distribution of st

α,β,χ Hyperparameters of prior distributions

graphical model as follows:

π ∼ DP(α) (1)

Ci,j ∼ p(C∂(i,j),π ,m) (2)

θl ∼ Dir(χ) (3)

wl ∼ Dir(β) (4)

ft ∼ Mult(xt , θCi,j ) (5)

st ∼ Mult(xt ,wCi,j ) (6)

where ∂(i, j) represents the neighborhood pixels of the (i, j)
pixel, C∂(i,j) represents the neighborhood node of Ci,j, Dir
represents the Dirichlet distribution, and Mult represents the
multinomial distribution.

In (1), DP represents the Dirichlet process (DP). DP
is a probabilistic process that can generate the parameters
of an infinite-dimensional multinomial distribution. A
nonparametric Bayesian clustering method that uses DP
can automatically estimate the number of clusters. We adopted
weak-limit approximation for calculating DP (Fox et al., 2011),
described as:

DP(α) ≈ Dir
(α

L
, . . . ,

α

L

)

(7)

where L is the upper limit of the spatial concepts.
In (2), MRF represents the MRF described in the same way as

in Chatzis and Tsechpenakis (2010). The equation is as follows:

MRF(Ci,j | C∂(i,j); γ) ∝ exp







∑

r∈∂(i,j)

γ δ(Ci,j,Cr)







(8)

δ(a, b) =

{

1 (a = b)

0 (a 6= b)
(9)

p(C∂(i,j),π ,m) = MRF(Ci,j | C∂(i,j)|m; γ)Mult(Ci,j | π)

(10)

where γ represents the temperature parameter and C∂(i,j)|m

means that C∂(i,j) is generated from the occupancy grid mapm.
In (5) and (6), xt is the self-position of a robot and (i, j)

represents the 2D index of pixels on the occupancy grid map. ft

and st are sampled only if self-position xt corresponds to the (i, j)
pixel. The equation to convert xt to (i, j) is

(i, j) = convert(xt)

= ⌊
xt − X

k
⌋ (11)

where ⌊(px, py)⌋ represents the floor function. This equation
means that the maximum integer coordinates of the x-axis are
not greater than real number px and those of the y-axis are not
greater than real number py. X represents the original pose of
a robot, and k represents the size of one pixel on the map in a
real environment. The origin pose refers to the coordinates of the
(1, 1) pixel. We obtained both using the occupancy grid message
of the robot operating system (ROS) (Quigley et al., 2009).

3.3. Details of the Sampling Procedure
SpCoMapping estimates Ci,j, π , θl, and wl using Gibbs sampling.
The procedure for each sampling is shown below.

• Sampling Ci,j:
Ifmxt is not free space, then Ci,j have no spatial concept.

Ci,j = 0 (12)

Ifmxt is free space, then the sampling equation is

t′ ∈ {t | Cconvert(xt) = l, t ∈ (1 :T)}

Ci,j ∼ MRF(Ci,j | C∂(i,j)|m; γ)Mult(Ci,j | π)

×
∏

t′

[

Mult(st′ | xt′ ,wCi,j )Mult(ft′ | xt′ , θCi,j)
]

(13)

where t′ represents an element of the set of times when Ci,j = l
in the converted self-positions (i, j) = convert(xt) (t ∈ (1 :T)).
T is the number of training data.

• Sampling π :
When the quantities of spatial concepts are unknown, we

adopt DP. The sampling equation is shown in (14).

π ∼

I
∏

i=1

J
∏

j=1

Mult(Ci,j | π)DP(π | α) (14)

When the quantities of spatial concepts are known, we adopt
Dirichlet distribution. The sampling equation is

π ∼

I
∏

i=1

J
∏

j=1

Mult(Ci,j | π)Dir(π | α) (15)

• Sampling θl and wl:
The sampling equations are

θl ∼
∏

t′

Mult(ft′ | xt′ , θCi,j )Dir(θl | χ) (16)

wl ∼
∏

t′

Mult(st′ | xt′ ,wCi,j )Dir(wl | β) (17)
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FIGURE 4 | Example of the simulation environment. (A) example image of the SIGVerse and (B) example map of the experiment in the simulation. Both of them are

the example of Room2ldk4.

TABLE 2 | Information about each room in the simulation.

Environment Pixels Categories on

ground truth

Room1dk5 18622 6

Room1dk6 26254 5

Room1ldk4 18026 7

Room1ldk5 22139 7

Room2ldk4 27746 7

Finally, SpCoMapping can infer the semantic category of each
pixel on the occupancy grid map using Gibbs sampling. The
semantic mapping is achieved by this inference.

4. EXPERIMENT 1: SIMULATION
ENVIRONMENT

We experimented to evaluate the semantic mapping ability of
SpCoMapping and compare it with that of existing methods.
For the quantitative evaluation, we performed experiments in
the simulation environment SIGVerse1 that emulated the daily
living environment. We have provided the source code2 for
SpCoMapping and the test dataset3 used in this experiment for
public access on Github. Figure 4 shows the environment used
in our experiment in SIGVerse. Table 2 presents information on
the rooms in the simulation environment.

4.1. Conditions
We employed Caffe (Jia et al., 2014)—a deep learning
framework—to implement the CNN. To train the CNN, we used
the Places205 dataset (Zhou et al., 2014) and used AlexNet as
the particular network architecture for the CNN (Krizhevsky
et al., 2012). To give word information to the robot, we provided

1Agent simulator SIGVerse (Version 3) http://www.sigverse.org/wiki/en/.
2Code is available at: https://github.com/EmergentSystemLabStudent/

spco_mapping.git.
3Dataset is available at: https://github.com/EmergentSystemLabStudent/

Dataset_of_SpCoMapping.git.

TABLE 3 | Vocabulary list used in the simulation environment.

Bedroom Shower Kitchen Entrance Living

Dining Closet Corridor Parlor

Window Tree Shelf Chair Sofa

Washroom Toilet Refrigerator TV Wall

Bed Table Bath Door

Underlined words are not included in the Places205 dataset.

it with textual place name data directly, without using speech
recognition, to keep the focus on evaluating the semantic
mapping. We compared the following methods:

(A) SpCoMapping with DP prior (without knowledge of the
number of semantic categories)

(B) SpCoMapping with Dirichlet prior (with knowledge of the
number of semantic categories)

(C) Spatial concept formation with word information
(Ishibushi et al., 2015)

(D) CNN-based semantic mapping of Sünderhauf et al. (2016)
(E) Nearest neighbor.

For method (A), we set the upper limit for spatial concepts to
120. For method (B), we set the number of spatial concepts
to be the same as the number of ground truths. Ishibushi
et al. (2015)’s method only employed image features and self-
localization. However, in method (C) in our experiment, we
compared it to a model designed to handle word information.
Method (D) does not categorize all pixels on the occupancy grid
maps; therefore, we adopted the nearest neighbor for this method
to fill up all the pixels for the comparisons. Method (E), the
nearest-neighbor method, is one of the easiest: it retrieves a word
label from the sample nearest to its position.

We prepared the ground truth labels by asking a participant
to draw a semantic map for each map by referring to the
information from the 3D simulator and the 2D maps. In the
simulation, we gave the robot words that were assumed to be
used in each environment. The vocabulary list is summarized in
Table 3 and includes underlined words that are not labels of the
Places205 dataset.
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TABLE 4 | The results of simulation environment.

Method Room1dk5 Room1dk6 Room1ldk4 Room1ldk5 Room2ldk4 Average

(a) The results of ARI

(A) SpCoMapping (DP) 0.5356 0.4548 0.5877 0.4925 0.4623 0.5066

(B) SpCoMapping (Dir) 0.4471 0.5355 0.4393 0.3354 0.4963 0.4507

(C) Spatial concept formation 0.3524 0.4692 0.2657 0.3740 0.2883 0.3499

(Ishibushi et al., 2015)

(D) CNN-based semantic mapping 0.3102 0.2742 0.2505 0.3067 0.2559 0.2795

(Sünderhauf et al., 2016)

(E) Nearest neighbor 0.3371 0.2870 0.4830 0.3337 0.3968 0.3675

(b) Results of the matching rates for place estimation

(A) SpCoMapping (DP) 0.2612 0.0268 0.2185 0.1338 0.0001 0.1106

(B) SpCoMapping (Dir) 0.2071 0.6368 0.1461 0.1119 0.1780 0.2715

(C) Spatial concept formation 0.0463 0.2587 0.2154 0.3200 0.1876 0.2113

(Ishibushi et al., 2015)

(D) CNN-based semantic mapping 0.1174 0.0761 0.0949 0.0766 0.1245 0.0979

(Sünderhauf et al., 2016)

(E) Nearest neighbor 0.1260 0.1607 0.1729 0.1252 0.1292 0.1422

Bold number is the best in that environment and underlined number is the two best.

FIGURE 5 | Example of the changes in the ARI by iteration (Room2ldk4).

We performed 5,000 iterations of SpCoMapping for methods
in which the number of spatial concepts are both unknown and
known. We set the hyperparameters for DP as follows: α =

1.0 ∗ 108,β = 500,χ = 1.0 ∗ 104, and γ = 4.0. We set
the hyperparameters for Dirichlet distribution as follows: α =

5.0 ∗ 107,β = 100,χ = 1.0 ∗ 104, and γ = 3.0. We used the
following hardware and middleware: Ubuntu 14.04 LTS 64-bit,
ROS Indigo with 31.4 GB memory, Intel Core i7-4770K CPU @
3.50 GHz 8, and Gallium 0.4 on NVE4.

4.2. Results
4.2.1. Clustering Accuracy
We calculated the adjusted Rand index (ARI) (Hubert and
Arabie, 1985), which is a measure of similarity between two
clusters, for each method. If two clusters are the same, the ARI
is one; if each cluster are allocated randomly, the ARI is zero.
Semantic mapping can be regarded as a task in which pixels

FIGURE 6 | Example of the changes in the number of categories by iteration

on the proposed method (Room1ldk4).

are clustered on a map. We compared the performance of the
methods from this viewpoint.

The results are shown in Table 4a. The column titled
“Average” denotes the average ARI of the five rooms.
SpCoMapping has a higher average, showing a higher
performance on each map, compared to the other methods.
This result suggests that SpCoMapping can solve the problems
introduced in section 1, including the overwrite and shape
problems; in other words, the categories of semantic maps it
generates are closer than the other semantic mapping methods
to the categories of semantic maps generated by a person. In this
result, SpCoMapping with DP prior is better than SpCoMapping
with Dirichlet prior which the number of categories is given. As
same as (Nakamura et al., 2015) when Gibbs sampling algorithm
samples using fixed quantities of categories, it is sometimes
harder than using changing quantities of categories. Figure 5
shows an example of the change in the ARI by iteration for
Room2ldk4. The increasing iterations also increased the ARI.
Figure 6 shows an example of the change in the categories
of Room1ldk4 caused by iterations of SpCoMapping (DP).
This result shows that SpCoMapping (DP) gradually estimated
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A B C D E F

FIGURE 7 | Semantic maps of the experiment in simulation environment Room1ldk4. (A) The map of ground truth drawn manually, (B) the map of SpCoMapping

when the number of spatial concepts are unknown, (C) map of SpCoMapping when the number of spatial concepts are known, (D) map of the existing spatial

concept acquisition method (Ishibushi et al., 2015), (E) map of the CNN-based semantic mapping (Sünderhauf et al., 2016), and (F) map of nearest neighbor. The

colors represent different categories on each map.

FIGURE 8 | The robot and the example of experiment on the real environment. (A) Robot employed for experiments on the personal living environment. We used the

Human Support Robot (HSR) from TOYOTA; it has Xtion PRO LIVE by ASUS to obtain RGB data and UST-20LX by Hokuyo to obtain laser-range data. Ubuntu 16.04

and ROS kinetic were installed on the PC. (B) The image of the environment employed in this experiment and (C) the map of the environment.

the number of semantic categories. However, the relationship
between the iteration and the number of categories depends
on the size of the map and the complexity of the environment.
Therefore, in future work, we need to improve the ability to
automatically determine the number of iterations. Figure 7

shows the semantic maps generated by each method. The regions
on the maps generated by SpCoMapping are separated on the
wall and do not put the wall between the regions itself. These
maps show that the places estimated by SpCoMapping have
regions dealing with the shape of the environment.

4.2.2. Estimation of Place by a Word Input
When a robot is required to perform a task that requires
communication with the user, e.g., navigation, cleaning the room,
or searching for an object, the robot needs to estimate the place
indicated by the user from a word input. Therefore, we compared
the matching rate of the places estimated by each method using
the following calculations:

Rmatch =

|V|
∑

s∈V

M{mCs=mLs }

Mfree_space
(18)

where V represents vocabulary, i.e., the set of words, in the
ground truth; Mcondition represents the number of spaces which
meet the condition. mC is the pixels on the semantic map or
ground truth given category C. Ls represents the category of
ground truth given word s. The equation for estimating an index
of spatial concepts from the word s inputs is as follows:

Cs = argmax
C

p(C | st = s,π ,w) (19)

The results are shown in Table 4b. Method (B) performs better,
with a score of “average,” compared to the other methods.
This result shows that SpCoMapping can estimate place regions
better than previous methods when the robot is given a
command by its user that includes the place name. Method (A)
performed the best in Room1dk5 and Room1dk4. However, it
did not have good results for a large environment (Room1dk6
and Room2ldk4). The reason for the poor performance of
SpCoMapping in the two large environments is attributed to
the creation of many clusters for a large region and a wrong
estimate of the number of categories in these environments.
The nonparametric Bayesian estimation of semantic categories
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is unstable, as shown in the result. SpCoMapping (Dir) is more
stable than SpCoMapping (DP).

5. EXPERIMENT 2: REAL-WORLD DAILY
ENVIRONMENT

5.1. Conditions
We experimented to generate a semantic map in a real-world
environment. The robot and environment we employed are
shown in Figure 8, respectively. The laboratory room serves as
the living environment for experiments and as a study space for
the researcher. In this experiment, we obtained word information
from given sentences to demonstrate that SpCoMapping can
acquire vocabularies as place names without setting them. We
used sentences as word features to show how multiple words
could be connected to a place without pre-setting the place

TABLE 5 | Sentence list used in the real-world daily environment.

Here is kitchen

Please take cup on kitchen

Bottle is on dining table

Here is dining

Here is living space

TV and sofa are in living space

Put remote controller on living table

You can use desk in living space

Can you find dishes on kitchen

You can use coffee machine in dining

Refrigerator is near kitchen and dining

Do not clash with sofa when you are in kitchen

Here is meeting space

Whiteboard is in meeting space

Here is study space

Please clean study space

They are holding meeting now

Please gather around whiteboard we will start meeting

Here is study room too

You can use desk in study space

names. The sentence list is shown in Table 5. We provided these
20 sentences, which include 50 vocabularies, five times for each
sentence. We provided the RGB data 407 times.

For this experiment, we adopted SpCoMapping (DP) when
the quantities of spatial concepts were unknown. We set
the upper limit number of spatial concepts to 120. We set
the hyperparameters as follows: α = 1.0 ∗ 106,β =

0.6,χ = 100.0, and γ = 4.0.
We set the weight for vocabulary feature using the tf-idf

scheme (Salton andMcgill, 1986) as mutual information between
words and sentences. The equation used to calculate the weight
for word i in sentence j is as follows:

Weighti,j =
ni,j

∑

k nk,j
log

D

Di
(20)

where ni,j is the number of words i in sentence j, D is the
number of sentences, and Di represents the number of sentences
including word i. By setting the weight for words using tf-
idf, the importance of words included in many sentences, for
example, “is,” “here,” and “you,” are lower. This process helps in
the acquisition of place-related words.

In order to ensure the stability of the proposed method, we
sample wl for 100 times and use the average as wl.

In addition, we employed pre-learning by spatial concept
formation using word information (Ishibushi et al., 2015). We
set hyperparameters as the same parameters and calculated 1000
iterations. In Algorithm 1 line 1, we initialized π , θ , w using the
result of pre-learning. In Algorithm 1 line 2, we initialized Ci,j as
follows: Ifmxt is not a free space, thenCi,j have no spatial concept.

Ci,j = 0 (21)

Ifmxt is a free space, then the sampling equation is as follows:

Ci,j = argmax
l

N ((i, j) | µ
pre

l
,6

pre

l
) (22)

where the multivariate Gaussian (normal) distribution is
N , µ

pre

l
is the mean vector of position distribution on

the l-th pre-learning category, and 6
pre

l
is the covariance

FIGURE 9 | The maps used in the experiment. (A) The occupancy grid map of personal living environment and (B) the result of pre-learning.
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A B C D E

F

FIGURE 10 | (A–E) The semantic maps generated by SpCoMapping in each iteration. Each color represents a different spatial concept. (F) The semantic map of the

final iteration, with the three best words obtained for the representative spatial concept and some examples of image given at that place. The number in the tables

represents the word probability of the spatial concept.

matrix of the position distribution on the l-th pre-learning
category. When pre-learning is employed vocabulary acquisition

features are more stable and fewer iterations are required
for learning. The occupancy grid map of the personal living

environment and the result of pre-learning are shown in
Figure 9. This occupancy grid map has 19,255 pixels as
free space.

5.2. Results
The results of the generated semantic maps of each iteration are
shown in Figures 10A–E. The semantic map of the pre-learning
by spatial concept formation, shown in Figure 9B, does not
deal with environment shape but can categorize a map for
some categories. It helps to calculate the parameter of the
multinomial distribution π for MRF in an early iteration. There
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are many categories in the center of the environment in the
semantic maps of iterations 1 and 100, and some categories do
not deal with the shape of the environment. However, in the
semantic map of iteration 10000, some categories are combined,
and each region has an arbitrary shape related to the shape
of the environment. Therefore, it is shown, qualitatively, that
SpCoMapping can gradually estimate semantic maps even in
a real-world environment. In addition, since SpCoMapping
uses word information as multimodal data, it can obtain words
as features of space without the place name being set by the
user. The semantic map of the final iteration, with three best
words obtained for the representative spatial concept, is shown in
Figure 10F. The robot acquired some vocabulary for place names
along with the probability of their occurrence. For example, this
result shows that if the robot catches the words “meeting” and
“start,” it moves to the front of the whiteboard. However, since
the robot used weights by mutual information for vocabulary,
meaningless words such as “on,” “in,” and “too” have a high
probability in the categories of each result. This problem can
be resolved by assigning more vocabulary features for the robot
to learn.

6. CONCLUSIONS

This paper proposed a novel semantic mapping method called
SpCoMapping extended a spatial concept acquisition method
using MRF. Experiments showed that SpCoMapping could deal
with the problems faced by existing semantic mapping methods.
The semantic maps that SpCoMapping generated in a simulation
environment matched those generated by a participant more
accurately compared to the existing methods. Furthermore,
the semantic maps generated by SpCoMapping are better than
those generated by the existing methods from the viewpoint
of estimating place from word input, i.e., from the viewpoint
of human–robot communication. Finally, an experiment in
a real-world daily environment showed that SpCoMapping
could generate a semantic map in a real environment as well
as a simulated one. SpCoMapping can generate semantic maps
dealing with the shape of the environment, and the robot can
perform the task including place names. SpCoMapping with
Dirichlet prior is more stable than SpCoMapping with DP prior.
Therefore, we will use SpCoMapping with Dirichlet prior when
we can use the number of semantic categories. However, it is
rare when we can use the number of categories in a complex

real-world daily environment, so we will use SpCoMapping with
DP prior because SpCoMapping with DP prior estimates the
number of semantic categories simultaneously.

In future work, we will apply the proposed method to tasks
such as those executed by autonomous vacuum cleaner robots,
e.g., “please clean my room,” that require communication
with humans. Improving the stability of SpCoMapping (DP),
as mentioned in the simulation experiment, is also a future
challenge. In addition, SpCoMapping employs batch learning;
therefore, we will also investigate the development of an online
learning algorithm for SpCoMapping and integrating it with
SLAM to work in new environments. In this paper, we proposed
a 2D semantic mapping method. However, when a robot grasps
or detects an object, it will need 3D semantic maps. Therefore,
we will also extend this method to 3D. SpCoMapping can deal
with the shape of an environment using MRF, however, the
environment shape must have features, for example, the corridor
is narrow or the entrance connects two spaces. Therefore, we will
use a generative adversarial network or a variational autoencoder
in order to generate map features.

Although several challenges remain, our proposed method
significantly improved the performance of unsupervised
learning-based semantic mapping, enabling a robot to make use
of users’ utterances in a daily environment for semantic mapping.
We believe this method will contribute to learning-based human-
robot semantic communication in daily environments in the
near future.
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