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Abstract

The separation of sister chromatids at anaphase, which is regulated by an
E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome
(APC/C), is arguably the most important irrevocable event during the cell
cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the
many significant cell cycle regulators and exert control through
ubiquitylation and phosphorylation, respectively. The temporal and spatial
regulation of the APC/C is achieved by multiple mechanisms, including
phosphorylation, interaction with the structurally related co-activators
Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes,
binding with inhibitors and differential affinities for various substrates. Since
the discovery of APC/C 25 years ago, intensive studies have uncovered
many aspects of APC/C regulation, but we are still far from a full
understanding of this important cellular machinery. Recent high-resolution
cryogenic electron microscopy analysis and reconstitution of the APC/C
have greatly advanced our understanding of molecular mechanisms
underpinning the enzymatic properties of APC/C. In this review, we will
examine the historical background and current understanding of APC/C
regulation.
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Introduction

The ubiquitin pathway is an ATP-dependent tagging system
which regulates a plethora of events in eukaryotic cells by con-
trolling protein stability, localisation, assembly or activity of the
target substrate'~. Together with phosphorylation, the ubiquitin-
tagging “ubiquitylation” is the most frequently observed post-
translational modification in vivo. Thus, it is no exaggeration
to say that at least some key proteins in many seminal pathways
and signalling events observed in our body are regulated by
ubiquitylation. In this process, ubiquitin, a highly conserved
76-residue protein, is initially linked to a ubiquitin-activating
enzyme (El) in a reaction that uses ATP. The activated
ubiquitin is then transferred to a small ubiquitin-conjugating
enzyme (E2), forming a thioester-linked E2-ubiquitin inter-
mediate (E2~Ub). E2 acts either alone or in conjunction with
an E3 ubiquitin ligase to conjugate ubiquitin, most commonly,
onto the €-amino group of lysine residues in substrate proteins,
forming an isopeptide bond'”*. These seemingly simple
sequential actions of three enzymes (E1-E2-E3) are tightly con-
trolled to achieve accurate and appropriately timed ubiquitylation/
proteolysis. More than 3% of genes in eukaryotic genomes are
involved in the ubiquitin system, using multiple layers of regula-
tion, to maintain homeostasis throughout the cell and organism.

The anaphase-promoting complex/cyclosome (APC/C) was
discovered as an unusually large E3 ubiquitin ligase of cyclin B
by biochemical fractionation of Xenopus egg and clam oocyte
extracts™. Around the same time, genetic screening using yeast
mutants defective in cyclin B proteolysis during anaphase and
G, identified genes such as APC6/CDCI6 and APC8/CDC23’.
Purification of APC/C from Xenopus egg extract demonstrated
the presence of homologues of budding yeast Apc6/Cdcl6 and
Apc3/Cdc27, which were required for cyclin destruction and
anaphase progression in fungi and mammalian cells*''. Hence,
the idea that the APC/C ubiquitin system’”, essential cellular
machinery, controls not only cyclin destruction but also the ini-
tiation of anaphase in all eukaryotes arose and turned out to
be true. Shortly thereafter, securin/Cut2/Pdsl was identified as
the first non-cyclin APC/C substrate required for sister chromatid
separation'>"”. This opened up a new chapter of proteolysis-
driven cell cycle control in the mid-1990s, and to date a
considerable number of APC/C substrates have been identified.

APC/C activity is under tight control to ensure that APC/C sub-
strates are ubiquitylated and degraded at the right time and
the right place during the cell cycle'*'®. What are the underly-
ing mechanisms? How can we control it if it is mis-regulated?
Although we have known for a quarter of a century that the
APC/C is an E3 ubiquitin ligase, the enormity (1.2 MDa) and
complexity (14 subunits) of the enzyme have hindered the
reconstitution of apo-APC/C complex and subsequent detailed
analysis until recently'”. Now, high-resolution structural stud-
ies using reconstituted APC/C and multidisciplinary approaches
have advanced our understanding of the APC/C. Here, we give an
overview of APC/C regulation to date and highlight emerg-
ing themes. Readers interested in aspects of APC/C structural
regulation that are beyond the scope of this review are pointed
to recent comprehensive review articles™”.
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The APC/C is a multi-subunit cullin-RING E3

ubiquitin ligase

The APC/C belongs to the RING finger family of E3 ubiqui-
tin ligases™ . Unlike the HECT E3s that form E3~Ub interme-
diates during ubiquitin transfer, the RING E3s lack active sites
and do not participate chemically in ubiquitin transfer. Instead,
the RING E3 ubiquitin ligase functions as a scaffold that
brings together an E2~Ub and a substrate (Figure 1A), thereby
catalysing ubiquitin transfer from the E2 to the substrate. The
E3s typically behave as two-substrate enzymes in which the
E2~Ub and substrate are the two reactants whose binding affini-
ties both influence the reaction rate. In addition, the APC/C
exploits one more component, a co-activator such as Cdc20 and
Cdhl, as a substrate recruitment adaptor and APC/C activa-
tor (Figure 1B). Thus, APC/C activation can be regulated by
multiple mechanisms, including the interactions or spatiotempo-
ral regulations among these four elements together with ubiquitin
molecules, all of which can be subject to post-translational modi-
fications such as phosphorylation and inhibitor/pseudo-substrate
binding. It is also likely that individual substrate—co-activator
binding strength or mode or both regulate the formation of
APC/C-E2~Ub and the substrate ubiquitylation. Adding yet
another level of complexity, the APC/C (E3) consists of multi-
ple subunits and exploits two E2 enzymes (for example, Ube2C
and Ube2S) to achieve programmed ubiquitylation (Figure 1C).

Structure and mechanisms of the APC/C

Early cryogenic electron microscopy (cryo-EM) studies of
yeast and vertebrate APC/C revealed that APC/C has a triangu-
lar or asymmetric heart-shape (V-shape) conformation’’~", which
has been refined with the latest high-resolution cryo-EM*
(Figure 2A). The APC/C complex consists of 14 mostly highly
conserved subunits (Apcl-8, 10-13, 15 and 16) in metazoans
(13 subunits in yeast) together with a structurally related inter-
changeable Cdc20/Fizzy family of co-activators such as Cdc20
and Cdhl, generating an “active” macromolecular machine
exceeding 1.2 MDa (Figure 2B). It should be noted that
co-activators are not stoichiometric components of the APC/C,
but the association of co-activators with the APC/C is essential
for the APC/C to function. The most prevalent structural motif
is a 34-amino acid tetratricopeptide repeat (TPR), which is
present in five subunits (Apc3, ApcS, Apc6, Apc7 and ApcS8),
highlighting their role in coordinating the higher-order assembly
and protein recognition/binding. As an organised structure, the
APC/C complex can be divided into three sub-complex struc-
tures: the catalytic sub-complex (catalytic module), the substrate
recognition sub-complex (TPR lobe) and the scaffolding sub-
complex (platform) (Figure 2C). The catalytic module consists of
Apcll, the RING domain subunit and Apc2, the cullin subunit.
The minimal module of Apcll-Apc2 (heterodimer) can cata-
lyse ubiquitin transfer but with poor substrate specificity’*°. The
substrate recognition TPR lobe comprises four TPR subu-
nits (Apc7, Apc3, Apc6 and Apc8), each of which forms a
V-shaped homodimer via N-terminal domains, which are packed
in a parallel fashion resulting in the formation of a left-handed
superhelical structure. Two copies of Apcl12/Cdc26/Henl, which
had been shown to genetically interact with Apc6/Cdc16/Cut9***,
stabilise Apc6A and Apc6B as molecular chaperones. Apcl3
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Figure 1. Schematic diagrams of RING E3 ubiquitin ligases. RING-type E3 ligases serve as scaffolds to bring together the E2~Ub conjugate
and the substrate. E3s play a role in stimulating Ub transfer to the substrate from E2~Ub conjugate. E2-binding RING domain is coloured in
light blue. (A) Monomeric RING E3 ubiquitin ligases (for example, c-Cbl). (B) A simplified cartoon view of APC/C RING ES3 ubiquitin ligase
with a co-activator such as Cdc20 and Cdh1. (C) The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that uses two E2s. APC/C,
anaphase-promoting complex/cyclosome.
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Figure 2. APC/C structure and overall organisation. (A) APC/C structure. The image was generated by using the Protein Data Bank file
(4U19). The indicated numbers represent APC/C subunits. (B) Schematic view of the APC/C structure based on (A). Left: APCC?; right:
APC/CCen. Cdc20 activates the APC/C in metaphase and anaphase to degrade substrates such as cyclin B and securin and then Cdh1
takes over to degrade APC/C substrates in late anaphase and G,. (C) The APC/C complex can be divided into three modules: the catalytic
module (Apc2-Apc11) that interacts with E2s, the substrate recognition TPR lobe and the scaffolding platform (Apc1-Apc4-Apc5). During
the ubiquitylation catalysis, both substrate and E2s are positioned in or near the APC/C central cavity. APC/C, anaphase-promoting complex/
cyclosome; TPR, tetratricopeptide repeat.
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and Apcl6 also help stabilise TPR subunit interaction and the
assembly of the complex. Importantly, the substrate recognition
of the TPR lobe is through the WD40 domain of Cdc20/Cdhl
and Apcl0°*", both of which interact with the C-terminal TPR
grooves of Apc3 through their C-terminal isoleucine-arginine (IR)
tails. Finally, the scaffolding sub-complex of the APC/C com-
prises the platform subunits Apc4 and Apc5 (heterodimer) and the
largest subunit Apcl, which bridges the catalytic module Apcll1-
Apc2 and the TPR lobe in catalytically favourable conforma-
tions (Figure 2C). Since Apc4 and Apc5 had been shown to
genetically interact with each other, the dimer formation had been
suspected and the detailed interaction has been solved by
high-resolution EM studies**”. Apcl has a WD40 beta-propeller
domain containing several disordered loop domains at the
N-terminus, one of which mediates phosphorylation-dependent
APC/C control (Figure 3). It also contains a central PC
(proteasome-cyclosome) repeat domain, which interacts with
Apcl0, although the detailed regulation remains elusive. In the

Interphase APC/C (inactive)

Back view

active

Ubiquitylation
catalysis

Apci-loop
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overall topology, the surprising beauty of the whole is that vital
ubiquitylation elements such as a catalytic E2-binding mod-
ule (Apcll-Apc2) and substrate-binding module (Cdc20/Cdhl
and Apcl0) are all positioned facing a central cavity “catalytic
centre” on this enormous multi-subunit complex®* (Figure 2).

The APC/C employs two E2s and assembles poly-
ubiquitin chains

Ubiquitin has seven lysine residues (K6, K11, K27, K29, K33,
K48 and K63), so eight structurally distinct types of poly-ubig-
uitin chain linkage can be formed, together with the N-terminal
methionine (M1; a head-to-tail linear linkage). The anaphase-
promoting complex (APC/C) can assemble KIl1-linked and
K48-linked ubiquitin chains on substrates**. In order to build
K11-linked ubiquitin chains, the metazoan APC/C uses two
families of E2 enzymes: a “chain-initiating” E2 such as Ube2C/
UbcH10 and Ube2D/UbcHS and an “elongating” E2 such as
Ube2S*0447 The APC/C facilitates these “team tagging”

=
]
"“" Apci- op300

LK s

CDK-CycB-Cks P

300 300

Apci-loop

Figure 3. Phosphorylation-dependent activation of the APC/C for APC/C®%, |nterphase APC/C is inactive without the recruitment of
Cdc20, which is presented from a front view and a back view of the APC/C. The disordered loop domain of Apc1 (Apc1-loop®®), which is
located in the N-terminal WD40 domain, blocks Cdc20-NTD access to the APC/C, in particular the C-box—binding sites on Apc8B. Yellow dotted
circle highlights the C-box—binding site. In mitosis, Cdk1-cyclinB-Cks phosphorylates the disordered loop domain of Apc3 (Apc3°°r), which
allows Cks-bound Cdk1-cyclin B loading to Apc3er. Cdk1-cyclinB-Cks then stimulates phosphorylation of Apc1-loop3® as an intramolecular
phosphorylation relay. Upon phosphorylation, inhibitory domain Apc1-loop®® is dislocated from the C-box-binding site, allowing Cdc20
association, the C-box-dependent activation and subsequent ubiquitylation catalysis (“cartoon view of the APC/C”). The isoleucine-arginine
(IR) tail of Cdc20 binds to Apc3 and the C-box interacts with Apc8B for activation of the APC/C. Both IR tail binding and C-box binding ensure
stable binding of co-activator (Cdc20) to the APC/C. The WD40 domain of co-activator is responsible for substrate degron recognition. The
RING subunit Apc11 is coloured in light blue. APC/C, anaphase-promoting complex/cyclosome.
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reactions by placing Ube2C and Ube2S at dedicated locations
within the APC/C complex®*’. Ube2C binds the RING subunit
Apcll and Apc2 and transfers the first ubiquitin onto substrates
(that is, multiple monoubiquitylation), whereas Ube2S binds
non-RING subunits Apc2 and Apc4 through its C-terminal LRRL
tail and elongates the Kl1l1-linked ubiquitin chains onto sub-
strate-attached ubiquitin. RING subunit Apcl1 involvement with
Ube2C binding is as expected, but Apc2 plays an important role in
interacting with both Ube2C and Ube2S through the winged-
helix B (WHB) domain and the N-terminal domain of Apc2,
respectively>***’_ Tt has also been reported that the back surface
of Apcll has an additional role in tracking and presenting the
acceptor ubiquitin of the growing ubiquitin chain onto Ube2S,
thereby ensuring Kl1-linked ubiquitin chain formation®>!.
Yet detailed mechanisms and the control of Ube2C and Ube2S
loading and activity are mostly unknown. Interestingly, it has
recently been observed that Ube2S does not simply extend
a ubiquitin chain but creates mixed or branched K11/K48-linked
ubiquitin chains, which act as better degradation signals for
the proteasomal receptors than homotypic K11- or K48-linked
ubiquitin chains'' . How proteasomal ubiquitin-receptor proteins
by themselves or in combination with UBL-UBA shuttle factors
(for example, Rad23 and Dsk2) efficiently recognise branched
ubiquitin chain configuration is not known. It is possible that
mixed ubiquitin chains are more resistant to de-ubiquitylating
enzymes (DUBs). In the past, E2 enzymes were considered
just intermediates of the ubiquitin pathway, but more “active”
roles have recently been discovered’ . Not only “team tagging”
but also new layers of E2 regulation might emerge in APC/C
regulation in the future.

Multifaceted regulation of the APC/C is mediated
primarily by co-activators

Cdc20/Fizzy, a co-activator of the APC/C, was originally dis-
covered as fly and yeast mitotic mutants that failed to initiate
the onset of anaphase. Cdhl was subsequently identified as a
G, co-activator’*. Cdc20 or Cdhl is around 55 kDa and con-
stitutes less than 5% of the total mass of the APC/C complex
(1.2 MDa), but the size does not matter. A co-activator has an
absolute requirement for APC/C-dependent ubiquitylation.
Initially, the WD40 domain-mediated ‘“‘substrate capture” role
was revealed””' and later the “activation role” through the C-box
(a conserved motif in the Cdc20/Fizzy family of proteins) at the
N-terminal domain was uncovered***. From biochemical and
EM studies, the activation mechanism is thought to be through
conformational changes within the APC/C complex; the C-box
and Apc8B interaction shifts the catalytic module (Apcl1-Apc2)
upward and positions it in a catalytically favourable conforma-
tion, allowing E2~Ub loading**“. Here, three key facets of
APC/C regulation via co-activators (that is, substrate recognition,
phospho-regulation and inhibition) will be discussed briefly.

Co-activator—-substrate affinity might determine the
rate of ubiquitylation

Substrate recognition, which is a prerequisite for ubiquityla-
tion catalysis, is one of the most important roles performed by
co-activators, together with Apcl10*7729-61.645" The APC/C sub-
strates have a destruction motif or degron module sequence to
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be recognised by the WD40 domain of co-activators. The best-
defined destruction motifs are the destruction box (D-box) with
a consensus of RxxLxxxxN° and the KEN-box, named after
its consensus sequence, KENxxxN®/, although the amino acid
residues outside of the core RxxL and KEN are far more vari-
able. The ABBA motif (Fx[ILV][FY]x[DE]) conserved in cyc-
lin A, BubR1, Bubl and Acml is a more recently characterised
APC/C degron®". Also, there are less characterised degrons such
as CRY-box or O-box and presumably as-yet-unidentified cryp-
tic D-box or KEN-box exist. Each degron binds to a designated
surface of the WD40 domain; for example, the D-box degron
binds to a pocket situated between blades 1 and 7, whereas
the KEN-box binds at the centre of the top surface of the wheel-
like WD40 repeat domain’*~>. Mutations, in the degron module
on a substrate or the corresponding channel surface in the WD40
domain, that block substrate—co-activator interaction, render
that substrate unavailable for ubiquitylation. The D-box— and the
KEN-box-binding pockets/surfaces are evolutionally well con-
served despite slight variations between Cdc20 and Cdhl and
those among species. Yet this may be a matchmaker mechanism,
generating variable and dynamic affinities, by which degron
module sequences on candidate substrates can be scanned and
interrogated. As a consequence, if recognised as a genuine sub-
strate, the degron specifically binds the WD40 surface with
the correct affinity programmed by its degron sequence, which
may determine processive or poor ubiquitylation of the substrate.
The strength of interaction is likely to be regulated by environ-
mental cues as it has been reported that the phosphorylation state
around the degron region can influence the ubiquitylation of
substrates (for example, Cdc6)””. Too strong or too weak inter-
action is probably not good for ubiquitylation. However, some
APC/C inhibitors such as Mesl or Acm1 seem to use such exces-
sive affinity on purpose to inhibit the APC/C"*°. It should be
noted that Cdhl has a broader substrate specificity than Cdc20.
It is likely that traits on the WD40 domain are responsible for
such specificity, although the underlying mechanism remains
obscure.

Phosphorylation regulates APC/C¢¢2° and APC/CC¢d

The APC/C is “cell cycle-regulated”, which was very clearly
described in original discovery papers™®. Cdc20 binds and
activates mitotically phosphorylated APC/C’"-**. However, because
many sites on the APC/C subunits are phosphorylated by cyc-
lin-dependent kinase 1 (Cdkl1)**, the sites of phosphorylation
and their impacts have not been defined. Recently, the expres-
sion of recombinant APC/C and extensive site-directed mutagen-
esis of different subunits has uncovered the mechanism underly-
ing the activation of the APC/C by Cdkl phosphorylation®*
and this has been confirmed by high-resolution EM studies"’
(Figure 3). The model also supports the theory that Cdkl-
dependent APC/C phosphorylation is the trigger for anaphase
onset. In addition, the study highlights the importance of disor-
dered loop domains of the APC/C subunits for dynamic regulation.
Although Apc3 and Apcl are clearly key subunits for phos-
pho-regulation, other sites are also phosphorylated in vitro and
in vivo. The roles of such phosphorylation remain elusive.
Furthermore, how phosphorylation of the APC/C is regulated by
phosphatases or how “teamwork™ phosphorylation with other
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mitotic kinases (for example, polo-like kinase) is achieved for
APC/C regulation requires elucidation.

Cdk1-dependent phosphorylation of Cdhl is inhibitory, as
shown in the late 1990s**, explaining the observation that
Cdhl action is repressed in mitosis and Cdc20 is the predomi-
nant co-activator. However, like Cdhl phosphorylation, Cdkl-
dependent phosphorylation of Cdc20 was shown to block an
APC/C activation role through the C-box®. In mitosis, protein
phosphatases such as PP2A dephosphorylate and activate
Cdc20*. Yet the situation is slightly more complicated as in mito-
sis the APC/C needs to be phosphorylated (Figure 3) whereas
Cdc20 needs to be dephosphorylated for the C-box—dependent
activation of the APC/C. How can this conundrum be resolved?
One mechanism seems to involve PP2A substrate specificity.
PP2A complexes have an inherent preference for phospho-
threonine over phosphoserine’”**. Notably, the key Cdkl sites
around the C-box of Cdc20 are threonine® whereas Cdkl-
phosphorylation sites in Apcl loop*® are exclusively serine®’.
Thus, Cdc20 can be more efficiently dephosphorylated than
the APC/C, allowing APC/C** complex formation during the
correct window. It is unknown exactly how and which subfamilies
of PP2A are involved in Cdc20 and APC/C dephosphorylation
and whether other phosphatases such as PP1 are involved and,
if so, how they are regulated. It should be noted that key Cdkl
sites of Cdhl are serine; thus, Cdhl dephosphorylation and
subsequent Cdhl-dependent APC/C activation occur only
after Cdkl inactivation and subsequent activation of Cdk-
counteracting phosphatases® ", which initiate mitotic exit. Cdhl
phosphorylation is also involved in its subcellular localisation,
contributing to the spatiotemporal regulation of the APC/C”*'"".

+op-D-box, +Apcin
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APC/C activity can be inhibited at multiple levels
Inhibitors are often very useful to explore the underlying mecha-
nisms or processes of how a regulatory system works as criti-
cal processes are often targeted (Figure 4). Classic APC/C
inhibition may involve overproduction of the D-box (high dose
of the D-box) fragments, which can overwhelm the substrate
recognition of Cdc20 (Figure 4A) and arrest cells at metaphase
(by inhibiting APC/C)'"'"'%, This finding suggested that proteins
other than cyclin must be degraded to initiate anaphase, leading
to the discovery of Cut2/securin'>". Through the degron—-WD40
interactions, Mesl in Schizosaccharomyces pombe acts as
a pseudo-substrate inhibitor for Fzrl/Mfrl but works as a
competitive substrate for Slpl1/Cdc20, by which Mesl con-
trols the activity of the APC/C required for the meiosis I/II
transition’*'"*1%, Similarly, the degron motifs of Acml in
Saccharomyces cerevisiae are recognised in different ways
by the WD40 domain of Cdhl and Cdc20%7*7>1%107" g0 that
Acm1 becomes an inhibitor of Cdh1 but not Cdc20.

Through a chemical genetic screen in Xenopus egg extracts,
tosyl-L-arginine methyl ester (TAME), a small-molecule APC/C
inhibitor, has been isolated'”. TAME structurally resembles
the IR tail of co-activators and thus blocks Cdc20/Cdhl load-
ing onto the APC/C via the IR tail'” (Figure 4B). As the
C-box—binding site on Apc8 is structurally equivalent to the IR
tail-binding site on Apc3¥, TAME potentially affects the C-box
function as well as the IR tail’. TAME is more specific to
Cdc20 than Cdhl. This seems to be due in part to the fact that
Cdhl has more contact with the APC/C, achieving higher
affinity, but the detailed mechanism remains elusive. Another
inhibitor molecule, known as Apcin, which was isolated from

+SAC (MCC)

Figure 4. APC/C inhibitors target the APC/C at multiple levels. (A) Overexpression or high dose of the destruction box (D-box) fragment
(+op-D-box) competes with substrates to bind to the D-box—binding pocket on the WD40 domain (competitive inhibition). A small-molecule
Apcin binds the D-box-binding pocket on the side face of the WD40 domain (+Apcin). (B) A small-molecule tosyl-L-arginine methyl ester
(TAME), which resembles the isoleucine-arginine (IR) tail of Cdc20 and Cdh1, binds APCS to interfere with the IR tail-binding site (+ TAME). EM
study suggests that TAME might compete with Cdc20 to bind at the IR tail and the C-box—binding sites. (C) Emi1 inhibits the APC/C at multiple
levels (+Emit). The D-box (weak) binds the WD40 domain of Cdc20/Cdh1, a zinc-binding region (ZBR) interferes with Ubc2C-dependent
APC/C activity and the C-terminal LRRL tail interferes with Ube2S binding to the APC/C. The LRRL tail sequence of Emi1 is identical to the
LRRL motif of Ube2S. In vivo target of Emi1 is Cdh1. (D) The main effector of the spindle assembly checkpoint (SAC) is the mitotic checkpoint
complex (MCC), which inhibits the APC/C at multiple levels. In vivo target of MCC is Cdc20. MCC binds both the D-box-binding pocket
and the KEN-box-binding surface of the WD40 domain and blocks WD40-mediated substrate binding. MCC also blocks Ube2C-dependent
APC/C activity at the closed MCC configuration; however, Ube2S-dependent APC/C activity is not inhibited by MCC. Schematic diagrams are
based on the cartoon view of the APC/C in Figure 3 (bottom left). APC/C, anaphase-promoting complex/cyclosome.
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the same chemical screenings, binds to the D-box—binding site
of the WD40 domain of Cdc20 (Figure 4A)'"°. This finding has
created a great opportunity for synergistic inhibition using both
TAME and Apcin, which has proven to be more effective than
either alone'"’.

Early mitotic inhibitor (Emi)l is a metazoan APC/C inhibitor''!
which is a vertebrate homologue of Rcal (regulator of cyc-
lin A). In Drosophila, Rcal inhibits APC/C"! and stabilises
cyclin A in S phase''>"*. Emil has been shown to inhibit both
APC/CC*20 and APC/C! activity in vitro''''* but its main pur-
pose is thought to be inhibition of APC/C®" during S and G,'">'"°.
Emil has a C-terminal inhibitory domain composed of structural
components such as the D-box, Linker, ZBR and RL tail
(Emi1Pr2T)17118 - The Emil C-terminal domain was previously
proposed to be a pseudo-substrate inhibitor'"”, but cryo-EM
and quantitative biochemical analysis have revealed a more
sophisticated inhibition mechanism; Emil apparently uses
every structural property within the EmilP*“T domain and blocks
APC/C ubiquitylation processes, including Ube2S-dependent
ubiquitin chain elongation™'""!"* (Figure 4C). It should be
noted that Emil destruction is regulated by another E3 ubiquitin
ligase, SCEBTRCP, through the degron on its N-terminal domain
upon phosphorylation'”~'*>, Also, Emil activity is negatively
regulated by Cdkl phosphorylation'”. Because of the high
potency of Emil, it is controlled by multiple layers of regula-
tion, including transcriptional and translational changes'**'*.
Emi2 (also called Erpl), a maternal paralogue of Emil, inhib-
its the APC/C in a similar manner to Emil, so that verte-
brate eggs awaiting fertilisation are arrested at metaphase of
meiosis 11717,

Finally, the spindle assembly checkpoint (SAC) monitors unat-
tached or tensionless kinetochores and delays the onset of
anaphase until all the kinetochores are attached to form a proper
bipolar spindle structure'****°. The mitotic checkpoint com-
plex (MCC) consisting of Mad2, BubR1, Bub3 and Cdc20 is
a potent APC/C inhibitor (Figure 4D). MCC was recently shown
to inhibit a second Cdc204P“C that has already bound and acti-
vated the APC/C, highlighting that MCC can indeed act as a direct
APC/C inhibitor, rather than sequestering Cdc20"'. High-
resolution cryo-EM studies of APC/C-MCC complex reveal that
BubR1 binding mislocates Cdc20*"““ and blocks substrate rec-
ognition*®"’. The MCC docks into the APC/C central cavity and
also interferes with Ube2C recruitment, inhibiting most of the
substrate ubiquitylation. Intriguingly, a subset of substrates such
as Nek2A or cyclin A, which can bind the APC/C independently
of the WD40 of co-activators, can be degraded even when SAC
is active'**. It might be that Nek2A binds to a TPR subunit
that MCC does not interfere with (for example, Apc6B or Apc7)
by which Nek2A is ubiquitylated and degraded as long as the
proper interaction between the C-box and Apc8B is ensured.
Once all kinetochores become stably attached to the spindle, the
SAC has to be silenced to allow anaphase onset. p31<°™ is an SAC
antagonist'” and is involved in SAC silencing in multiple ways,
such as blocking Mad2 activation by binding to C-Mad2'**"*’
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and assisting MCC disassembly together with the AAA+ ATPase
TRIP13"%!'*. Cdc20 auto-ubiquitylation is also involved in
MCC disassembly'*~'*°. Yet it appears that several pathways
regulate SAC activation as well as SAC silencing in vivo'™"~'>,
so further work is necessary to elucidate the detailed mecha-
nisms. Regulation of the SAC pathway has been reviewed by

Othersl(b,ll,li(w—lix

Future perspectives

Recent progress on the resolution of cryo-EM is amazing,
entailing near atomic resolution now and inevitable atomic
resolution in the future. The MultiBac-based reconstitution pipe-
line of the whole APC/C complex allows construction of any
mutation(s) in any subunit(s) at will, which provides an unprec-
edented opportunity to interrogate detailed dynamic regulation in
physiological conditions such as Xenopus egg extracts together
with the latest structural technologies, in combination with cell
biological, genetic, biochemical, bioinformatics or mathemati-
cal modelling approaches. By combining genome editing and
RNA interference, mammalian cell biology approaches will also
provide unprecedented details of APC/C regulation. Yet we still
face a number of outstanding questions. Why is the APC/C so
large and why are so many subunits required for APC/C activ-
ity? Has evolution contributed to the enormous size and the
complexity of the subunits? Are there any as-yet-unidentified
subunit or sub-complex functions besides ubiquitylation? Is the
APC/C complex disassembled partly or even fully and
how is it regulated? We know that cellular subunit expression lev-
els vary depending on subunit, so it may be that some subunits
behave as a core regulating the assembly. Another key issue
is the influence of subcellular localisation on APC/C function
in vivo. Local concentration of not only the APC/C but also
co-activators, E2s, substrates and inhibitors would all
affect APC/C activity. Furthermore, our knowledge of ubig-
uitin dynamics regulating and maintaining the relationship
between the APC/C and the action of DUBs is still very limited,
although very recently Cezanne/OTUD7B was shown to be
a cell cycle-regulated DUB antagonising APC/C activity'”.
Moreover, increasing evidence suggests that dysregulation of
Cdc20 or Cdhl is involved in disease conditions and progres-
sion as in cancer. Deeper knowledge of the APC/C ubiquitin
system and the mechanisms of distinct co-activator working
will ultimately contribute to not only a better understanding
of the cell cycle but also the possible development of therapies
or tools to control or monitor dysregulated APC/C.

Closing remarks

The discovery of MPF as a complex of cyclin B and
Cdk1/Cdc2 in the late 1980s heralded the first wave of under-
standing of the cell cycle in modern times. Many scientists fol-
lowing their own interests and curiosity had conducted studies
in a number of model organisms such as frog, starfish, clam,
sea urchin, yeast (budding and fission), fly and human cell cul-
ture systems'®~'"*. Collaborative and comparative analysis of
all this research unveiled the MPF story. In September 1988, at
a key moment in the beginning of cell cycle research, the first
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CNRS Cell Cycle meeting in Roscoff (France) was organised,
highlighting the efficacy of collaboration and a multidiscipli-
nary approach to solve important questions in science. With con-
tinued passion and curiosity, hard work and luck, much can be
achieved, not only to further our understanding of the cell
cycle but to pave the way for exciting new advances in the field
of medicine.
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