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Abstract
Marburgviruses are closely related to ebolaviruses and cause a devastating
disease in humans. In 2012, we published a comprehensive review of the
first 45 years of research on marburgviruses and the disease they cause,
ranging from molecular biology to ecology. Spurred in part by the deadly
Ebola virus outbreak in West Africa in 2013–2016, research on all
filoviruses has intensified. Not meant as an introduction to marburgviruses,
this article instead provides a synopsis of recent progress in marburgvirus
research with a particular focus on molecular biology, advances in animal
modeling, and the use of Egyptian fruit bats in infection experiments.
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Introduction
Marburg virus (MARV) is a member of the Marburgvirus genus 
that contains two different viruses: MARV and Ravn virus  
(RAVV). Both viruses are represented by numerous isolates1.  
Filovirus taxonomy is confusing, and for those who do not 
know the difference between Marburg virus (the virus MARV),  
Marburgvirus (the genus), and marburgvirus (MARV and  
RAVV), we recommend browsing through the Guide to the  
Correct Use of Filoviral Nomenclature by Kuhn2.

MARV is closely related to the better-known Ebola virus  
(EBOV) and causes a similarly severe disease in humans. Some 
of the unique characteristics of filovirus outbreaks were reported 
for MARV disease (MVD) long before they were noticed in  
EBOV disease (EVD). This includes persistent infection,  
sexual transmission, and long-term sequelae3. There are also  
heart-breaking reports of social stigmatization and severe  
chronic health issues as recalled by survivors of the 1967 MVD 
outbreak in Marburg, Germany4. Notably, one of the patients 
from that outbreak temporarily lost the ability to write and  
calculate and never completely recovered from concentration 
disorders, reflecting the severe neurological consequences in  
survivors of filovirus disease4.

MVD remains a global health threat with outbreaks continuing 
to occur in Central Africa, including two outbreaks in Uganda 
in 2012 and 20145,6. Jointly with EVD, MVD is listed on the  
World Health Organization 2018 Priority Diseases List (https://
www.who.int/blueprint/priority-diseases/en/). This list is used 
as a tool to determine which diseases and pathogens should be  
prioritized for research, development of countermeasures, and 
emergency response preparedness.

In 2012, we published a comprehensive overview on marburg-
viruses and the disease they cause, ranging from ecology to  
molecular biology and treatment options7. A number of areas 
of significant progress in the marburgvirus field since 2012— 
including the development of tools to study MARV replica-
tion and transcription and to rescue MARV clones8,9, advances 
in filovirus countermeasures10,11, and vaccine development12— 
have recently been summarized. Progress in the development 
of MARV vaccines and antiviral treatment options has led to  
phase 1 clinical trials to evaluate their safe use in humans13–15. 
Rather than repeating what has been covered in our previous  
review and these other excellent reviews, this article instead 
will focus on (1) recent progress in marburgvirus molecular  
biology, (2) novel developments in the study of marburgvi-
ruses in Egyptian fruit bats, and (3) advances in the use of  
animal models to study marburgvirus infection, including their 
use in resolving isolate-specific differences in virulence and  
pathogenicity.

1. Molecular biology
During the last 6 years, much research has focused on a more 
detailed understanding of the different steps of the marburg-
virus replication cycle as well as virus–host interactions using  
crystal structure, biochemistry, and bioinformatics approaches. 
Live-cell imaging studies have been instrumental in developing 
a deeper understanding of marburgvirus assembly and particle 
release.

a. Marburg virus genome
Marburgviruses belong to the group of non-segmented nega-
tive-strand RNA viruses. A detailed overview of viral genome  
organization, cis-acting elements, and genome replication and 
transcription strategies is provided in 7,16. High-throughput  
sequencing of MARV RNA combined with bioinformatics and 
statistical analysis has provided new insights into viral genome 
plasticity and MARV evolution. This includes codon usage  
analysis17, phylogenetics18,19, and the identification of hot spots 
of U–C substitutions20,21. Although the function of these U–C  
substitutions is unknown, it is suggestive of adenosine deami-
nase (ADAR) editing20,21. Deep sequencing of MARV Angola 
RNA obtained from infected cells and infected non-human  
primates (NHPs) determined novel editing sites in the nucleo-
protein (NP) and L open reading frames, increasing the potential 
coding capacity of these viral genes with as-yet-unknown  
functions20.

b. Marburg virus assembly
The MARV RNA genome is in close association with the viral 
nucleocapsid proteins, including NP (enwraps viral RNA), the 
RNA-dependent RNA polymerase complex consisting of L  
(enzymatic moiety of the polymerase complex), and viral  
protein 35 (VP35) (polymerase cofactor), VP30 (function not 
clear; possibly a transcription regulator), and VP24 (involved in  
nucleocapsid formation and maturation). Viral genome repli-
cation and transcription occur in the cytoplasm of the infected  
cells in viral inclusions which are highly ordered aggregations 
of nucleocapsids22. Live-cell imaging has shed some light on the  
trafficking of mature MARV nucleocapsids from viral inclusions 
to the sites of budding and helped to identify viral and cellular  
proteins involved in this process. Mature MARV nucleocapsids 
are transported along actin filaments from the viral inclusions  
to the plasma membrane, where they recruit the viral matrix  
protein VP40. Only nucleocapsids that are associated with VP40 
are transported into filopodia23. These long cellular protrusions  
are the main budding sites of MARV particles. MARV NP 
contains a late domain motif (PSAP) that recruits tumor  
susceptibility gene 101 (Tsg101), a component of the vesicu-
lar transport system ESCRT-I (endosomal sorting complexes  
required for transport I), to the viral inclusions. NP–Tsg101  
interaction is required for the actin-dependent transport of  
MARV nucleocapsids into the filopodia24. The MARV glyco-
protein (GP) is also recruited to VP40-enriched membranes by a  
tubulin-dependent process25.

c. Structure–function of Marburg virus proteins
Structural analyses have provided a deeper insight into the  
interactions and functions of almost all seven MARV proteins26. 
Comparison of the MARV proteins with their ebolavirus homologs 
has shown a varying degree of structural resemblance that often 
correlates with functional similarity27–36. Intriguingly, despite  
considerable structural conservation, some of the MARV proteins 
are functionally different from their ebolavirus homologs, with 
VP24 being a prime example of this.

Viral protein 24. VP24 is required for nucleocapsid formation 
and assembly for both viruses, but only ebolavirus VP24 blocks  
type I interferon (IFN) signaling (reviewed in 37,38). Crystal  
structure analysis revealed that the ebolavirus and MARV VP24 
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cores are structurally similar, supporting their common func-
tion in nucleocapsid formation and assembly. One difference 
between MARV and ebolavirus VP24 proteins is an extended  
β-sheet that is formed by MARV VP24 amino acid residues 201 
to 21735. Although this structural difference does not explain why 
MARV VP24 is not immunosuppressive35, it is connected to a 
novel function of MARV VP24. The extended β-shelf contains the  
binding domain for the cellular adaptor protein Kelch-like  
ECH-associated protein 1 (Keap1). Keap1 is a central player 
in the oxidative stress response pathway and a suppressor of the 
antioxidant response transcription factor nuclear factor (erythroid- 
derived 2)-like 2 (Nrf2). MARV VP24 binds to Keap1 via the “K 
loop” that comprises amino acids 202 to 20939,40. This leads to  
the nuclear accumulation of Nrf2 and consequently to the activa-
tion of an antioxidative and cytoprotective response in MARV- 
infected cells39,41. In contrast, ebolavirus VP24 proteins, which 
do not have the K loop, are not able to induce a cytoprotec-
tive response39,41. Keap1 is also a regulator of the nuclear factor  
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. 
It targets IκB kinase β (IKKβ) for degradation which disables 
the cell to respond to NF-κB–activating stimuli. MARV VP24 
prevents Keap1 from binding to IKKβ, allowing the cell to  
respond to NF-κB–activating stimuli42.

Viral protein 30. Another example for functional difference 
despite structural conservation is VP30. Although EBOV VP30 
has been shown to act as a transcription activator and regula-
tor of viral RNA synthesis16,32, the role of MARV VP30 is less 
well understood. Despite the high degree of structural homology 
between MARV and EBOV VP30, EBOV VP30 enhances  
transcriptional activity in a minigenome system at least 50-fold 
and is essential for detectable reporter gene activity, whereas 
MARV VP30 increases reporter gene activity only moderately 
(about twofold) in the MARV minigenome system43–45. However,  
MARV VP30 is essential for viral replication46,47. Crystal struc-
ture analysis confirmed the conformational similarity of EBOV 
and MARV VP30 proteins. Both EBOV and MARV VP30  
C-terminal domains bind a peptide in the respective NP  
C-terminal region. The EBOV and MARV NP–VP30 complexes 
are remarkably similar, although slight differences might account 
for the lower binding affinity observed for the MARV NP–VP30 
complex (K

D
 of 14 µM compared with K

D
 of 5.7 µM for EBOV  

complex). NP–VP30 complex formation was shown to be essen-
tial for EBOV minigenome activity32. Whether the observed  
differences in VP30–NP binding affinity play a role in the lower 
efficiency of MARV VP30 to enhance transcription remains to  
be determined.

Both EBOV and MARV VP30 proteins are phosphorylated, 
and phosphorylation of EBOV VP30 blocks its transcriptional 
activity48–52. A recent study showed that phosphorylation of 
MARV VP30, like that of EBOV, interferes with its enhancing  
function in the minigenome system45.

Viral protein 35. MARV VP35 plays an important role in vari-
ous steps of the viral replication cycle. It is a component of the 
viral RNA-dependent RNA polymerase, required for nucleocapsid  
formation, and suppresses antiviral host responses, includ-
ing type I IFN production, protein kinase R (PKR) activation, 

and dendritic cell maturation53–56. Crystal structure analysis 
provided deeper insights into the various functions of MARV 
VP35. Similar to EBOV VP3557,58, MARV VP35 chaperones 
NP by inhibiting NP oligomerization and RNA binding. This 
facilitates the release of NP-bound viral RNA and gives the viral  
polymerase access to the RNA template. It also prevents unspe-
cific NP-RNA aggregation33,34. In regard to its function as a  
suppressor of type I IFN production, MARV VP35 seems to be 
less efficient than its EBOV homolog59–61. This difference might 
be due to differences in the binding modes and affinities of EBOV 
and MARV VP35 proteins to double-stranded RNA, potentially 
impacting the inhibition of downstream antiviral pathways59,60,62.  
Interestingly, compared with MARV VP35, RAVV VP35 seems  
to be more efficient in suppressing type I IFN production61.

Viral protein 40. MARV VP40 is a multifunctional protein that 
mediates virus egress, regulates viral transcription and replica-
tion, and counteracts the innate immune response by blocking 
signal transducer and activator of transcription (STAT)1 and 
STAT2 signaling63. Recent research on VP40 has focused on the 
mechanisms underlying VP40–membrane interaction and bud-
ding. Crystal structure analysis has shown that MARV VP40  
in solution forms a dimer with an N-terminal dimer interface. 
The C-terminal domains of the VP40 dimer, which form a flat 
cationic surface that interacts with anionic phospholipids at 
the inner leaflet of the plasma membrane29,36,64, are required for  
budding but not for the immunosuppressive function of  
VP4029. Hydrogen–deuterium exchange mass spectrometry has 
suggested that this interaction facilitates VP40 assembly and  
oligomerization65.

VP40 hijacks cellular vesicular transport systems to bud 
from the infected cells, including the coat protein complex II  
(COPII) vesicular transport system and the ESCRT system37. 
A screen to find additional cellular proteins that bind to the late 
domain motif (PPxY) within EBOV VP40 identified the co- 
chaperone protein BCL2-associated athanogene 3 (BAG3). 
In contrast to other late domain binding proteins that promote  
filovirus budding, BAG3 inhibits EBOV and MARV VP40- 
mediated budding and therefore could be part of a cellular antiviral 
defense system66.

It has been shown previously that VP40 is a species-specific 
virulence factor and that changes in VP40 are required for  
marburgvirus adaptation to rodent hosts (reviewed in 67; an over-
view of the various MARV and RAVV isolates is provided in 7). 
Mouse adaptation of two marburgvirus isolates—RAVV and 
MARV Ci67—led to several mutations in the VP40 gene68,69.  
Although the wild-type versions of RAVV and MARV Ci67 
VP40 antagonized the type I IFN response inefficiently in mouse 
cells, the mouse-adapted VP40 mutants retained this function 
in both human and mouse cells70,71. Intriguingly, the underlying 
amino acid changes required to facilitate type I IFN antagonism 
in mouse cells differed in the mouse-adapted RAVV and MARV 
Ci67 VP40 proteins70,71. Other functional changes that correlated 
with mouse adaption affected the ability of VP40 to mediate  
budding. Whereas wild-type RAVV VP40 efficiently medi-
ated budding from both human and mouse cells, mouse-adapted 
RAVV VP40 was restricted in this function by tetherin in human 
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cells72. Mutations in VP40 induced by guinea pig adaptation 
of MARV Musoke resulted in increased budding and a gain of 
viral fitness in guinea pig cells while not altering the type I IFN 
antagonizing function of VP40 in human or guinea pig cells73.  
This shows that VP40 mutations which occur during rodent adap-
tation not only enhance type I IFN antagonism in these hosts 
but also promote VP40-mediated budding. MARV adaptation 
to guinea pigs resulted in mutations in both VP40 and the 
viral polymerase (L). Minigenome data suggest that there is a  
synergistic effect of these mutations in guinea pig cells, leading to 
enhanced replication activity74. Because of the role of VP40 as a  
virulence factor, the inhibition of type I IFN signaling by VP40 
represents an intriguing potential target for the development  
of anti-MARV therapeutics. Unfortunately, this is currently limited 
by our poor understanding of the exact molecular mechanisms 
underlying this inhibition.

Glycoprotein. Given its exposure on the surface of viral par-
ticles, which makes it the perfect target for antibody recogni-
tion, and its crucial role in attachment and fusion, MARV GP 
has been extensively studied in the last 6 years. This includes 
the identification and characterization of host factors involved in  
attachment and entry75–77, the role of GP

2
 in membrane fusion  

and tetherin antagonism30,31,78,79, and the effects of steric shield-
ing of host surface proteins, including major histocompatibility  
complex I, integrin β1, and Fas, by MARV GP80,81. GP shield-
ing of surface-expressed Fas interfered with the induction of  
Fas-mediated apoptosis and could help to protect MARV-
infected cells from premature cell death81. Interestingly, steric  
shielding of host proteins was more pronounced for MARV 
Angola GP than for MARV Musoke GP, indicating that it might 
play a role in virus-specific pathogenicity80 (see section 3b). Much 
progress has also been achieved in the structural analysis of GP 
and its interaction with protective antibodies, which are prom-
ising candidates for post-exposure treatment82,83. An excellent 
overview by King et al. on the structural features of protective 
epitopes on filovirus GPs highlights the striking differences 
between the neutralizing epitopes on EBOV and MARV GPs84. To  
date, only two MARV GP epitopes that are targeted by protec-
tive antibodies have been identified: the receptor binding site and 
the wing domain that is located within the MARV GP

2
 subunit 

and is not present in ebolavirus GPs. The MARV receptor  
binding site seems to be easily accessible to neutralizing antibod-
ies whether GP is cleaved or not, whereas the respective region 
on ebolavirus GPs is shielded by a glycan cap and is exposed 
only after GP cleavage85,86. The receptor binding site antibodies 
have shown promising potential for use as therapeutics, as they 
are protective when administered up to 5 days post-exposure in  
NHPs83. Testing of antibodies directed against the wing domain 
have been less encouraging: protection of mice is observed 
when given 1 hour after infection87, highlighting a large dispar-
ity in therapeutic potential between antibodies directed against 
these two regions of GP. Owing to differences in structure and 
identified protective epitopes, the search for a pan-filovirus  
antibody has remained unfruitful so far, although pan-ebolavirus  
protective antibodies have been identified88–95.

2. Host response to Marburg virus infection
Recent studies on the host response to MARV infection have 
focused on identifying signatures of innate and adaptive immunity 

as well as correlates of disease severity and outcome in both 
human MVD survivors and MARV-infected NHPs. Although 
both EBOV and MARV infections are lethal in cynomolgus 
macaques, transcriptional analysis revealed unique immune  
signatures associated with each virus and suggested a more 
pronounced immune dysregulation in MARV infection96. The  
MARV-specific gene expression profile included the upregula-
tion of complement system genes, genes involved in neutrophil 
and monocyte recruitment, and innate immune signaling genes96.  
Distinct immune responses, which are predictive of clini-
cal outcomes, have been detected in both human survivors and  
macaques infected with MARV: although lethal infection of  
rhesus macaques with MARV Angola was linked to T-helper cell 
type 2 (Th2)-skewed responses97, human survivors of MARV  
infection exhibited Th1-skewed CD4+ T-cell responses98. The 
ability to identify these predictive responses in patients could 
result in more effective patient triage and administration of  
targeted therapies.

Another major focus of MVD research has been the pursuit 
of earlier diagnostics, and particular attention has been on the 
early identification of unique signatures of marburgvirus infec-
tion. MARV infection of NHPs led to the activation of peripheral 
blood mononuclear cells, as reflected by the induction of the 
type I IFN response in rhesus macaques99 and increased expres-
sion of heat shock proteins in cynomolgus macaques97,100.  
Upregulation of type I IFN-stimulated genes was detected as 
early as 1 day post-infection in MARV-infected rhesus macaques, 
prior to the onset of symptoms97. These data indicate that new 
diagnostic tools could be developed to detect these unique  
signatures of marburgvirus infections prior to the onset of 
viremia or symptoms, allowing earlier detection and treatment of  
MVD.

A major unanswered question in the filovirus field is how long 
human survivors remain protected against subsequent exposure 
to autologous virus. Although long-lived antibody responses 
have been found in human survivors of Sudan and Bundibugyo 
viruses (both ebolaviruses) as well as MARV101, MARV neu-
tralizing antibody responses were lower and showed a faster 
decline in contrast to the prolonged presence of neutralizing 
antibodies after Sudan virus infection98,102. Low titers of neutral-
izing antibodies were also observed in cynomolgus macaques  
after vaccination against MARV. Nevertheless, animals were 
protected against lethal MARV challenge for over 1 year103.  
These findings emphasize the need for a better understanding 
of the differences in host response to diverse filoviruses and to  
determine long-term effects of vaccine candidates.

3. Marburg virus prevalence and pathology in bats
Another area of progress in the marburgvirus field is focused 
on the natural reservoir of these viruses. Prior work showed 
that the common Egyptian fruit bat (Rousettus aegyptiacus) is  
a reservoir for marburgviruses, having demonstrated positive  
serology, detection of viral RNA, and the ability to culture  
infectious virus from the bats, a feat still unparalleled in the 
ebolavirus field. Since our previous review of the marburgvirus  
literature7, major advances have been made in our understanding 
of the ecology of marburgviruses in Egyptian fruit bats, including 
the outcome of experimental infection of these bats with MARV.
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a. Ecology of marburgviruses in bats
Expanding upon the handful of reports prior to 2012, more recent 
studies have investigated the prevalence of marburgviruses in 
various bat species. These reports primarily investigated the 
prevalence of Egyptian fruit bat exposure to MARV and RAVV 
as determined by serology and, to a lesser extent, quantitative 
real-time polymerase chain reaction (RT-PCR), finding varying  
degrees of prevalence in different geographic populations. The 
finding of higher rates of Egyptian fruit bats with detectable  
marburgvirus RNA that repopulated Kitaka mine104 versus the  
population that was present prior to extermination105 led the  
authors to propose that the new founding population may have 
been susceptible to MARV infection and, following multi-
ple introductions of diverse marburgviruses, led to the high 
rates of RT-PCR–positive bats. This finding should serve as 
a warning for possible future attempts at controlling MARV 
outbreaks by trying to eradicate local bat colonies; such an  
approach may backfire.

Three separate studies analyzing MARV seropositivity and RNA 
in Egyptian fruit bats in Uganda, South Africa, and Zambia all 
detected cyclical temporal patterns: the lowest prevalence was 
observed during the birthing season and prevalence increased 
thereafter, particularly among juvenile bats106–108. Intriguingly,  
83% of previous marburgvirus outbreaks in the human popula-
tion coincided with these peaks in viral abundance in Egyptian 
fruit bats106, further implying the importance of Egyptian fruit 
bats as the prime source for MARV spillover to humans. The fact 
that similar data were obtained in diverse bat populations that  
differ drastically in their geographic distribution and mating  
patterns (once versus twice per year) strengthens the possibil-
ity that marburgvirus prevalence, at some level, may be linked to  
behavioral patterns of these bats.

Because MARV infection appears to be quite mild in Egyptian 
fruit bats (see section 2b) and prevalence is fairly low, some have 
speculated either that R. aegyptiacus is not the reservoir species 
or that it is unlikely to be the only species required for the 
enzootic maintenance of marburgviruses. To date, however, inves-
tigations of marburgvirus seroprevalence in other bat species105,109 
and marburgvirus presence in R. aegyptiacus–associated ticks  
(Ornithodoros faini110) have been unfruitful in finding other likely 
reservoir species.

b. Experimental infection of Egyptian fruit bats
Critical advances in our understanding of MARV infection of 
Egyptian fruit bats have been facilitated by the establishment of 
captive, breeding colonies of Egyptian fruit bats at the Center 
for Emerging and Zoonotic Diseases in Sandringham, South  
Africa, and at the Centers for Disease Control and Prevention in 
Atlanta, Georgia, USA. Studies reporting primary MARV infec-
tion of Egyptian fruit bats from these two colonies have yielded 
strikingly similar results; although MARV is able to replicate 
in bats, viremia remains low, there is no resulting sickness or 
pathology in the bats, and the bats are able to quickly clear the  
infection111–114. Whereas both groups observed MARV RNA in 
oral and rectal swabs of infected Egyptian fruit bats112,114, only 
one of the groups was able to culture live virus from oral and  
rectal swabs from the infected bats112.

An important aspect in considering the ecology of MARV in  
R. aegyptiacus populations is whether prior infection with MARV 
prevents subsequent reinfection. Two separate challenge studies 
clearly showed that Egyptian fruit bats previously infected with 
MARV were resistant to challenge by a homologous MARV  
isolate115,116.

c. Transmission of Marburg virus by Egyptian fruit bats
Recent studies investigating the ability of MARV-infected  
Egyptian fruit bats to spread the virus to uninfected, co-housed 
animals have resulted in more divergent results. Whereas Paweska 
et al. found no evidence of transmission despite robust  
infection of the injected bats114, Schuh et al. did117. MARV was  
detected in blood and oral samples from the bats that were 
infected by horizontal transmission, providing a possible mecha-
nism of viral transmission (saliva transmission). The different 
outcomes could be due to the different virus isolates used in 
these studies or differences in the genetic background of the bats  
themselves.

d. Molecular biology of Marburg virus infection in bat cells
In addition to advances in studying infections in bats, much recent 
study has focused on cellular responses in bat cells to MARV 
infection. Multiple transcriptomic analyses of MARV infection 
of R. aegyptiacus cell lines have come to similar conclusions. 
Infection of the cell lines R06E (derived from fetal body cells)118  
and R0Ni/7.1 (adult kidney)119 appears to follow patterns simi-
lar to those of transcriptional responses in human cells, although 
viral replication was not as robust in the bat cells as in Huh7 
and HepG2 human cells120–122. Whereas two of these reports 
found either no induction or minimal induction of type I, II, 
or III IFNs or IFN-stimulated genes in bat cells infected with  
MARV120,121, one of these reports found low to modest upregu-
lation of these genes122. This may be due to differences in 
experimental design or differences in the MARV isolates 
used in the studies. Interestingly, one of these reports found  
that MARV upregulated some unannotated antiviral paralogs121.

Despite a relative dearth of bat-specific antibodies, some non-
transcriptomic analyses have begun analyzing molecular mecha-
nisms of MARV infection in bat cell lines. Although EBOV 
VP35 had previously been shown to inhibit PKR in human 
cells, a recent report describes the ability of MARV VP35 to 
inhibit PKR activation in a cell type–specific manner, with VP35  
being unable to inhibit bat PKR in the RoNi/7.1 cell line55. An  
analysis of fibroblast cell lines from four different bat species 
revealed that species-specific differences in Niemann–Pick  
C1 (NPC1) accounted for differences in EBOV GP-mediated, but 
not MARV GP-mediated, infectivity123.

4. Advances in animal modeling of marburgvirus 
infections
Historically, individual studies analyzing marburgviruses have 
been performed using single isolates of MARV or RAVV, and 
comparative studies have been sparse124. However, fueled by 
discussions about the impact of viral sequence variations on 
pathogenic potential that arose during the West African EBOV  
outbreak125–128 and by the advent of high-throughput sequenc-
ing technologies, marburgvirus isolate variations are now 
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more acknowledged, and marburgvirus diversity has become a 
research topic. Well-established and newly developed animal 
models are useful tools to conduct these comparative studies. 
A list of marburgvirus variants commonly used in animal  
experiments during the last 6 years is provided in Table 1.

a. Newly developed animal models to study Marburg virus 
and Ravn virus infection
Since our previous review in 2012, a number of new animal 
models of MVD have been developed. Detailed comparisons 
of these and previously established MVD animal models have 
recently been published129–131. Instead of repeating the content 
of these comprehensive reviews, we will briefly introduce 
these animal models and then focus on their use in resolving  

Table 1. Experimentally used marburgviruses.

Year Country of 
origin

Country of 
isolation

Isolate Reference

1967 Presumably 
Uganda

Germany MARV Ci67 (Marburg virus/H.sapiens-tc/
GER/1967/Hesse-Cieplik)

Lofts et al. (2011)68, Coffin et al. (2018)139

MARV Voege (Marburg virus/H.sapiens-tc/
GER/1967/Hesse-Voege)

Atkins et al. (2018)132

MARV Pop (Marburg virus/H.sapiens-tc/
GER/1967/Hesse-Popp)

Smither et al. (2013)134

1975 Rhodesia (now 
Zimbabwe)

South Africa MARV Ozolins (Marburg virus/H.sapiens-tc/
ZAF/1975/Sinoia-Ozolins)

Nicholas et al. (2018)140

MARV Hogan (Marburg virus/H.sapiens-tc/
ZAF/1975/Sinoia-Hogan)

Paweska et al. (2012)111

1980 Kenya Kenya MARV Musoke (Marburg virus/H.sapiens-tc/
KEN/1980/Mt. Elgon-Musoke)

Atkins et al. (2018)132, Blair et al. (2018)141, 
Nicholas et al. (2018)140, Daddario-DiCaprio  
et al. (2006)142, Coffin et al. (2018)139, 
Daddario-DiCaprio et al. (2006)143, Mire et al. 
(2014)103

1987 Kenya Kenya RAVV (Ravn virus/H.sapiens-tc/KEN/1987/
Kitum Cave-810040)

Atkins et al. (2018)132, Lofts et al. (2011)68, 
Cross et al. (2015)144, Nicholas et al. (2018)140, 
Daddario-DiCaprio et al. (2006)142, Thi et al. 
(2017)145, Mire et al. (2017)83

1998–2000 COD COD MARV SPU 148/99/1 Paweska et al. (2015)114, Storm et al. (2018)116

2004–2005 Angola Angola MARV-Angola-AGO-2005 Qiu et al. (2014)146, Wong et al. (2018)147

MARV-Angola-AGO-2005-368 Lavender et al. (2018)133, Wong et al. 
(2018)136, Marzi et al. (2016)148, Fernando  
et al. (2015)149, Nicholas et al. (2018)140, Marzi 
et al. (2018)96

MARV Angola (Marburg virus/H.sapiens-tc/
AGO/2005/Angola-1379c)

Atkins et al. (2018)132, Johnston et al. 
(2015)150, Lin et al. (2015)151, Alfson et al. 
(2018)152, Cross et al. (2015)144, Blair et al. 
(2018)141, Cooper et al. (2018)153, Woolsey 
et al. (2018)154, Thi et al. (2017)145, Mire et al. 
(2017)83

MARV-Angola-1381 Ewers et al. (2016)155

2007 Uganda Uganda MARV-371-Bat2007 (Marburg virus/
R.aegyptiacus-tc/UGA/2007/371Bat-811277)

Amman et al. (2015)112, Jones et al. (2015)113, 
Schuh et al. (2017)115,117

This table shows Marburg virus (MARV) and Ravn virus (RAVV) variants that have been used in experimental animal infections highlighted in this review. “tc” in 
the virus name indicates tissue culture passaging. This information is not available for all listed viruses, but it is likely that all isolates were passaged more than 
once. COD, Democratic Republic of the Congo.

isolate-specific differences in virulence and pathogenicity as  
well as their use in modeling post-recovery sequelae.

Recently developed animal models that allow the study of 
lethal MVD without virus adaptation include STAT2 knockout  
hamsters132, humanized mice133, and marmosets134. Infection of 
humanized mice with MARV, compared with infection with 
EBOV, was associated with lower overall weight loss, whereas 
the viral titers were similar133. Surprisingly, ferrets infected 
with MARV or RAVV, in contrast to those infected with EBOV, 
did not develop symptoms of disease, regardless of dose, route  
of infection, and virus isolate135–138. Immunocompetent small-
animal infection models for MARV and RAVV, including mice, 
hamsters, and guinea pigs, require virus adaptation. Recent  
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virus-adapted systems include a hamster model for MARV Angola 
that recapitulates the disease observed in humans and NHPs148  
and MARV Angola mouse models146,156. Similar to what was 
observed before for mouse-adapted MARV isolates Ci67 and  
RAVV67, deep sequencing of the MARV Angola genome during 
mouse adaptation revealed, among other mutations, adaptive 
changes in the VP40 open reading frame68,156, emphasizing 
the importance of VP40 as a species-specific virulence factor  
(see “Viral protein 40” section above).

b. Differential virulence of Marburg virus variants
MARV Musoke was isolated in 1980 in Kenya from a physi-
cian who contracted the disease while attending a patient with 
MVD. Whereas the index case succumbed to the infection, the 
secondary case survived. There is only a single virus isolate 
from this MVD episode, and it was isolated from the surviving  
patient157. The MARV Angola variant comes from the 2005 out-
break of MVD in Angola with at least 252 cases, including 
227 fatalities. Multiple virus isolates exist from this outbreak157. 
It is important to note that even individual isolates may vary from 
lab to lab, as they have typically been passaged in cell culture 
multiple times, disseminated to other laboratories, and possibly  
passaged further, leading to a diversity of virus stocks with  
different histories of propagation and thus potentially divergent  
genetic and phenotypic identities152. Passaging of viruses in cell 
culture is known to lead to the accumulation of defective inter-
fering viral particles and higher particle/plaque-forming unit  
ratio99. This was also shown for MARV Angola and EBOV; 
virus passaged multiple times in cell culture was found to be  
associated with increased survival and delayed disease pro-
gression in NHPs152,158. Given the much longer history of the  
stocks derived from the MARV Musoke isolate, it is conceivable 
that MARV Musoke stocks have accumulated defective particles 
over time and that the compositions of the MARV Musoke and 
MARV Angola virus stocks differ, which should be taken into 
account when interpreting differences in pathogenicity.

Comparative studies in small-animal models that require virus 
adaptation revealed a range in pathogenicity, with MARV 
Angola being more pathogenic than other marburgvirus  
variants, including RAVV144,146,147. Different results were obtained 
using the STAT2-deficient hamster infection model that does 
not require virus adaptation. In this infection model, fast disease  
progression and death were observed with MARV Musoke 
and Voege, a delayed but equally lethal infection was observed  
with MARV Angola, and RAVV resulted in a symptomatic but  
non-lethal infection132.

The pathogenicity of different marburgvirus variants was 
also studied in NHP models which recapitulate the disease in 
humans most faithfully. Due to advances in telemetry tracking of  
clinical data, disease symptoms now can be more easily  
monitored in this infection model155. Fatal MARV infection is  
associated with increased lymphocyte and hepatocyte apoptosis 
in both rhesus and cynomolgus macaques140. In the rhesus and  
cynomolgus macaque models, as in the small-animal models using 
adapted marburgviruses, MARV Angola showed higher virulence 

compared with other marburgvirus variants, including MARV 
Musoke, Ci67, Ozolin, and RAVV140–143,149,154,159. The increased 
virulence of MARV Angola could be explained, at least partially, 
by an enhanced replication efficiency of this virus, as shown in 
cell culture experiments160. Conflicting results have been reported 
for RAVV infections of NHPs. Although RAVV infection of 
rhesus macaques was 100% lethal in two studies83,145, complete 
survival was noted in a separate study140. Overall, these studies 
highlight the need for further comparative analysis of different  
marburgvirus variants in different animal models.

c. Persistent Marburg virus infection in non-human primate 
models
Although persistent MARV infection and long-lasting health 
issues after recovery have been noted for a number of survivors 
of MVD, including those from the initial outbreak in 19673, this 
issue became a research topic only after the devastating EVD 
outbreak in West Africa. Recent studies using rhesus macaques 
have shown that immune-privileged sites, including the eyes, 
female and male genital tracts, and mammary glands, are infected 
during acute MARV infection153. Similar to human survivors  
of EBOV and MVD161–163, some cynomolgus macaque survi-
vors (including those that had been treated in antiviral drug 
testing) developed persistent MARV infection in the eyes and  
testes139. These results indicate that NHP survivors of experi-
mental MARV infection could serve as useful models to  
study sequelae of MVD. It remains to be determined whether  
persistent infection also occurs in other animal models of filovirus  
infection.
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