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Inhibition of Rab-GAP TBC1 domain family member 1 (TBC1D1) reduces body weight

and increases energy expenditure inmice. Here, we assessed the possible involvement of

GTPase activating protein 21 (ARHGAP21), a Rho-GAP protein, in energy homeostasis.

Wild-type and whole-body ARHGAP21-haplodeficient mice were fed either chow or

high-fat diet for 10 weeks. These mice were analyzed for body weight, food intake,

voluntary physical activity, and energy expenditure by indirect calorimetry. Real-time

PCR was performed to determine changes in the expression of hypothalamic-anorexic

genes. Whole-body ARHGAP21-haplodeficient mice showed lower body weight and

food intake associated with increased energy expenditure. These mice also showed

higher expression of hypothalamic-anorexic genes such as POMC and CART. Our data

suggest that the reduction in body weight of ARHGAP21-haplodeficient mice was related

to alterations in the central nervous system. This suggests a new role for ARHGAP21 in

energetic metabolism and prompts us to consider GAP protein members as possible

targets for the prevention and treatment of obesity and related diseases.

Keywords: ARHGAP21, Rho-GAP, energy homeostasis, food intake, obesity

INTRODUCTION

Energy homeostasis depends on a balance between food intake and energy expenditure regulated
by complex physiological mechanisms. A disturbance in these processes can lead to obesity (1, 2).
Obesity and overweight are pandemic, affecting more than 2 billion people worldwide (3, 4). The
hypothalamus plays an important role in this context, controlling feeding behavior, and energy
metabolism through a complex network of neurons that express distinct neurotransmitters (5, 6).

Insulin and leptin signaling, as well as the POMC-NPY axis, are among the canonical molecular
pathways that control energy intake and expenditure (7, 8). Insulin, just before a meal, inhibits food
intake by activating anorexigenic genes in hypothalamus. On the other hand, leptin acts regulating
food intake and energy expenditure, this hormone is secreted by the adipose tissue, in order to
estimate body energetic pads (9).

Actually, many proteins have been proposed to regulate food intake and energetic expenditure,
and other less-studied molecules also appear to be involved (10). Of these, the GTPase activating
proteins (GAPs) emerge as possible modulators of energy homeostasis. GAP proteins regulate the
activity of small G proteins, in general, accelerating their return to inactive state, through the
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induction of GTP hydrolysis (11). According to protein
subdomains, small G proteins are classified into five families: Ras,
Rho, Rab, Arf, and Ran (12), all of them are mainly involved
in cytoskeletal rearrangement and trafficking of vesicles to the
membrane in various cell types (13, 14). Each small G protein
has its own GAP, which regulates the activity and function of
the GTPase. In central nervous system, Rho GTPases regulate
neuronal migration and growth, as well as synaptic transmission
(15), and recently, some GAP proteins have been explored in the
metabolic context, demonstrating an important role in glycemic
and energetic homeostasis.

Indeed, GAP TBC1 domain family member 1 (TBC1D1)-
deficiency reduces body weight (16–20), decreases respiratory
quotient (16–19) and increases energy expenditure (17–20) in
addition to suppressing diet-induced obesity (16, 19). Recently,
our group reported that reduction of ARHGAP21 (a Rho-GAP
isoform) improved glucose tolerance and insulin sensitivity and
reduced weight gain in mice fed on high-fat diet (21). However,
the role of ARHGAP21 in hypothalamic appetite control and
whole-body energy homeostasis remains unclear.

Here, we observed that whole-body ARHGAP21-deficiency
reduced fat pad depots as well as body weight, probably
increasing the expression of the anorexic genes POMC and
CART in the hypothalamus, genes associated with reduction
in food consumption and increments of energy expenditure.
These findings explain, at least in part, why Het-HFD mice
did not become obese, highlighting GAP protein members as
important targets for the prevention and control of obesity and
associated diseases.

MATERIALS AND METHODS

Animals
The haplodeficient mouse (Het) is a whole-body ARHGAP21
gene-deficiency model, expressing ∼50% ARHGAP21. The
generation and genotyping of ARHGAP21-haplodeficient mice
were performed as previously described (22). Paired male wild-
type littermates were used as controls (Ctl). All mice were
maintained at 22 ± 1◦C on a 12-h light–dark cycle with free
access to food and water. At 1 month of age, the mice received
chow (Ctl and Het) or a high-fat diet, (Ctl-HFD and Het-
HFD). This diet composition was described previously (23).
Mice from all groups were allowed to feed and drink tap water
for 10 weeks ad libitum. All experiments involving animals
were approved by the Animal Care Committee at UNICAMP
(approval number: 3783-1).

Body Parameters
The body weights of all mice were evaluated once a week
during the 10 weeks of diet treatments (n = 6). In addition,
the perigonadal fat pad and the interscapular brown adipose
tissue (BAT) were dissected and weighed (n = 6). BAT and
hypothalamus samples were separated for RNA extraction.

Food Intake
At the 9th week of treatment, mice weremaintained, individually,
in home cages for 24 h of adaptation (n = 3–5). After that, food

consumption was measured during 3 consecutive days and was
calculated by the difference between the food weight at 7 p. m.
vs. 7 a. m. Food intake was then determined as the mean food
consumption of this period (24, 25).

Indirect Calorimetry
Metabolic rates were measured by indirect calorimetry using
an open-circuit indirect calorimeter system, the Comprehensive
Lab Animal Monitoring System: Oxymax-CLAMS (Columbus
Instruments, Columbus, OH, USA). At the 10th week of
treatment, mice were acclimated for 24 h in the system cages (n
= 3), and the Oxymax-CLAMS was calibrated as recommended
by the manufacturer. After the acclimation period, the rate of
oxygen consumption (VO2), respiratory exchange ratio (RER),
heat rate (Kcal/h), and ambulatory activity (measured as total
beam breaks which means, the sum of x, y, and z axis) were
measured during the light and dark periods (26). These data were
acquired for 24 h and were analyzed using Oxymax Windows
software (Columbus Instruments, Columbus, OH, USA).

Serum Leptin Measurement
The serum samples were obtained by centrifugation of blood
samples (1,100 g for 15min at 4◦C) and were stored at
−80◦C for posterior leptin quantification. Leptin concentration
was measured using Mouse Leptin ELISA Kit (Cat. EZML-
82K, Merck Millipore, Darmstadt, Germany), according to the
manufacturer’s instructions (n= 5–6).

mRNA Isolation and Real Time
Quantitative PCR
The total RNA content of the perigonadal adipose tissue (n
= 5–6), BAT (n = 3–4), and hypothalamus (n = 5–6) was
extracted using TRIzol reagent (Life Technologies, Gaithersburg,
MD, USA), following phenol-chloroform RNA extraction,
according to the manufacturer’s recommendations. RNA
concentration was measured by Nanodrop (Nanodrop Thermo
scientific, Wilmington, DE, USA). cDNA was prepared using
1 µg RNA and MultiScribe reverse transcriptase (Applied
Biosystems, Foster City, CA, USA). The SYBR-green master
mix (Applied Biosystems, Foster City, CA, USA) was used
in the PCR reactions. Quantification was performed using
the 7500 Fast Real-time PCR System (Applied Biosystems,
Foster City, CA, USA). The specificities of amplifications
were verified by melting-curve analyses. The relative
expression of mRNAs was determined after normalization
with GAPDH, using the 2-11Ct method. Primer sequences
used for real-time PCR assays were as follows: ARHGAP21

forward: 5
′

-tcatgcctgtgtgcataccc-3
′

, ARHGAP21 reverse: 5
′

-

aagctcccaacagtgcaaac-3
′

; Leptin forward: 5
′

-gagacccctgtgtcggttc-

3
′

; Leptin reverse: 5
′

-ctgcgtgtgtgaaatgtcattg-3
′

; POMC

forward: 5
′

-ggcttgcaaactcgacctc-3
′

, POMC reverse: 5
′

-

tgacccatgacgtacttccg-3
′

; CART forward: 5
′

-acctttgctgggtgcccgtg-

3
′

, CART reverse: 5
′

-tgcaacgcttcgatcagctcc-3
′

; NPY forward:

5
′

-tactccgctctgcgacacta-3
′

, NPY reverse: 5
′

-tcttcaagccttgttctggg-

3
′

; AgRP forward: 5
′

-gagttcccaggtctaagtctgaatg-3
′

, AgRP
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reverse: 5
′

-atctagcacctccgccaaag-3
′

; UCP1 forward: 5
′

-

ctgccaggacagtacccaag-3
′

, UCP1 reverse: 5
′

-tcagctgttcaaagcacaca-

3
′

; GAPDH forward: 5
′

-cctgcaccaccaactgctta-3
′

, GAPDH

reverse: 5
′

-gccccacggccatcacgcca-3
′

.

Western Blot Analysis
The BAT lysates (n = 3–4) were prepared using TissueLyser LT
(Qiagen, Hilden, Germany) and then were placed in a 1.5ml tube
and mixed with a lysis/antiprotease buffer containing 7 mol/L
urea, 2 mol/L thiourea, 100 mmol/L Tris pH 7.5, 10 mmol/L
sodium pyrophosphate, 100mmol/L sodium fluoride, 10mmol/L
ethylenediamine tetraacetic acid (EDTA), 10 mmol/L sodium
vanadate, 2 mmol/L phenylmethylsulfonyl fluoride (PMSF), and
1% Triton X100. The extracts were then centrifuged at 12,600 g
at 4◦C for 40min to remove insoluble materials. The protein
concentration of the supernatants was assayed using the Bradford
dye method (27), using bovine serum albumin (BSA) as a
standard curve and the Bradford reagent (Bio-Agency Lab., São
Paulo, Brazil). For SDS (sodium dodecyl sulfate) polyacrylamide
gel electrophoresis, all samples were treated with a Laemmli
buffer containing dithiothreitol. After heating to 100◦C for
5min, proteins were separated by electrophoresis in a 12%
polyacrylamide gel. The transfer to nitrocellulose membranes
was performed in a Trans Blot transfer for 2 h in 100V,
with a tris/glycine buffer. After, the membranes were blocked
with 5% BSA for 1 h and were then incubated with specific
antibodies—UCP1 (#14670; Cell Signaling Technology, Danvers,
MA), GAPDH (G9545; Sigma, St. Louis, Missouri, USA)—that
were diluted 1:1,000 and subsequently detected by exposure
to chemiluminescent substances (luminol and peroxidase).
After incubation, the appropriate secondary antibody (dilution
1:10,000; Invitrogen, São Paulo, Brazil) was added for further
luminescence detection followed by detection in Amersham
Imager 600 (GE Healthcare Life Sciences, Buckinghamshire,
UK). The quantification of the bands was performed by
densitometry using the ImageJ software (National Institutes of
Health, Bethesda, MD, USA).

Statistical Analysis
The data were analyzed by Student’s t-test (GraphPad Prism
5, La Jolla, CA, USA) and were presented as the means ±

standard errors media (SEM). The differences between groups
were considered statistically significant if P ≤ 0.05.

RESULTS

Anorexigenic Effects of Whole-Body
ARHGAP21 Reduction in Het Mice
The body weight of mice was measured once per week for 10
weeks. At the 8th week, Het mice displayed lower body weight
than did the Ctl mice until the end of the experimental period
(Figure 1A). The weight of the perigonadal fat pad of Het was
similar to that of Ctl mice (Figure 1B), as well as themRNA levels
of leptin in this tissue and serum leptin levels (Figures 1C,D).
Also, ARHGAP21 mRNA content in the perigonadal adipose
tissue of Het mice was reduced (Figure 1C). Het mice showed
lower food intake than did Ctl mice (Figure 1E). Consistent

with these findings, Het mice displayed significant increases in
hypothalamic mRNA levels of the anorexigenic markers POMC
and CART and reductions in the mRNA levels of the orexigenic
markers NPY and agRP (Figure 1F). We also found that the
ARHGAP21 mRNA content was lower in the hypothalamus of
Het mice (Figure 1F).

Energy Homeostasis of ARHGAP21
Het Mice
Het mice presented higher energy expenditure, as judged by the
augmented VO2 (Figure 2A) and increased heat rate (Figure 2B)
during dark and light periods, than did Ctl mice. No difference
was found in RER between groups (Figure 2C). The ambulatory
activity was significantly higher in Het than in the Ctl group
in both periods (Figures 2D,E). BAT weight (Figure 2F), UCP1
mRNA expression (Figure 2G) and protein content (Figure 2H)
were higher in Het mice than in Ctl mice. This accords with the
higher energy expenditure observed in Het mice. A decrease in
ARHGAP21 mRNA content in the BAT of Het mice was also
observed (Figure 2G).

Anorexigenic Effects of Whole-Body
ARHGAP21 Reduction in Het-HFD Mice
We also challenged Het mice to a high-fat diet. As shown in
Figure 3A, Het-HFDmice displayed lower body weight from the
3rd week until the end of the experimental period, accompanied
by a decrease in perigonadal fat pad weight (Figure 3B), than
did the Ctl-HFD group. In addition, leptin gene expression in
the perigonadal adipose tissue (Figure 3C) and leptin serum
levels (Figure 3D) were reduced in Het-HFD, compared with
Ctl-HFD mice. We also found that the ARHGAP21 mRNA
content was lower in the perigonadal adipose tissue of Het-
HFD mice (Figure 3C). Het-HFD mice had less food intake
(Figure 3E) and presented higher levels in the mRNA of
anorexigenic markers (POMC and CART) than did Ctl-HFD
mice (Figure 3F). However, NPY and AgRP mRNA levels were
not different between groups (Figure 3F). Again, the expression
of ARHGAP21 mRNA in the hypothalamus of Het-HFD mice
was lower than in Ctl-HFD mice (Figure 3F).

Energy Homeostasis of ARHGAP21
Het-HFD Mice
The VO2 (Figure 4A) and heat rate (Figure 4B) were higher
in Het-HFD than in Ctl-HFD during dark and light periods.
Moreover, the RER of Het-HFDmice was higher during the dark
phase, suggesting that they predominantly used carbohydrate
oxidation in this period, as opposed to the Ctl-HFD mice that
displayed metabolic inflexibility (Figure 4C). In addition, the
ambulatory activity was significantly higher in the Het-HFD
mice than in the Ctl-HFD mice (Figures 4D,E). BAT weight was
similar between the groups (Figure 4F); however, we observed
higher UCP1mRNA expression (Figure 4G) and protein content
(Figure 4H) in BAT of Het-HFD than in the Ctl-HFD group.
Finally, Het-HFD mice had lower ARHGAP21 mRNA levels in
the BAT than did the Ctl-HFD group (Figure 4G).
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FIGURE 1 | Anorexigenic effects of whole-body ARHGAP21 reduction in Het mice. Body weight curve (A) n = 6. Perigonadal fat pad weight (B) n = 6. Real-time

PCR assay of ARHGAP21 and leptin mRNA levels in perigonadal adipose tissue (C) n = 5–6. Serum leptin level (D) n = 5. Food intake over 12 h (E) n = 3–4. Real

time PCR assay of hypothalamic ARHGAP21, POMC, CART, NPY, and AgRP mRNA levels (F) n = 5–6. Control mice (Ctl) and ARHGAP21-haplodeficient mice (Het)

fed a chow diet for 10 weeks. Data are the mean ± SEM. *P ≤ 0.05 (Student’s-t-Test).

DISCUSSION

The inhibition of GAP TBC1D1 reduced the body weight and
increased the energy expenditure in mice (16–20). Here, we
extended these findings, showing a beneficial effect of whole-
body reduction of ARHGAP21 in energy homeostasis, as judged

by the increased energy expenditure and reduced food intake in

both control and high-fat diet groups. These results were the first
to point to possible involvement of a GAP family member in the
control of food intake via increasing the expression of mRNA
of the hypothalamic anorexigenic markers (POMC/CART). All

these phenomena favor the reduction in body weight observed in
ARHGAP21-haplodeficient mice.

We previously showed that ARHGAP21 inhibition decreased
body weight in mice (21), but the mechanisms involved remain
unknown. It is well established that body weight and appetite
control are complex and that central mechanistic disturbances
can lead to hyperphagia or anorexia depending on the balance
between the expression of anorexic and orexic genes in the
hypothalamus (7, 28). These genes are regulated by hormones,
such as leptin and insulin, which increase the expression of
anorexigenic genes in the hypothalamus, reducing food intake
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FIGURE 2 | Energy homeostasis of ARHGAP21 Het mice. VO2 (A) n = 3, heat rate (B) n = 3 and respiratory exchange ratio (RER) (C) n = 3. Ambulatory activity for

24 h during light and dark periods (D) and mean of light and dark periods (E) n = 3. BAT weight (F) n = 6. Real-time PCR assay of ARHGAP21 and UCP1 mRNA levels

in BAT (G) n = 3. Brown adipose tissue UCP1 protein content (H), n = 3. The samples were transferred to nitrocellulose membranes in this sequence: Ctl, Het, Ctl,

Het, Ctl, and Het. Control mice (Ctl) and ARHGAP21-haplodeficient mice (Het) fed a chow diet for 10 weeks. Data are the mean ± SEM. *P ≤ 0.05 (Student’s-t-Test).

and increasing energetic expenditure (29–31). Exposition to high
leptin levels, as observed in Ctl-HFD mice, contribute to leptin
resistance through a negative feedback mechanism (32). Some
practices and therapies as physical exercise and drug treatment
can reduce leptin levels in obesity models, and this effect is

associated with improvement in leptin signaling (33, 34). In this
study, Het-HFD mice presented reduced adipose tissue pads and
leptin levels, probably associated with improved leptin signaling
in hypothalamus, in accordance with the metabolic improvement
observed in this group. Moreover, we observed reduced food
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FIGURE 3 | Anorexigenic effects of whole-body ARHGAP21 reduction in Het-HFD mice. Body weight curve (A) n = 6. Perigonadal fat pad weight (B) n = 6.

Real-time PCR assay of ARHGAP21 and leptin mRNA levels in perigonadal adipose tissue (C) n = 6. Serum leptin level (D) n = 6. Food intake over 12 h (E) n = 3–5.

Real-time PCR assay of hypothalamic ARHGAP21, POMC, CART, NPY, and AgRP mRNA levels (F) n = 5–6. Control mice (Ctl) and ARHGAP21-haplodeficient mice

(Het) fed a high-fat diet for 10 weeks. Data are the mean ± SEM. *P ≤ 0.05 (Student’s-t-Test).

intake in Het and Het-HFDmice, corroborated by higher mRNA
POMC and CART expression in the hypothalamus of these
mice. In this context, ARHGAP21 inhibition improved energetic
metabolism both by increasing anorexigenic gene expression in
hypothalamus of Het and Het-HFD, and reducing fat pads and
hyperleptinemia in Het-HFD.

POMC and CART peptides also stimulate energy expenditure
(35). In fact, genetic ablation of POMC and CART in obese

rodents was associated with reduced physical activity and
energy expenditure (36). Conversely, intra-cerebroventricular
(ICV) administration of CART in rodents induced an opposite
effect (37). In agreement with these findings, we found that
ARHGAP21-haplodeficient mice increased ambulatory activity
and consequently energy expenditure, as judged by higher
VO2 and heat rates than their respective controls. Despite
reduced number of animals in the experiments of energy
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FIGURE 4 | Energy homeostasis of ARHGAP21 Het-HFD mice. VO2 (A) n = 3, heat rate (B) n = 3, and RER (C) n = 3. Ambulatory activity for 24 h during light and

dark periods (D) and mean of light and dark periods (E) n = 3. BAT weight (F) n = 6. Real-time PCR assay of ARHGAP21 and UCP1 mRNA levels in BAT (G) n = 4.

Brown adipose tissue UCP1 protein content (H), n = 3–4. The samples were transferred to nitrocellulose membranes in this sequence: Ctl-HFD, Het-HFD, Ctl-HFD,

Het-HFD, Ctl-HFD, Het-HFD, and Het-HFD. Control mice (Ctl) and ARHGAP21-haplodeficient mice (Het) fed a high-fat diet for 10 weeks. Data are the mean ± SEM.

*P ≤ 0.05 (Student’s-t-Test).

expenditure be a limitation of the study, the data from these
experiments are in accordance with the molecular alterations
observed in ARHGAP21 haplodeficient mice, such as, increase in
hypothalamic anorexigenic genes and increase in UCP1 gene and

protein expression in BAT, once these effects can be associated
with increased energy expenditure.

The hypothalamic expression of POMC and CART is also
known to increase energy expenditure independent on their
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effect on ambulatory activity. These peptides stimulate specific
central neurons that, via the efferent sympathetic branch,
stimulate thermogenesis by increasingmitochondrial uncoupling
in adipose tissue (38–40). Accordingly, here, we observed
increased UCP1 mRNA levels and protein content in the BAT
of Het and Het-HFD mice. Our results reinforce the previously
described involvement of a Rho-GAP family protein, DLC1, as a
regulator of the adipocyte phenotype (41).

Moreover, we evaluated the RER, a measure widely utilized
to evaluate the metabolic flexibility. The RER was calculated
by measuring the amount of carbon dioxide (CO2) produced
in comparison to the amount of oxygen (O2) used, and it is
possible to predict which substrate is being oxidized as a fuel.
During the light period, when mice are at rest and fasting,
the RER is ∼0.7, indicating a predominant use of fatty acid.
On the other hand, during the dark period, when they are
more active and fed, the RER is ∼1.0, suggesting that they
are using predominantly carbohydrate oxidation (42, 43). In
some pathologies, such as, obesity and diabetes, the organism
display metabolic inflexibility due to the incapacity to adjust
uptake of macronutrients according to the metabolic needs
(43, 44). In our study, as expected, mice submitted to high-fat
diet presented metabolic inflexibility. However, Het-HFD mice
presented increased RER during the dark phase, suggesting an
improvement in metabolic flexibility, which can be explained,
at least in part, by increased insulin sensitivity (21) leading
to efficient glucose uptake and oxidation. These data support
the hypothesis that ARHGAP21 reduction is able to boost
the nutrient handling, energetic homeostasis, and metabolic
flexibility (42, 43).

In summary, our study provides evidence supporting the
beneficial effects of ARHGAP21 reduction upon energetic
homeostasis, reducing food intake and increasing energy
expenditure. Altogether, these events contributed to a reduction

in body weight even in mice fed a high-fat diet. Thus,
ARHGAP21 protein emerges as an important candidate to be
considered for the prevention and treatment of obesity and
associated diseases.
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