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Repeated measures correlation (rmcorr) is a statistical technique for determining the

common within-individual association for paired measures assessed on two or more

occasions for multiple individuals. Simple regression/correlation is often applied to

non-independent observations or aggregated data; this may produce biased, specious

results due to violation of independence and/or differing patterns between-participants

versus within-participants. Unlike simple regression/correlation, rmcorr does not violate

the assumption of independence of observations. Also, rmcorr tends to have much

greater statistical power because neither averaging nor aggregation is necessary for

an intra-individual research question. Rmcorr estimates the common regression slope,

the association shared among individuals. To make rmcorr accessible, we provide

background information for its assumptions and equations, visualization, power, and

tradeoffs with rmcorr compared to multilevel modeling. We introduce the R package

(rmcorr) and demonstrate its use for inferential statistics and visualization with two

example datasets. The examples are used to illustrate research questions at different

levels of analysis, intra-individual, and inter-individual. Rmcorr is well-suited for research

questions regarding the common linear association in paired repeated measures data.

All results are fully reproducible.

Keywords: correlation, repeated measures, individual differences, intra-individual, statistical power, multilevel

modeling

INTRODUCTION

Correlation is a popular measure to quantify the association between two variables. However,
widely used techniques for correlation, such as simple (ordinary least squares with a single
independent variable) regression/Pearson correlation, assume independence of error between
observations (Howell, 1997; Johnston and DiNardo, 1997; Cohen et al., 2003). This assumption
does not pose a problem if each participant or independent observation is a single data point of
paired measures (i.e., two data points corresponding to the same individual such as height and
weight). For example, when correlating the current height and weight of people drawn from a
random sample, there is no reason to expect a violation of independence.

However, the assumption of independence is violated in repeated measures, in which each
participant provides more than one data point. For example, if a study collected height and
weight for a sample of people at three time points, there would likely be non-independence in the
errors of the three observations belonging to the same person. Analyzing non-independent data
with techniques that assume independence is a widespread practice but one that often produces
erroneous results (Kenny and Judd, 1986;Molenaar, 2004; Aarts et al., 2014). One common solution
is to average the repeated measures data for each participant prior to performing the correlation.
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This aggregation may resolve the issue of non-independence but
can produce misleading results if there are meaningful individual
differences (Estes, 1956; Myung et al., 2000). Furthermore,
analysis of individual differences can be useful as a strong test
for theory (Underwood, 1975; Vogel and Awh, 2008).

Bland and Altman (1995a,b) introduced the within-
participants correlation in biostatistics to analyze the common
intra-individual association for paired repeated measures,
which are two corresponding measures assessed for each
participant/case/individual on two or more occasions. Here,
we refer to the technique as the repeated measures correlation
(rmcorr). Rmcorr accounts for non-independence among
observations using analysis of covariance (ANCOVA) to
statistically adjust for inter-individual variability. By removing
measured variance between-participants, rmcorr provides the
best linear fit for each participant using parallel regression
lines (the same slope) with varying intercepts. Like a Pearson
correlation coefficient (r), the rmcorr coefficient (rrm) is
bounded by −1 to 1 and represents the strength of the linear
association between two variables. Also akin to the Pearson
correlation, the null hypothesis for rmcorr is ρrm = 0, and the
research/alternative hypothesis is ρrm 6= 0. Unlike the Pearson
correlation, which assesses the inter-individual association
because it assumes each paired data point is Independent and
Identically Distributed (IID), rmcorr evaluates the overall or
common intra-individual association between two measures.
Because rmcorr takes into account non-independence, it tends
to yield much greater power than data that are averaged in order
to meet the IID assumption for simple regression/correlation.
Hence, rmcorr can detect associations between variables that
might otherwise be obscured or spurious due to aggregation or
treating non-independent values as IID.

Conceptually, rmcorr is close to a null multilevel model (i.e.,
varying intercept and a common slope for each individual),
but the techniques differ on how they treat/pool variance.
Rmcorr assesses the common intra-individual variance in
data, whereas multilevel modeling can simultaneously analyze
different sources of variance using fixed and random effects.
The tradeoff with more complex multilevel models is that they
require more data and are more challenging to specify and
interpret than simpler analysis of variance (ANOVA)/regression
models, such as rmcorr. However, the flexibility of multilevel
modeling has benefits: Overall and individual differences can be
analyzed simultaneously, models of varying complexity can be
systematically compared, and they can provide greater insights
into individual differences.

Besides multilevel modeling, we contend there are no other
widely used techniques that can correctly model paired and
repeated measures data that are continuous. The common
correlation techniques (e.g., Pearson, Kendall, and Spearman)
for paired data and canonical correlation for multivariate data
all assume independent observations. Repeated observations can
be modeled with multivariate analysis of variance (MANOVA)
and repeated measures ANOVA, but they are for factorial designs
and not paired data. While ANCOVA can operate on paired
data, its purpose (to statistically adjust for a nuisance, within-
participants variance, in each individual) is opposite to that of

rmcorr (using one of the paired measures to statistically adjust
for between-participants variance) (see Rmcorr and ANCOVA
for details).

Despite the potential utility of rmcorr for repeated measures
data, it is relatively unknown in psychological research. To
address this gap, the paper is structured as follows. The
background describes how rmcorr works, its relation to
ANCOVA, and the tradeoffs for rmcorr compared to multilevel
modeling. Next, we provide an overview of the rmcorr R package

using two examples with real data. Last, we summarize when
rmcorr may be informative and potential applications.

All graphs and results are fully reproducible using R
(R Core Team, 2017), the rmcorr R package https://cran.
r-project.org/web/packages/rmcorr/, and the accompanying R
Markdown document: https://osf.io/djphm/. R packages used
in the paper, but not cited in the references, are listed in
Appendix A.

BACKGROUND

To convey a conceptual understanding of rmcorr, we
first provide visualizations comparing rmcorr and simple
regression/correlation using hypothetical data. Then, to explain
the underlying mechanics of rmcorr we provide an overview of
ANCOVA for aspects relevant to rmcorr; key assumptions (e.g.,
parallel slopes); and the notation, data structure, and formulas
for rmcorr (equations for calculations and degrees of freedom).
Last, we calculate power curves for rmcorr to show the benefits
of repeated measures for higher statistical power relative to
simple regression/correlation.

Visualization: Rmcorr Plot
In rmcorr, separate parallel lines are fit to the data from each
participant. The sign of the rmcorr coefficient (i.e., positive or
negative) is indicated by the direction of the common regression
slope. The left panel of Figure 1 shows an rmcorr plot for a
set of hypothetical repeated measures data, with 10 participants
providing five data points each. Each participant’s data and
corresponding line are shown in a different color. The computed
rmcorr value for this notional data is 0.96. The right panel shows
the same notional data, but with each subject’s data averaged
into one data point each. The regression line is plotted with this
averaged data. Note that the computed correlation coefficient for
this averaged data is much smaller (0.13) and is not significant.
In this example, rmcorr captures the strong intra-individual
relationship between the two variables that is missed by using
averaged data.

Interpreting Results
Note that rmcorr can reveal very different within-participant
associations among similar patterns of aggregated data, as
depicted with notional data in Figure 2. All the data in a given
row exhibit the same relationship when treated (incorrectly) as
IID, indicated by the black simple regression line in each cell.
However, across columns the intra-individual association is quite
different. This phenomenon is why generating an rmcorr plot
can be helpful for understanding a given dataset. As with other
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FIGURE 1 | (A) Rmcorr plot: rmcorr plot for a set of hypothetical data and (B) simple regression plot: the corresponding regression plot for the same data averaged

by participant.

statistical techniques, visualization is key for interpreting results
(Tukey, 1977).

Figure 2 also depicts examples of Simpson’s Paradox (note
in particular Panel (A), Row 1, and Panel (C), Row 3), in
which patterns at a higher level of analysis (e.g., sample,
experiment, study, or aggregated data) conflict with patterns
at a lower level of analysis (Tu et al., 2008; Robinson, 2009;
see Kievit et al., 2013; e.g., individual). For patterns at one
level of analysis to generalize to another, the data must be
ergodic between levels (Molenaar, 2004; Molenaar and Campbell,
2009). Rmcorr, and especially the rmcorr plot, may be useful
for understanding non-ergodic data that have intra-individual
and inter-individual patterns that do not generalize to each
other.

Similar to Pearson correlation, linear transformations (i.e.,
addition, subtraction, multiplication, and/or division) of data
do not alter the rmcorr value because the relationships among
variables are preserved. More specifically, a linear transformation
can be applied to the entire dataset, all data for one or more
participants, or even by applying different transformations to
the data of each participant without affecting the value of
rmcorr. Figure 3 depicts linear transformations for hypothetical
data in which effect sizes do not change. The first panel
shows the rmcorr plot for a set of three participants, with
five data points each. The second panel shows the resulting
rmcorr plot when the x-variable values for all participants are
transformed by dividing by 2 and adding 1. The third panel
depicts the rmcorr plot when the y-variable values for only

one subject are transformed by subtracting 2. Note that the
rmcorr values are the same for the original data and the two
transformations.

Rmcorr and ANCOVA
Rmcorr is calculated using a form of ANCOVA, thus the two
techniques share assumptions and equations (Howell, 1997;
Miller and Chapman, 2001; Tabachnick and Fidell, 2007).
However, rmcorr is an atypical application of ANCOVA.
Typically, ANCOVA is used to determine the effect of a
categorical independent variable upon a continuous dependent
variable by removing the observed variance of a second
“nuisance” continuous variable, or covariate (Howell, 1997;
Miller and Chapman, 2001; Tabachnick and Fidell, 2007).
Rmcorr, however, is used to determine the relationship
between the two continuous variables, while controlling for
the effect of the categorical variable, which in this case
is the between-participants variance. In other words, the
typical use of ANCOVA is opposite to the purpose of
rmcorr.

Rmcorr is estimated using ANCOVA, albeit with an unusual
model specification. ANCOVA is typically used to assess the
effects of different (treatment or factor) levels upon a dependent
measure, while controlling for the effects of another continuous
variable (the covariate). For rmcorr, the participant is the factor
level and the covariate is the second measure. We describe
estimation of rmcorr by first providing the equation for a one-
way ANCOVA (Equation 1); second, modifying this equation
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FIGURE 2 | These notional plots illustrate the range of potential similarities and differences in the intra-individual association assessed by rmcorr and

the inter-individual association assessed by ordinary least squares (OLS) regression. Rmcorr-values depend only on the intra-individual association between

variables and will be the same across different patterns of inter-individual variability. (A) rrm = −1: depicts notional data with a perfect negative intra-individual

association between variables, (B) rrm = 0: depicts data with no intra-individual association, and (C) rrm = 1: depicts data with a perfect positive intra-individual

association. In each column, the relationship between subjects (inter-individual variability) is different, which does not change the rmcorr-values within a column.

However, this does change the association that would be predicted by OLS regression (black lines) if the data were treated as IID or averaged by participant.

for rmcorr (Equation 2); and third, simplifying it (Equation
3). Last, we show the rmcorr table and calculations for the
rmcorr coefficient (the direction is based on the sign of the
slope).

Assumptions
The standard assumptions required for rmcorr include the
standard ones for General Linear Model (GLM) techniques (e.g.,
Gelman and Hill, 2007) with a single exception: Independence
of errors is relaxed in rmcorr. Major GLM assumptions include
linearity (predictors are a linear function of the dependent
measure), errors are IID [independent and identically distributed
(i.e., equal variance)], and errors are normally distributed. Severe
violations of the above assumptions could result in a biased
model, which may be misleading or even uninterpretable.

In addition to the basic GLM assumptions, an additional
assumption for ANCOVA is that the slopes indicating the
relationship between the dependent variable and the covariate
be parallel across conditions (e.g., Howell, 1997; Miller and

Chapman, 2001; Tabachnick and Fidell, 2007)1. In practice, this
assumption is considered to be met when there is no evidence of
strong heterogeneity of slopes2. However, parallel lines are not an
assumption for rmcorr; rather, rmcorr specifically tests for such
a common association between variables. Therefore, the degree
to which each subject’s data is reflected by the common slope
of the best-fit parallel lines is appropriately represented in the

1In ANCOVA, parallel slopes are tested by adding an interaction term to the model

for the factor by the covariate (e.g., Tabachnick and Fidell, 2007). A significant

interaction indicates non-parallel slopes, which for ANCOVA may be considered

an uninterpretable model depending on a variety of factors (e.g., Miller and

Chapman, 2001; Tabachnick and Fidell, 2007). Although such an interaction test

could be used with rmcorr, we contend it is not likely to be informative because

non-parallel slopes would be appropriately indicated by the rmcorr effect size and

multilevel modeling could be used instead.
2Slopes can be non-parallel in countless ways (e.g., strongly heterogeneous with

opposing directions from positive to negative to weakly heterogeneous, all in

the same direction with small variation). This is supported by evidence that, for

ANCOVA, the degree of heterogeneity in slopes is what matters not merely the

presence of a statistically significant interaction (Rogosa, 1980).
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FIGURE 3 | Rmcorr-values (and corresponding p-values) do not change with linear transformations of the data, illustrated here with three examples:

(A) original, (B) x/2 + 1, and (C) y − 1.

rmcorr effect size.When the relationship between variables varies
widely across subjects, the rmcorr effect size will be near zero with
confidence intervals also around zero. When there is no strong
heterogeneity across subjects and parallel lines provide a good fit,
the rmcorr effect size will be large, with tight confidence intervals.

If modeling varying slopes is important and there is sufficient
data, the best approach would be fitting and comparingmultilevel
models (see Multilevel Modeling). Small effect sizes for rmcorr
may be caused not only by heterogeneous slopes (poor model fit),
however, but also by consistently near-zero slopes across subjects
(see Interpreting Results and Figure 2B), or by restriction in the
range of one or both measures (Cohen et al., 2003). Visualization
of the data is critical to determine which of these is the underlying
cause of a small effect size.

Two additional ANCOVA assumptions that are directly
relevant to rmcorr are a linear association (linearity is also
a standard GLM assumption) and high reliability for the
covariate/measure (Howell, 1997; Miller and Chapman, 2001;
Tabachnick and Fidell, 2007). A clear nonlinear association
should be visually apparent from plotting the raw data
and examining the rmcorr plot. One option is to apply a
transformation to the data to make the association more
linear (e.g., Cohen et al., 2003). Another possibility is to fit
a nonlinear multilevel model. There are many methods for
assessing reliability (consistency) (e.g., John and Benet-Martinez,
2014). Reliability is a complicated topic that is beyond the scope
of this paper. However, if measurement reliability is previously
known, or can be calculated, a correction for attenuation (e.g.,
John and Benet-Martinez, 2014) could be applied to the rmcorr
coefficient.

Rmcorr Notation and Data Format
The notation for rmcorr is defined inTable 1, and the data format
for the rmcorr and Pearson correlation are shown in Table 2.

TABLE 1 | Notation.

Notation Definition

L Total number of paired repeated measures (number of rows)

N Sample size (number of unique individuals)

k = L
N

Mean number of paired repeated measures per individual

The notation and their definitions. Rmcorr can accommodate unbalanced designs (i.e.,

differing numbers of paired repeated measures per participant).

Rmcorr data is in a long or narrow format with separate
columns for the participant and paired measures, and separate
rows for each repeated observation, labeled by participant
(Table 2A). In contrast, each row of data formatted for the
simple regression/correlation is presumed to be an independent
observation (Table 2B). The distinction between the two data
formats is similar to the difference between the person period
format and the person level format used in longitudinal data
analysis.

Equations and rmcorr Table
Rmcorr is estimated using ANCOVA, albeit with an unusual
model specification. ANCOVA is typically used to assess the
effects of different (treatment or factor) levels upon a dependent
measure, while controlling for the effects of another continuous
variable (the covariate). For rmcorr, the participant is the factor
level and the covariate is the second measure. We describe
estimation of rmcorr by first providing the equation for a one-
way ANCOVA (Equation 1); second, modifying this equation
for rmcorr (Equation 2); and third, simplifying it (Equation 3).
Last, we show the rmcorr table and calculations for the rmcorr
coefficient (the direction is based on the sign of the slope).

The equation for a one-way ANCOVA with i participants and
j (factor) levels (Howell, 1997; Tabachnick and Fidell, 2007) is:
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TABLE 2 | Data Format.

Participant (i) Trial (j) X Y

(A) Rmcorr DATA FORMAT, k = 3.

1 1

1 2

1 3

2 1

2 2

2 3

... ...

... ...

... ...

N 1

N 2

N 3

Participant X Y

(B) SIMPLE REGRESSION/CORRELATION.

1

2

...

N

The two measures are represented by X and Y. Lines between participant rows indicate

independence between observations. Data for rmcorr is in a wide/long format with a

minimum of two repeated observations. The i subscript represents each participant and

the j subscript indicates each trial (per participant).

Yij = µ + τj + c + εij (1)

Yij is the dependent measure for the ith participant at the jth
factor level.
µ is the overall mean.
τj is the effect of the jth factor level.

c is the covariate: c = β(Xij − Xj) (β is overall slope coefficient
for the covariate, Xij is the value of the covariate for the ith

participant at the jth factor level, and Xj is the mean of the
covariate values at the jth factor level).

εij is the error for the ith participant at the jth factor level
(the error is the difference between the actual value of dependent
measure and its estimated value, for the ith participant at the jth
factor level).

In Equations 2 and 3, Equation 1 is rewritten for rmcorr to
show one measure as a function of its mean value, participant,
and the covaried value of the other measure. Note following
Equation 1, i and j are now exchanged for consistency: j =
participant and i= trial or repeated measure.

Measure1ij = Measure1j + Participantj

+ β
(

Measure2ij − Measure2j
)

+ εij (2)

Measure1 andMeasure2 are exchangeable.
Measure1ij is the value ofMeasure1 for the jth participant at their
ith trial.
Measure1j is the mean of Measure1 (all i trials) for the
jth participant.

Participantj is a unique identifier that acts as a dummy or proxy
coded variable.
β is the value of the covariate, which is the overall or
common slope.
Measure2ij is the value ofMeasure2 for the jth participant at their
ith trial.
Measure2j is the mean of Measure2 (all i trials) for the
jth participant.
εij is the error for the jth participant at their ith trial.

Equation 2 is rewritten to calculate the predicted value of the
rmcorr regression line for each participant by trial. We drop the
error term because we do not fit a confidence interval for the
regression line.

Measure1′ij = Measure1j + Participantj

+ β
(

Measure2ij − Measure2j
)

(3)

Measure1ij
′ is the predicted y-value of Measure1 for the jth

participant at their ith trial.
Measure2ij is the actual x-value which corresponds to the
predicted y-value in the regression line.

Please note that the rmcorr package has always produced the
corrected results.

Like a regression or ANOVA table, the rmcorr table
summarizes quantitative results (Table 3).

Based on the sums of squares values for the measure and error,
the rmcorr correlation coefficient is calculated as follows:

rrm =

√

SSMeasure

SSMeasure + SSError
(4)

Sign of rrm
(

positive or negative
)

= Sign of β

Whether rrm takes a positive or negative value is based on the sign
of β (the common slope), in Equation 3. Additionally, the sign
of the slope should be apparent in the rmcorr plot.

It does not matter which of the two measures is specified
as the dependent variable and which one is the covariate.
This is equivalent to switching the dependent and independent
variable in simple regression/correlation. In rmcorr, the variable
specification only changes the values of the sums of squares. All
other parameter estimates are unchanged.

We recommend reporting rmcorr descriptively with the
rmcorr plot and quantitatively using the rrm (error degrees of
freedom in parentheses), p-value, and a 95% confidence interval
for rrm (see rmcorr R package section). Presenting the point (rrm)
and interval estimate (95% CI) of effect sizes is a meta-analytic
approach (Wilkinson, 1999; Cumming, 2014), and is consistent
with current statistical best practices.

Degrees of Freedom and Power
Because rmcorr uses repeated measures, it will generally
have higher degrees of freedom and power than a simple
regression/correlation with averaged data. The covariate in
rmcorr slightly reduces the degrees of freedom, by one, but this
loss is miniscule compared to the gains because of repeated
measures. Consequently, rmcorr generally has much higher
power than Pearson correlation with averaged data.
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Table 3 | Rmcorr Table.

Source Degrees of Freedom Sum of Squares Mean Square Error F ratio p-value

Participants N – 1 SSParticipant
SSParticipant

N−1
MSEMeasure
MSEError

Measure 1 SSMeasure
SSMeasure

1
MSEMeasure
MSEError

Significance value is determined by the F-ratio:

F (Measure df (1) , Error df)

Error N(k − 1) − 1 SSError
SSError

N(k−1)−1

Total (Nk) − 1 SSTotal
SSTotal
(Nk)−1

This table is similar to a regression/ANOVA table.

Degrees of Freedom
To calculate statistical power for rmcorr, we provide the exact
degrees of freedom as well as approximations for convenience.
The exact degrees of for rmcorr (from Table 3) are:

N(k− 1) − 1 (5)

Where k is the (average) number of repeated measures per
participant and N is the total number of participants. Note
the loss of a degree of freedom for the covariate. The degrees
of freedom for rmcorr can be approximated as a multiplier
of (k − 1) times the degrees of freedom for the Pearson
correlation (N − 2). See Appendix B for the proof for this
approximation.

In standard power tables or programs such as G∗Power (Faul
et al., 2009), users may calculate power for rmcorr by using
the entries for a Pearson correlation, but substituting in the
appropriate degrees of freedom for rmcorr.

Power
Because rmcorr is able to take advantage of multiple data points
per participant, it generally has much greater statistical power
than a standard Pearson correlation using averaged data. Low
power typically overestimates effect sizes (e.g., Button et al.,
2013). Power for rmcorr increases exponentially when either the
value of k (the number of repeated observations) or the value of
N (the total number of unique participants) increases. Figure 4
illustrates the power curves over different values of k and N for
small, medium, and large effect sizes.

Multilevel Modeling
A powerful and flexible method for handling different sources
of variance simultaneously is multilevel (linear) modeling3

(Kreft and de Leeuw, 1998; Singer and Willett, 2003; Gelman
and Hill, 2007; see Aarts et al., 2014). Rmcorr can be
viewed as a “light” version of multilevel modeling because
it is comparable to a simple, null multilevel model with
random/varying effects of intercept for each individual and
a fixed effect (i.e., common/overall) slope (see Appendix C
for direct comparisons). However, rmcorr only analyzes intra-
individual variance. Multilevel modeling can simultaneously

3Multilevel modeling has many different names (e.g., hierarchical linear modeling,

generalized linear [mixed] modeling, and linear mixed effects modeling).

analyze both intra- and inter-individual variance using partial
pooling, which permits varying slopes and other parameters that
cannot be estimated with simpler techniques.

Compared to other types of pooling, and thus other statistical
techniques, multilevel modeling has the unique advantage of
being able to estimate variance at multiple hierarchical levels
of analysis simultaneously using partial pooling4. Partial pooling
estimates parameters at multiple levels by treating a lower level
of analysis (e.g., individuals) as random/varying effects from a
probability distribution drawn from a higher level of analysis
(e.g., experiment) (see Gelman, 2005). Estimating random or
varying effects requires sufficient, but not excessive, variation,
and typically five or more levels (Bolker, 2015). Consequently,
multilevel models with varying slopes will generally need more
data than is required for rmcorr and other ANOVA techniques.

With partial pooling, multilevel models have the potential to
provide far greater insight into individual differences and other
patterns compared to ANOVA techniques. The main advantages
of multilevel modeling are that it can accommodate much
more complex designs than ANOVAs, such as varying slopes,
crossed and nested factors—up to three hierarchical levels—
and missing data. This flexibility may make it challenging to
implement and understand compared to ANOVA (Gueorguieva
and Krystal, 2004; Quené and van den Bergh, 2004). With more
complex multilevel models, there is potential for overfitting
or overparameterization (i.e., excessive free parameters given
the amount of data and the model form). Overfitting may
produce uninterpretable results, so model comparison is essential
(Singer and Willett, 2003; Bates et al., 2015). However,
concerns about model overfitting are general and extend to
ANOVA/regression/correlation and numerous other techniques
(Babyak, 2004; e.g., Aarts et al., 2014). Nevertheless, multilevel
modeling can provide insights that are otherwise impossible with
ANOVA/regression.

RMCORR R PACKAGE

To make rmcorr more accessible to researchers, we have
developed the rmcorr package for use in R (R Core Team, 2017).
The package contains functions for both computing the rmcorr

4In partial pooling the levels must influence each other, see Gelman andHill (2007)

and Kreft and de Leeuw (1998).
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FIGURE 4 | Power curves for (A) small, rrm, and r = 0.10, (B) medium, rrm, and r = 0.3, and (C) large effect sizes, rrm, and r = 0.50. X-axis is sample size. Note

the sample size range differs among the panels. Y-axis is power. k denotes the number of repeated paired measures. Eighty percent power is indicated by the dotted

black line. For rmcorr, the power of k = 2 is asymptotically equivalent to k = 1. A comparison to the power for a Pearson correlation with one data point per

participant (k = 1) is also shown.

coefficient (as well as confidence intervals, etc.) and generating
rmcorr plots. It also includes several example data sets, two of
which are described in detail below. This package can be accessed
in CRAN R: https://cran.r-project.org/web/packages/rmcorr/
and installed and loaded in R using the following commands:

(1) install.packages(“rmcorr”)

(2) library(rmcorr)

Package Overview
Package
The rmcorr package has two primary functions: rmcorr and
plot.rmc.

1) rmcorr: This function takes as input repeated measures
paired data and computes the repeated measures correlation
coefficient. It takes the form:
rmc.out <- rmcorr(participant,
measure1, measure2, dataset, CIs =

c(“analytic,” “bootstrap”), nreps = 100,

bstrap.out = F)

Where participant, measure1, and measure2 are
variables giving the participant ID/number, observations for
the first measure, and observations for the second measure,
respectively, and dataset is a data frame containing these
three variables. The function returns an rmc object, a list
containing four primary components: The value of the rmcorr
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coefficient, error numerator degrees of freedom, the 95%
confidence interval for the rmcorr coefficient, and the p-value
for the rmcorr coefficient.
An additional optional parameter, CIs, allows the user
to specify if the confidence intervals generated by the
function are computed analytically using the Fisher
transformation or using a bootstrapping procedure. If
bootstrapped confidence intervals are chosen, additional
arguments specify the number of resamples and whether
the function output will include the resampled rmcorr
values.

2) plot.rmc: This function takes as input an rmc object (the
output from the rmcorr function) and the dataset used to
generate it. It produces a scatterplot of the repeated measures
paired data, with each participant’s data plotted in a different
color. The function takes the form:
plot(rmc, dataset, overall = T, palette

= NULL, xlab = NULL, ylab = NULL,

overall.col = “gray60,” overall.lwd =3,

overall.lty = 2, ...)

The overall parameter specifies whether a line should
be plotted, indicating the regression line that would
result from treating the data as independent observations
(ignoring the repeated measures nature of the data).
overall.col, overall.lwd, and overall.lty are
optional parameters specifying the appearance of this line.
The palette parameter allows the user to optionally choose
a color palette for the plot. xlab and ylab are parameters
for labeling the x- and y-axis, defaulting to the variable
names in dataset. Finally, additional arguments to the
generic plot function (...) can specify other aspects of the plot’s
appearance.

Help and examples for each of these functions can be
accessed within R by typing help(function.name) or
?function.name. The Rmcorr package also includes three
built-in example datasets: bland1995 the data described in
Bland and Altman (1995a), raz2005 (the dataset used in the
first example below), and gilden2010 (the dataset used in the
second example below). More information about each dataset
is accessible within R with the commands of help() or ?.
In the sections below, we describe the bootstrapping procedure
available in this package in more detail, and then provide
examples of the package functions using real data.

Bootstrapping
The rmcorr effect size is estimated using a parametric confidence
interval, which assumes normality but can be more robustly
determined using bootstrapping. Bootstrapping does not require
distributional assumptions and uses random resampling to
estimate parameter accuracy (Efron and Tibshirani, 1994).
The bootstrap for rmcorr is implemented by randomly
drawing observations with replacement, within-individuals. This
procedure is repeated on each individual, yielding a bootstrapped
sample. The number of bootstrapped samples can be specified.
Each bootstrap sample is then analyzed with rmcorr, producing
a distribution of rrm values. Last, these values are used to

calculate the bootstrapped rmcorr coefficient (rrmboot) and its
corresponding confidence interval (CIboot) . There are a variety
of methods for calculating a bootstrapped confidence interval
(see (DiCiccio and Efron, 1996; Canty and Support, 2015). An
example is presented in the documentation for the rmcorr

package.

Two Example Datasets
Two example datasets are shown using the rmcorr package
to calculate inferential statistics and visualize results. These
examples demonstrate the potential application of rmcorr for
intra-individual research questions, and illustrate how and why
results can differ from simple regression/correlation, which
addresses inter-individual research questions. The first dataset
is composed of repeated measures of age and brain structure
volume over two time periods. The second dataset is the average
reaction time (RT) and accuracy for repeated blocks of visual
search trials.

Example 1: Age and Brain Structure Volume
Using data from (Raz et al., 2005) we assess the intra-individual
relationship between age and cerebellar hemisphere brain (CBH)
structural volume. Each measure was assessed on two occasions
approximately 5 years apart, thus the data are longitudinal.
The researchers found a negative association between age and
CBH volume when using separate simple regression/correlation
models for each of the two time periods (Raz et al., 2005).

Here, we demonstrate a variety of ways to analyze these
data, using both simple regression/correlation and rmcorr: (a)
separate simple regression/correlations, (b) rmcorr, and (c)
simple regression/correlation using averaged data. For each of
these three methods, we describe and plot the generated results
and discuss their interpretation.

First, we recreate the original cross-sectional (between-
participants) analysis from the paper, where the relationship
between age and CBH volume were assessed with separate simple
regression/correlation models at Time 1 [r(70) = −0.36, 95%
CI [−0.54, −0.14], p < 0.01] and Time 2 [r(70) = −0.40, 95%
CI [−0.58, −0.19], p < 0.001; Figure 5A]. The interpretation
of these results is cross-sectional: They indicate a moderately
negative relationship between age and CBH volume across
people, where older individuals tend to have a smaller volume
and vice versa. If we instead analyze this data at the intra-
individual level using rmcorr, we see a much stronger negative
association between age and CBH volume, rrm (71) = −0.70,
95% CI [−0.81, −0.56], p < 0.001 (Figure 5B). These results
are interpreted longitudinally, and indicate that as an individual
ages, CBH volume tends to decrease. Finally, it is possible to
analyze the relationship between age and CBH volume using
each participant’s data averaged across the two time periods
and a simple regression/correlation. This model produces similar
results to the original cross-sectional analysis: r(70) =−0.39, 95%
CI [−0.57,−0.17], p < 0.01 (Figure 5C).

The three approaches address different research questions.
The separate models analyze between-individual or cross-
sectional change (Figure 5A), whereas rmcorr assesses the intra-
individual or longitudinal change (Figure 5B). Taken together,
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FIGURE 5 | Comparison of rmcorr and simple regression/correlation results for age and brain structure volume data. Each dot represents one of two

separate observations of age and CBH for a participant. (A) Separate simple regressions/correlations by time: each observation is treated as independent, represented

by shading all the data points black. The red line is the fit of the simple regression/correlation. (B) Rmcorr: observations from the same participant are given the same

color, with corresponding lines to show the rmcorr fit for each participant. (C) Simple regression/correlation: averaged by participant. Note that the effect size is greater

(stronger negative relationship) using rmcorr (B) than with either use of simple regression models (A) and (C). This figure was created using data from Raz et al. (2005).

differing magnitudes of associations indicate that the negative
relationship for age and CBH volume is stronger within-
individuals than between-individuals. Separate models presume
that longitudinal and cross-sectional data are interchangeable,
which is not the case here and is a general challenge with
assessing the relationship between changes in age and brain
volume.5 The third result assesses a similar question as the
original, separate models (Figure 5C). Although this model is
straightforward, using averaged data may reduce or obscure
meaningful intra-individual variance, leading to decreased
power.

Rmcorr results and the rmcorr plot (a simplified version of
Figure 5B) are produced by running the following code:

1) Rmcorr: brainvolage.rmc <- rmcorr

(participant = Participant, measure1

= Age, measure2 = Volume, dataset =

raz2005)

5Observed associations for changes in age and brain volume with longitudinal

(within-individual) versus cross-sectional (between-individual) designs are not

necessarily equivalent (Salthouse, 2011).

2) Rmcorrplot: plot(brainvolage.rmc, raz2005,
overall = F, lty = 2, xlab = “Age”, ylab =

expression(Cerebellar∼Hemisphere∼Volume

∼(cmˆ{3})))

Example 2: Visual Search and Response Time
Using visual search data from one of the many search tasks
reported in Gilden et al. (2010), we assess the intra-individual
association between speed and accuracy. The continuous tradeoff
between speed (reaction time) and accuracy (correct or incorrect)
is well-known and occurs in a variety of tasks assessing cognitive
processes (Wickelgren, 1977). In this experiment, 11 participants
each completed four separate blocks of 288 visual search trials
apiece. RT and accuracy were computed for each block, for each
participant.

As in the first example dataset, we worked through three
different models for analyzing the relationship between
RT and accuracy in Figure 6: (A) rmcorr, (B) simple
regression/correlation (averaged data), and (C) simple
regression/correlation (aggregated data): improperly treating
each observation as independent. At the intra-individual
level, rmcorr yields a negative relationship between speed and
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FIGURE 6 | The x-axis is reaction time (seconds) and the y-axis is accuracy in visual search. (A) Rmcorr: each dot represents the average reaction time and

accuracy for a block, color identifies participant, and colored lines show rmcorr fits for each participant. (B) Simple regression/correlation (averaged data): each dot

represents a block, (improperly) treated as an independent observation. The red line is the fit to the simple regression/correlation. (C) Simple regression/correlation

(aggregated data): improperly treating each dot as independent. This figure was created using data from Gilden et al. (2010).

accuracy, rrm (32) = −0.41, 95% CI [−0.66, −0.07], p < 0.02
(Figure 6A), consistent with a speed-accuracy tradeoff. This
indicates that for a given individual, faster speed comes at the
cost of reduced accuracy.

We can instead average each participant’s RT and accuracy
across the four experimental blocks and assess the inter-
individual relationship between speed and accuracy. A simple
regression/correlation model suggests a positive relationship,
although the result is not significant: r(9) = 0.59, 95% CI [−0.01,
0.88], p = 0.06 (Figure 6B). Note the decrease in power and
that a large correlation, albeit a highly unstable one, is not
significant because this model has only nine degrees of freedom.
The first and second analyses appear contradictory. However, the
appropriate analysis and interpretation of the results depend on
the research question. If we want to quantify the speed-accuracy
tradeoff, a phenomena that occurs within-individuals, the first
analysis with rmcorr is appropriate. If we want to know, between
participants and collapsed across blocks, if faster people tend
to be more or less accurate, the second analysis is informative
(though underpowered).

Finally, we show the result of aggregating all data and
improperly treating each observation as independent. Because
the data are not averaged, power is much higher, which
may make this model initially attractive. Indeed, results
show a significant positive relationship between RT and
accuracy: r(42) = 0.38, 95% CI [0.09, 0.61], p = 0.01
(Figure 6C). However, the model violates the assumption

of independence; in essence, the data are treated as if 44
separate participants each completed one block of data. This
incorrect specification overfits the model, making the results
uninterpretable. We include this example to illustrate the
importance of identifying the research question of interest,
whether within-individuals, between-individuals, or both, and
defining the analysis accordingly.

Rmcorr results and an rmcorr plot (similar to Figure 6A) are
produced by running the following code:

1) Rmcorr: vissearch.rmc <- rmcorr(participant

= sub, measure1 = rt, measure2 = acc,

dataset = gilden2010)

2) Rmcorr plot: plot(vissearch.rmc, gilden2010,

overall = F, lty = 2, xlab = “Reaction

Time,” ylab = “Accuracy”)

CONCLUSION

Unlike standard correlation/regression techniques, rmcorr can
handle repeated measures data without violating independence
assumptions or requiring first averaging the data. The strengths
of rmcorr are in its potential for high statistical power, as
well as its simplicity. Rmcorr is ideal for assessing a common
association across individuals, specifically a homogenous intra-
individual linear association relationship between two paired
measures. The two examples provided above illustrate how
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rmcorr is straightforward to apply, visualize, and interpret with
real data.

Because rmcorr analyzes paired repeated measures without
averaging or violating the IID assumption it has clear advantages
over simple regression/correlation. This is particularly true when
there are violations of assumptions that result in biased and
spurious parameter estimates. Researchers may find the analysis
and visualization tools available in the rmcorr package useful
for understanding and interpreting paired repeated measures
data, especially in cases where these data exhibit non-intuitive
patterns (e.g., Simpson’s Paradox). This may include assessing
and comparing the association within-individuals versus the
association between individuals. For more complex datasets,
rmcorr is not a replacement for multilevel modeling.

Future work will expand the examples and functionality
of the rmcorr package. Rmcorr could complement multilevel
modeling. For example, it may be informative for assessing
collinearity in multilevel models and provide an effect size
for a null multilevel model. Other possibilities include more
detailed comparisons with a null multilevel model. Another
future direction could be determining the stability of the rmcorr
coefficient across different sample and effect sizes, building
upon research simulating the stability of Pearson correlations
(Schönbrodt and Perugini, 2013).
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