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Colorectal cancer (CRC) ranks second in cancer-associated mortality and third in the
incidence worldwide. Most of CRC follow adenoma-carcinoma sequence, and have
more than 90% chance of survival if diagnosed at early stage. But the recommended
screening by colonoscopy is invasive, expensive, and poorly adhered to. Recently,
several studies reported that the fecal bacteria might provide non-invasive biomarkers
for CRC and precancerous tumors. Therefore, we collected and uniformly re-analyzed
these published fecal 16S rDNA sequencing datasets to verify the association and
identify biomarkers to classify and predict colorectal tumors by random forest method.
A total of 1674 samples (330 CRC, 357 advanced adenoma, 141 adenoma, and 846
control) from 7 studies were analyzed in this study. By random effects model and
fixed effects model, we observed significant differences in alpha-diversity and beta-
diversity between individuals with CRC and the normal colon, but not between adenoma
and the normal. We identified various bacterial genera with significant odds ratios for
colorectal tumors at different stages. Through building random forest model with 10-
fold cross-validation as well as new test datasets, we classified individuals with CRC,
advanced adenoma, adenoma and normal colon. All approaches obtained comparable
performance at entire OTU level, entire genus level, and the common genus level
as measured using AUC. When combined all samples, the AUC of random forest
model based on 12 common genera reached 0.846 for CRC, although the predication
performed poorly for advance adenoma and adenoma.

Keywords: fecal bacteria, colorectal cancer, colorectal adenoma, random forest, random effects model

INTRODUCTION

Colorectal cancer (CRC) ranks second in term of cancer-associated mortality and third in term
of incidence, with an estimation of 881000 deaths and over 1.8 million new cases in 2018 in
both sexes globally (Bray et al., 2018). CRC incidence rates are about 3-fold higher in developed
countries than developing ones. The incidence and mortality rates also showed an increasing trend
in China in the past decades. The age-standardized incidence and mortality rates by world standard
population are 17.52 and 7.91 per 100000 in 2014, respectively (Chen W. et al., 2018). Survival
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exceeds 90% if the cancer is detected at early stage, but decreases
to 13% with advanced metastatic disease (Shah et al., 2018).
Moreover, development of most CRC cases follows adenoma-
carcinoma sequence, spanning more than 10–15 years in average.
Therefore, targeting the CRC by early screening and treatment,
especially as early to the adenoma stage, would have profound
clinical and socioeconomic significances.

Colonoscopy is regarded as the golden standard of CRC
screening. However, this test is poorly adhered to due to the
invasiveness, frequency, and expensive price. For example, it
is reported that more than 25% of adults aged 50–75 years,
the high-risk group, never participated for CRC screening in
United States (Centers for Disease Control and Prevention,
2018). A recent survey in China showed a more serious screening
situation, only 14% of high risk people evaluated by a score
system finally undertaking colonoscopy screening (Chen H. et al.,
2018). Home-based fecal occult blood tests (FOBT) have low
sensitivity in colorectal adenoma (CRA) or pre-cancers (Hundt
et al., 2009), and are used less frequently. Thus, development
of non-invasive and sensitive early diagnosis tests for CRC or
precancerous lesions are in urgent need for improving the patient
participation rate.

In the past years, numerous studies using mouse models or
case-control designs have shown the effects of both individual
gut microbes (Goodwin et al., 2011; Rubinstein et al., 2013; Abed
et al., 2016) and the overall community (Baxter et al., 2014;
Zackular et al., 2016) in disease progression of CRA and CRC.
The roles of gut microbiota hypothesized in tumorigenesis, acting
as environmental factors, also accord with the sporadic nature of
CRC and CRA. Therefore, extensive efforts have been put into
identify microbiota-associated biomarkers for colorectal tumors
(Ahn et al., 2013; Zeller et al., 2014; Baxter et al., 2016; Yu
et al., 2017; Flemer et al., 2018). Although some taxa, including
Fusobacterium, Peptostreptococcus, and Porphyromonas, were
consistently reported to be enriched in CRC, unifying signal
taxa were not defined. Moreover, most studies focused on CRC,
but attention to CRA is factually in great clinical need to
facilitate early detection of the tumors. Recently, there were
two meta-analyses based on 16S rRNA gene sequences, which
were helpful for distilling possible biomarkers and classifying
patients with adenoma or carcinoma. However, the aggregate
number of samples was smaller (n = 509) (Shah et al., 2018),
and sequencing depths of some studies included were quite low
(Shah et al., 2018; Sze and Schloss, 2018). Furthermore, several
case-control studies with higher depths have been reported since
the publication of these two meta-analyses. Therefore, it is
meaningful and urgent to update the analysis to facilitate the
development of non-invasive diagnosis tests for colorectal tumors
based on fecal microbiota.

In this study, we updated meta-analysis using fecal 16S rRNA
gene sequence data from 7 studies with a relatively higher
sequencing depth (more than 5000 reads/sample). By the most
frequently used methods, we sought to determine the bacterial
variation among studies, the differences in fecal bacteria diversity
and communities in patients with colorectal tumors, and identify
a universal set of microbial markers to predict/diagnose the
presence of colorectal cancer.

MATERIALS AND METHODS

Datasets
The studies included in this meta-analysis were screened from
two sources: systematic Pubmed search with colorectal (colon)
cancer (CRC) or adenoma (CRA) and gut microbiota in the
past 10 years, and the recently published reviews and meta-
analyses. Studies were excluded if (1) samples were not from
feces, (2) samples were not sequenced by NGS for 16S rRNA
gene, (3) sequences, barcodes, or metadata were not publicly
available or not provided by authors until Sep 20, 2018 after
requests by emails, (4) the sequencing depth was lower than
5000 raw reads. At last, we obtained sequence datasets and
metadata from 7 studies with CRC and/or CRA (Zeller et al.,
2014; Baxter et al., 2016; Flemer et al., 2017; Hale et al., 2017;
Deng et al., 2018; Flemer et al., 2018; Mori et al., 2018), additional
12 studies associated gut microbiota of colorectal lesions were
excluded due to lower sequencing depth, incomplete information
of sequences, barcodes, or metadata (Sobhani et al., 2011; Chen
et al., 2012; Wang et al., 2012; Ahn et al., 2013; Brim et al., 2013;
Chen et al., 2013; Weir et al., 2013; Wu et al., 2013; Goedert
et al., 2015; Mira-Pascual et al., 2015; Ai et al., 2017; Zhang
et al., 2018). In summary, all 7 studies had CRC samples, 4
studies had advanced adenoma (Adv_adenoma, >10 mm in size)
samples, and 4 studies had samples with adenoma smaller than
10 mm (Table 1).

Sequence Processing
Paired-end reads were assembled using FLASH by default
parameters, except with -x 0.2 and -M 200 for V3-V4 /-M 250
for V3-V5 /-M 150 for V4 region. The assembled sequences were
quality filtered with a minimum quality score of 25. To assign
de novo OTUs, we removed chimeric sequences and clustered
sequences with 97% similarity and using Usearch (Edgar, 2013)
for individual study. The representative sequences of OTUs were
aligned to the SILVA database for taxonomic classification by
RDP Classifier (Wang et al., 2007) and aggregate to various
taxonomic levels.

Community Analyses
The alpha-diversity metrics, including observed OTUs (Obs),
Shannon, and Pielou’s evenness (J), were calculated based on
OTU table evenly rarefied to the lowest sequencing depth within
each study. The differences between individual with normal
colon, adenoma, or CRC were further tested by Wilcoxon test
for significance. We also calculated the ORs of these metrics by
assigning any value above the median of the metric within the
study as positive. The beta diversity based on Bray-Curtis distance
was measured within each study, and the differences between
groups were determined using permutational analysis of variance
(PERMANOVA) with 9999 permutations. In terms of genera, the
differences between groups were examined using Wilcoxon test
within each study, and the ORs were determined in the same
manner as alpha diversity metrics. Finally, both random effects
(RE) model and fixed effects (FE) model were used to obtain the
change summary estimates.
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Classification by Random Forest
To estimate the predictive power of gut microbiota for classifying
individuals with normal colon and colorectal tumors, the most
widely used and robust random forest models were selected
and built for each study based on all OTUs, all genera, and
the common genera that were detected in every study. RF
model based on all studies and n-1 (leave-one-study-out) studies
were also built to further assess the classifier performance of
the common genera and the weight of particular study to the
overall performance, respectively. To test the generalizability,
we built RF model based on the common genera from
one study and validated it in the other studies, and also

performed leave-one-study-out analyses by setting the study
left out as the test dataset. All the models were built using a
10-fold cross-validation with ten repeats and the number of
features (mtry) was set to the square root of total number of
microbial features.

Statistical Analyses and Visualization
All statistical analyses were conducted in R-3.4.1 (R Core Team,
2017). The alpha-diversity metrics, Bray-Curtis distances by
vegdist function, and PERMANOVA by adonis function were
all performed in vegan (Oksanen et al., 2015). The ORs were
analyzed using epiR (Stevenson et al., 2018) and meta for

TABLE 1 | characteristics of the fecal 16S rDNA sequencing studies included in the meta-analysis.

No. Author,
year

Country Source∗ Health Polyps Adenoma
(<1 cm)

Adv_adenoma
(>1 cm)

CRC DNA extraction Region Seq
platform

1 Deng et al.,
2018

China SRA 33 0 0 0 17 GenElute Stool DNA
isolation Kit

V3-V4 HiSeq

2 Flemer
et al., 2018

Ireland Author 62 0 22 0 69 Allprep DNA/RNA
kit-Qiagen

V3-V4 MiSeq

3 Mori et al.,
2018

Italy Author 18 14 18 21 8 QIAamp DNA stool kit V4 Miseq

4 Flemer
et al., 2017

Ireland Author 36 0 0 0 42 Allprep DNA/RNA
kit-Qiagen

V3-V4 MiSeq

5 Hale et al.,
2017

United States Author 475 0 0 203 34 Chemagic DNA
Blood Special Kit

V3-V5 MiSeq

6 Baxter
et al., 2016

United States+
Canada

SRA 172 0 88 108 119 PowerSoil V4 MiSeq

7 Zeller et al.,
2014

France SRA 50 0 13 25 41 GNOME DNA
Isolation Kit(MP)

V4 Miseq

8 Zhang
et al., 2018

China NA 130 30 32 88 130 OMEGA-soil DNA kit V3-V4 MiSeq

9 Ai et al.,
2017

China NA 52 0 47 42 E.Z.N.A. Stool DNA
Kit

V1-V3 454

10 Goedert
et al., 2015

China NA 24 9 0 20 2 – V3-V4 MiSeq

11 Mira-
Pascual
et al., 2015

Spain NA 10 0 11 7 Macherey–Nagel V1-V3 454

12 Ahn et al.,
2013

United States NA 94 0 0 0 47 PowerSoil V3-V4 454

13 Brim et al.,
2013

United States SRA 6 6 0 0 0 QIAamp Stool DNA V1-V3 454

14 Chen et al.,
2013

China NA 47 0 0 47 0 Bead beating
methods and
phenol-chloroform

V1-V3 454

15 Weir et al.,
2013

United States NA 8 0 0 0 7 MoBio Powersoil V4 454

16 Wu et al.,
2013

China NA 20 0 0 0 19 QIAamp Stool DNA V3 454

17 Chen et al.,
2012

China NA 21 0 0 0 22 QIAamp DNA Mini Kit V1-V3 454

18 Wang et al.,
2012

China NA 56 0 0 0 46 Bead-beating
extraction and
phenol–chloroform

V3 454

19 Sobhani
et al., 2011

France NA 6 0 0 0 6 GNOME DNA
Isolation Kit(MP)

V3-V4 454

∗NA indicates studies were not included in the analysis, either due to the datasets not available, without barcode sequences to splits the datasets, or low
sequencing depth/sample.
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(Viechtbauer, 2017) with significance testing utilized the chi-
square test. In addition, the RF, SVM, KNN, and Adaboost
models were built using caret (Kuhn et al., 2017) and random
Forest (Breiman et al., 2015) by default parameters, and the
test cohorts were predicted using the pROC (Robin et al.,
2017). The random effects model and fixed effects model were
conducted in metaphor (Viechtbauer, 2017). All figures were
plotted using ggplot2-v3.0.0 (Wickham et al., 2017) and gridExtra
(Auguie and Antonov, 2016).

RESULTS

Sample Variation
We included 16S rRNA gene sequencing data from 7 fecal
studies with diseases of CRC, adv_adenoma and adenoma
(Table 1). A total of 1674 samples from 7 countries were retained
after quality filtering, including 330 CRC, 357 Adv_adenomas,
141 adenoma, and 846 controls. At the beginning, we tried
to combine all samples together by closed_reference OTU
assignment strategy for compatibility with differential sequencing
regions, but found samples clustered primarily by individual
studies due to the extra strong variables of DNA extraction
methods, PCR amplification conditions, sequencing platforms
adopted by individual study (Figure 1). Therefore, we processed
each study separately using the same parameters in the
following analyses.

Alpha-Diversity Differences
To compare the alpha-diversity between different disease stages,
we considered the microbial richness (Observed OTUs, Obs),
Shannon diversity, and evenness J. We found significant higher
richness and Shannon diversity in normal colon than CRC in
2 of 7 studies and significant higher microbial evenness in
normal colon in 1 of 7 studies (Supplementary Table S1). For
comparisons in adenoma vs. normal colon and adv_adenoma vs.
normal colon, only one study was significantly different among
the richness and evenness. Due to the inconsistent results, we also
calculated the odds ratios (ORs). The ORs for Shannon diversity
were significantly higher than 1.0 for CRC (OR = 1.48, CI in 1.04
to 2.10) (Figure 2) in both RE model and FE model with low
heterogeneity (Supplementary Table S1), indicating significant
lower microbial Shannon diversity in CRC than the normal
colon group. While The ORs for J, Obs, and Shannon were not
significantly greater than 1.0 for adenoma and adv_adenoma in
the random effects model with higher heterogeneity, even with
the trend (Figure 2).

Beta-Diversity Differences
To measure the entire community differences between different
individuals with colorectal tumors and with normal colon,
we calculated a Bray-Curtis distance matrix for each data
set and tested the significance by PERMANOVA. We found
significantly different community structure in the CRC relative
to normal colons in 6 of 7 studies (Supplementary Table S2 and

FIGURE 1 | The principal coordinates analysis depicting the great microbial variations from different studies with variables of DNA extraction methods, PCR
amplification conditions, sequencing platforms, etc. The points represent samples, shapes represent the different diagnosis, and the colors represent the
different study.
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FIGURE 2 | Forest plot of the alpha diversity metrics for (A) adenoma, (B) advance adenoma, and (C) colorectal cancer. The length of the error bar represents the
95% confidence interval. The left of dashed lines depicts that the metric of the case is higher than the control. And the right of dashed lines depicts that the metric of
the case is lower than the control. It shows that there were significantly difference between the cases and the control, if there was no overlap between the dashed
lines and the error bar.

Supplementary Figure S1). However, we only found significant
community differences in adv_adenoma vs. normal in 1 of 4
studies and in adenoma vs. normal in 1 of 4 studies. Again,
by calculating the ORs based on the Bray-Curtis metric in each
study, we found the significant bacterial community differences
between CRC and normal colons in both RE models with high
heterogeneity (Supplementary Table S2), but not significant
differences in comparisons of adv_adenoma or adenoma with
individuals with normal colons (Figure 3). These results showed
that there were dependable and significant community-wide
changes in the bacterial community structures of CRC patients.

Different Taxa
With the altered overall community differences, we tried to
identify the significantly different taxa between subjects with
colorectal tumors and the normal. However, the results were not
consistent by Wilcoxon tests (Supplementary Tables S3–S5). By

quantifying the ORs, a total of 13 genera were identified to be
associated with CRC (Supplementary Figure S2). Five genera
had significant ORs lower than 1.0 for presence of CRC in RE and
FE models (Supplementary Table S6), including Fusobacterium,
Lachnospiraceae_UCG-010, Mogibacterium, Oscillibacter,
Prevotella_7. Eight genera possessed significant ORs higher
than 1.0 for the absence of CRC, most of which were thought
to be beneficial for butyrate production in intestines, including
Anaerostipes, Butyricicoccus, Coprococcus_2, Roseburia. Besides,
a total of 10 genera had significant ORs for the adenoma, and 6
genera had significant ORs for adv_adenoma.

Development of Fecal
Bacteria-Based Classifier
Since the gut microbial communities were greatly shifted
with colorectal tumors, especially in CRC compared to
the normal, it is meaningful and profound to identify
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FIGURE 3 | Forest plot of the Bray-Cutris distances between the individual with colorectal tumors and the normal colons. (A) Adenomas vs. normal colons; (B)
Adv_adenomas vs. normal colons; (C) CRC vs. normal colons. The error bar depicts the 95% confidence interval. The left-hand side (minus value) of the dashed line
depicts that distances between the case and the normal are higher than the distances between the subjects of control. The right-hand side of the dashed line
depicts that distances between the case and the normal are lower than the distances between the control. There were significantly difference between the case and
the control, if there was no cross between the dashed line and the error bar.

FIGURE 4 | The ROC curves of the each study based on the matrix of the total OTUs (A–C) and the matrix of the total genera (D–F). The gray lines represent the
random predictors. The other lines depict the ROC curves of each study using the cross-validation with ten repeats.

microbial biomarkers for development of invasive diagnosis
methods. With this purpose, – we built RF models based
on OTU abundance (finer-level) and genus abundance (more
general) to classify/predict colorectal tumor and controls
within each study.

We found that the RF models using all OTUs did a good
job in classifying CRC and individuals with normal colons
[median AUC = 0.765, ranging in (0.531, 0.8757)] (Figure 4C).
As expected, the RF models based on the genera also showed
comparable performance in differentiating CRC and the normal
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FIGURE 5 | The ROC curves based on the matrix of the common genera. The gray lines represent the random predictors. The other lines depict the ROC curve of
each study using the cross-validation with ten repeats (A–C). The black lines represent the curves of the models built using the total studies data sets with
cross-validation, and the colorful lines represent the curves of the models using the combined studies data sets with minus a specific study (D–F).

[median AUC = 0.755, ranging in [0.533, 0.977)] (Figure 4F).
However, the performances of RF models differentiating
adv_adenoma or adenoma and the normal colons were
unsatisfactory, just a slightly better than the random predictor
in both OTU level [adv_adenoma: median AUC = 0.568,
ranging in (0.514, 0.898), adenoma: median AUC = 0.589,
ranging in (0.524, 0.721)] (Figures 4A,B) and genus level
[adv_adenoma: median AUC = 0.650, ranging in (0.515, 0.99);
adenoma: median AUC = 0.598, ranging in (0.515, 0.650)]
(Figures 4D,E).

Due to the separate clustering for each study, the above
RF models based on all OTUs and all genera were not
universal for each other. Therefore, we tried to build the models
based on the common genera that detected in every study.
Surprisingly, the performance of the models for distinguishing
the CRC and individuals with normal colons were good
[median AUC = 0.735, ranging in (0.5258, 0.888)] (Figure 5C),
while the models for adv_adenoma or adenoma were still
weak [adv_adenoma: median AUC = 0.632, ranging in (0.520,
0.693); adenoma: median AUC = 0.603, ranging in (0.521,
0.700)] (Figures 5A,B). When combined all samples and all
studies together, RF model returned an AUC of 0.835 for
CRC vs. the normal (Figure 5F), which is better than the
medium AUC of RF models based on single study, although
the prediction of Adv_adenoma or adenoma with the normal
was still not good (Figures 5D,E). To test whether particular
study weight the performance, we re-built RF models based on

n-1 studies (leave-one-study-out), and found the performances
were not affected too much (Figures 5D–F), indicating the
stability of RF model for CRC based on all 7 studies and
the common genera.

To further test the generalizability of models based on
common genera, we evaluated how well the models would
perform when given data from a different cohort. First,
we used one study as training data and the other single
studies as test data. We found that the performances of the
models were different among the training cohorts, probably
associated with the sample size (Figure 6). In addition, the
performances of the models for CRC were better than the
adv_adenoma and adenoma. Within Adv_adenoma, models
based on studies of Baxter_16 and Hale_17 were better than
other two (Figure 6C). Second, we tested the leave-one-
study-out analysis again. As expected, the performances of
models were still good for CRC [median AUC = 0.754,
ranging in (0.569, 0.916)] (Figure 7C), even still weak for
adv_adenoma [median AUC = 0.550, ranging in (0.496,
0.578)] and for adenoma [median AUC = 0.539, rang in
(0.494, 0.684)] (Figures 7A,B).

Important Microbial Taxa as
Potential Biomarkers
By looking deeper into the microbial features selected for the
RF model for CRC based on all studies, we obtained the
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FIGURE 6 | The performances of models to classify the case and the normal. (A) CRC vs. normal colons; (B) Adenoma vs. normal colons; (C) Adv_adenoma vs.
normal colons. The horizontal ordinates depict the studies used as the training data set. The vertical coordinates depicts the AUC of the specific test study. The
black line represent the median of AUC of all test AUCs for a specific model. The dashed gray lines represent the AUC at 0.5 with random predictors.

FIGURE 7 | The ROC curves of the models built using the matrix of the common genera and n-1 studies (leave-one-study-out) and validated in the specific study.
(A) Adenoma vs. normal colons; (B) Adv_Adenoma vs. normal colons; (C) CRC vs. normal colons.

12 important distinguishing taxa based on the mean decrease
Gini value (Table 2). Indeed, all these genera were frequently
detected in human fecal samples and were previously reported

to be harmful to human health, such as the Fusobacterium,
Escherichia_Shigella, and Streptococcus with higher abundance in
CRC group. Besides, some genera selected by RF model were
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TABLE 2 | Importance, odd ration, heterogeneity, and relative abundance of the 9 common genera selected for the RF model for CRC based on all samples.

Genera Mean
decrease Gini

Odd ratio CI_lb CI_ub P-value I2 Abundance (%)
in CRC

Abundance (%) in
the normal

Bifidobacterium 15.72 1.34 0.85 2.12 0.2 36.78 1.087 ± 1.019 1.23 ± 0.87

[Eubacterium]_hallii_group 13.43 1.76 1.17 2.65 0.01 27.3 0.979 ± 0.846 1.417 ± 1.024

Streptococcus 12.9 1.17 0.87 1.58 0.31 0 1.365 ± 0.726 1.136 ± 1.239

Fusobacterium 10.75 0.34 0.24 0.48 0 0 0.791 ± 1.444 0.106 ± 0.125

Escherichia.Shigella 10.13 0.63 0.37 1.09 0.1 61.3 2.565 ± 1.431 1.368 ± 0.898

Akkermansia 8.7 1.01 0.69 1.47 0.97 21.65 1.915 ± 1.681 2.055 ± 1.769

Lachnospira 8.11 1.65 1.14 2.4 0.01 31.98 0.379 ± 0.382 0.509 ± 0.376

Faecalibacterium 8.09 1.01 0.63 1.63 0.95 55.87 6.69 ± 3.042 6.624 ± 2.294

un_f__Lachnospiraceae 7.54 1.48 1.03 2.11 0.03 27.84 1.406 ± 0.968 1.703 ± 1.307

Prevotella_7 6.86 0.54 0.38 0.75 0 0 0.522 ± 0.421 0.169 ± 0.129

Roseburia 6.78 1.59 1.2 2.12 0 0 1.122 ± 0.329 1.418 ± 0.564

Lachnospiraceae_UCG.010 6.62 0.65 0.49 0.87 0 0 0.256 ± 0.209 0.093 ± 0.046

CI_lb, confidence interval_lower bound; CI_ub, confidence interval_upper bound; I2, heterogeneity measure.

found to be beneficial with higher abundance in individuals
with normal colons, including Bifidobacterium, Lachnospira.
Furthermore, 4 genera were also overlapped with the significant
OR taxa by RE model. In short, the microbial features selected for
RF model coincided with their abundance and might reflect their
physiological effects.

DISCUSSION

In this study, we conducted a comprehensive meta-analysis
on a diverse collection of 16S rDNA sequencing studies
with relatively higher sequencing depth from 6 countries to
reveal the great differences in fecal bacterial communities in
individuals with colorectal tumors and normal colons. By
analyzing all datasets in a uniform manner, we further identified
and validated fecal bacterial biomarkers and their important
roles in classifying subjects with colorectal tumors, especially
the CRC and the normal control. The good performance of
common bacterial genera-based RF model demonstrated the
great clinical significance and feasibility of development of
invasive screening or diagnosis method for CRC by detection of
fecal bacterial communities.

Although there were great heterogeneity associated with
each original study, the RF model we built for predicting
CRC and the normal still returned a good performance with
AUC of 0.835. Our model outperformed or were comparable
with results in two recently published meta-analyses based on
both 16S rRNA sequencing with smaller sample size (Shah
et al., 2018) and metagenomic data (Dai et al., 2018), as
well as some independent studies based on microbiota (Zeller
et al., 2014; Baxter et al., 2016; Flemer et al., 2018) and
other non-invasive procedures (FOBT and fecal Immunological
test) (Zeller et al., 2014; Liang et al., 2017). Unexpectedly,
the models for predicting adv_adenoma or adenoma from
the normal were poor, which is consistent with results in
the previous meta-analysis studies (Shah et al., 2018; Sze
and Schloss, 2018). However, some studies did report better
prediction for adenoma (Goedert et al., 2015; Baxter et al.,

2016; Hale et al., 2017). Two potential reasons might explain
the inconsistence between results from meta-analysis and the
independent studies. Usually samples included in individual
studies met consistent criterions, were treated by the same
experimental and optimal analyzing protocols, and could be
analyzed with more clinical data (e.g., FIT) to improve the
model performances (Baxter et al., 2016). In contrast, there were
great variations in these aspectsin the meta-analysis. Besides,
the study number and sample size in our meta-analysis for
adv_adenoma and adenoma were limited. Therefore, we are
looking forward to more studies on adenoma to validate the
potential of fecal bacteria in classifying adenoma from the
individual with normal colon.

We also found that the RF model constructed using
the common genera performed comparably with models
based on the entire communities of total genera and even
total OTUs, which means the fine level (OTU at 97%
similarity) did not further improve the classification model.
This phenomenon was also reported in a previous meta-
analysis (Sze and Schloss, 2018) and individual study (Hannigan
et al., 2018). The “patchy” hypothesis can be used to
explain it (Sze and Schloss, 2018). As microbial distribution
between individuals was patchy, the classification based on
common genera will pool the fine-level diversity, and reduce
the variations in the microbial features. Finally, Twelve
common genera were identified as the most important features
for distinguishing the CRC and the normal colon, 4 of
which possessed significant ORs. Fusobacterium, one of the
most frequently reported bacteria in CRC studies (Rubinstein
et al., 2013; Yu et al., 2017), was enriched in CRC case
relative control, as well as other pernicious genera, including
Escherichia _Shigella, Streptococcus. We also identified the
depletion of potentially beneficial microbes, such as the
butyrate-producting Anaerostipes Faecalibacterium, Lachnospira,
Coprococcus (Rivière et al., 2016; Vital et al., 2017). These genera
could also be used for further validation by qPCR for more
efficient diagnosis.

Even with best efforts, there were limitations in this study. We
did not conduct further analyses to improve the RF model and
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for more subgroups, since we were unable to collect sufficient
information regarding demographic data (age, gender, BMI etc.)
and clinical data (FIT, FOBT, cancer stage, tumor location,
adenoma growth patterns etc). Given this, we appeal researchers
to share their sequencing and meta data associated to profoundly
facilitate the research with larger sample size and more complete
meta information (Quince et al., 2017). Moreover, it is expected
to make better RF models for early screening and diagnosis
by considering both microbial features and other metadata
(including clinical data) (Baxter et al., 2016; Liang et al.,
2017). An advantage in this study was that we obtained the
tumor size, and tried to split adenoma samples into small
adenoma and advanced adenoma, which was not provided in the
previous meta-analyses.

In summary, our study uniformly analyzed a diverse collection
of fecal 16S rDNA sequencing datasets and suggests the strong
association between fecal bacterial community and colorectal
tumors. By revealing the significant differences in diversity,
identifying key taxa, and building RF model, we provide evidence
for the use of fecal bacterial biomarkers to development of
non-invasive diagnostic methods for the colorectal tumors,
especially the CRC.
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