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Spectral analysis of heart rate variability (HRV) is a valuable tool for the assessment of

cardiovascular autonomic function. Fast Fourier transform and autoregressive based

spectral analysis are two most commonly used approaches for HRV analysis, while

new techniques such as trigonometric regressive spectral (TRS) and wavelet transform

have been developed. Short-term (on ECG of several minutes) and long-term (typically

on ECG of 1–24 h) HRV analyses have different advantages and disadvantages. This

article reviews the characteristics of spectral HRV studies using different lengths of

time windows. Short-term HRV analysis is a convenient method for the estimation of

autonomic status, and can track dynamic changes of cardiac autonomic function within

minutes. Long-term HRV analysis is a stable tool for assessing autonomic function,

describe the autonomic function change over hours or even longer time spans, and can

reliably predict prognosis. The choice of appropriate time window is essential for research

of autonomic function using spectral HRV analysis.

Keywords: trigonometric regressive spectral analysis, fast fourier tranform (FFT), heart rate variability, multiple

trigonometric regressive spectral analysis, long-term, short-term

INTRODUCTION

Heart rate variability (HRV) is the physiological phenomenon of variation in heart beats. Even
in resting states, spontaneous fluctuations of the intervals between two successive heart beats
occur. Spectral analysis of HRV is a non-invasive and easy-to-perform tool for evaluating cardiac
autonomic activity (1). Two critical frequency domain parameters obtained from spectral analysis
are widely used: low frequency (LF) power (0.04–0.15Hz) represents both sympathetic and vagal
influences; high frequency (HF) power (0.15–0.40Hz) reflects the modulation of vagal tone. In
addition, LF/HF ratio indicates the balance between sympathetic and vagal tones (2). HRV analysis
has been widely used in numerous cohorts, and plays an important role in describing the patients’
autonomic dysfunctions, tracking the natural fluctuations of autonomic function, evaluating the
autonomic changes following various interventions, and predicting prognosis.

PREPROCESSING OF THE ECG DATA

Before spectral analysis for HRV, there are a series of preprocessing steps. The preprocessing
procedures include sampling and digitizing, artifact identification, RR data editing, RR interval
rejection, NN data sequence; for some methods (e.g., fast Fourier transform) interpolation and
sampling of the tachogram are needed (2). It is noticeable that these preprocessing steps could
influence the HRV analysis results.
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Firstly, the device should have a sufficient sampling rate. A
low sampling rate (<200Hz) can affect the identification of
QRS complex, and lead to inaccurate RR intervals, then leads
to distorted HRV analysis (2, 3). It is recommended that the
sampling rate should not be lower than 250 Hz (3).

Before spectral analysis, we need to carefully inspect the
ECG to identify potential artifacts, ectopic beats, and arrhythmic
events. Since HRV analysis is based on the sinus rhythm, if left
untreated, these artifacts and non-sinus events would introduce
errors (4). For short-term HRV analysis, if possible, recordings
that are free of artifacts, ectopic beats, and arrhythmia should
be chosen. If the selected data include technical artifacts, such as
missed beats (caused by failure to detect the R peak) and electrical
noise, we can edit the data by a proper interpolation based
on the neighboring RR intervals (4). In contrast, the methods
editing ectopic beats are uncertain. There are various approaches
to mitigate the influence of ectopic beats, including deletions
of the ectopic beats and numerous interpolation methods (5).
Overall, simply deleting the ectopic beats is not recommended
because it loses ECG information and obtains distorted LF
and HF power (5, 6). The choice of interpolation methods
depends on the type of ectopic beat, quality of data, and the
study population. For a ventricular premature beat, the period
between the normal beats before and after the premature beat
is approximately twice the mean RRI, and an intermediate
insertion between the two neighboring normal beats is acceptable
(4, 7). However, a supraventricular ectopic beat can reset the
sinoatrial node activity, and more complicated interpolation
approaches might be appropriate (7). In this occasion, commonly
used interpolation methods include interpolation of degree zero,
interpolation of degree one, cubic spline interpolation, integral
pulse frequencymodulationmodel, etc. Until now, how to choose
the best technique still needs further investigation, and head-to-
head comparisons are warranted (5–7).

For fast Fourier transform, to satisfy the requirement of
equal distance, interpolation is needed, and we would discuss
this issue in the following section. Sometimes, automatic filters
are employed; it might theoretically improve the statistical
reliability of the data. But we should observe its impact
to the spectral components, because this operation may
incur errors (2, 4).

COMMONLY USED SPECTRAL HRV
ANALYSIS METHODS

Most commonly, power spectral analysis of HRV is analyzed
through fast Fourier transform and autoregressive models, by
commercial devices or non-commercial software (8). In most
cases, both methods obtain comparable results, but we need to
notice their differences.

The algorithm of fast Fourier transform is relatively
simple and has low computational cost. However, fast Fourier
transform based spectral analysis is subjected to the problem
of non-equal distance of RR intervals and a requirement
of stationary data segments. In addition, the length of data
segments influences the basic oscillation and the frequency

resolution of fast Fourier transform analysis (2, 9). Therefore,
fast Fourier transform based HRV analysis needs artificial
interpolation to satisfy the demand on equal distance, but the
interpolation would introduce biases. Typically, it works on
a stable ECG segment of at least 5min, this restriction on
length sometimes limits its application (such as in dynamic
processes) (2, 9).

The autoregressive method is also a popular tool for spectral
analysis of HRV, it does not need interpolation, and the length of
data required for analysis is shorter than fast Fourier transform.
However, one of the disadvantages of the autoregressive method
is its complexity, the choice of models and model order varies
across different studies and this parameter substantially affects
the results (2). Furthermore, several studies showed that the
autoregressive method was not able to detect frequency domain
parameters and generated null values in a substantial proportion
of patients with diabetes or hypertension (10, 11).

There have been several autoregressive models in ECG
signal processing. Burg’s algorithm, the least square approach
and Yule-Walker method are commonly used (12–14). Each
method has its advantages and disadvantages. Both Yule-
Walker method and Burg algorithm suffer from the problems
of spectral line splitting and the bias in the positioning
of spectral peaks (12, 14). However, Burg’s algorithm has
a better resolution and a higher spectral fidelity for short
data records than Yule-Walker method, and Burg’s algorithm
has no implied windowing which distorts spectrum in Yule-
Walker method (14, 15). The least square approach has
improvements in the issues of spectral line splitting and the
bias in the positioning of spectral peaks, but is less stable than
Burg’s algorithm (12, 13, 15). Generally, they obtain similar
results in most situations (13, 16), but Burg’s algorithm is
a more stable approach and is preferable among the three
methods (13, 15).

If the model order is too high, the model is more susceptible
to the interference of noise and might slit peaks. If the
model order is too low, the spectral peaks are smoothed
considerably, their positions might be altered and some
peaks might be missed; moreover, the analysis may even
obtain null results (4, 17). There are many methods for the
guidance of choosing the most appropriate order, such as
Akaike information criteria, Akaike’s final prediction error, final
prediction error, Rissanen’s minimum description length, etc.
Akaike information criteria is the most widely used method
(2, 4, 17).

Trigonometric regressive spectral (TRS) analysis is a newly
developed and advanced analytical and statistical technique,
it describes the rhythms of R–R intervals with trigonometric
regression functions (18). In contrast to the fast Fourier
transform, TRS does not need interpolation on non-equidistant
heart beats, and provides a pure physiological spectrum using
trigonometric regression. TRS searches one frequency at a time;
therefore, the length of the data segment can be as short as 20–
30 s (9, 18, 19). This feature makes TRS suitable for describing
dynamic processes. TRS works in a shifting approach. Each
analysis (TRS) spectrum is only performed within a local data
segment (20–30 s); analyses of local data segments are repeated
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in successive segments shifted by one, two, or more beats
within the whole global data segment (multiple TRS analysis, so
called MTRS) (18, 19). Since the traditionally used global data
segment is 1–2min, we call this approach short-term MTRS. We
have successively applied short-term MTRS analysis in healthy
subjects and patients with various disorders (including diabetes
and hypertension); it has been used for describing the resting
cardiovascular autonomic function of specific populations and
depicting the dynamic response of HRV to various stimulations,
including Valsalva maneuver, metronomic deep breathing, head-
up tilt test, cold pressor test, mental stress, and short-acting
vasoactive medications (20–27). Overall, TRS is an outstanding
technique for spectral analyses in autonomic function research
in comparison to fast Fourier transform and the autoregressive
method. We summarize the character of the three solutions for
spectral analysis of HRV in Table 1.

In addition, Lomb periodogram is another option for
spectral analysis of HRV without the need of interpolation
on RRIs. Lomb periodogram determines the power spectrum
at any given frequency by fitting the sine wave using a least

squares method. It outperformed fast Fourier transform and
autoregressive method in several studies (32, 33). However,
the non-random components of HRV and the 1/f noise in
the spectra negatively influence the performance of Lomb
periodogram (34). A recent study indicated that a smoothing
procedure for Lomb periodogram may improve its capability
in spectral analysis (35). Overall, Lomb periodogram is an
relatively infrequently used method for spectral analysis, further
methodological improvements and applications in clinical
research are warranted (35, 36).

Furthermore, it is noteworthy that commonly used spectral
analyses of HRV employ second order statistics, which is suitable
for Gaussian distribution and linear systems (37, 38). However,
the human cardiovascular system is not a linear system, and may
not accord with Gaussian distribution. Theoretically, bispectral
analysis has been developed to solve this problem (37, 38).
Although studies using bispectral analysis for HRV assessment is
still rare, it is a promising tool in HRV analysis. Since this article
focuses on spectral analysis, further discussion of this method is
out of the scope of this article.

TABLE 1 | Summary of main spectral analysis methods.

Methods First publication on

spectral analysis of

HRV in human

Requirements for

applications

Advantages Disadvantages Commonly used

length in short-term

spectral analysis

FFT • Sayers (28)

• Hyndman et al. (29)

• Stationary ECG data

• Sufficient length of

data,

• Equidistance

between RRIs

• Simplicity of the

algorithm,

• High processing

speed,

• Good reproducibility

• Widely available in

commercial devices

and

research toolboxes

• Require interpolation,

• Not appropriate for

non-stationary data,

• Need to work on an

adequate length of

data (usually 5min),

• Spectral

components

influenced by

data length,

2–5min; 5min is

preferred

Autoregressive

models

• Pagani et al. (30, 31) • Stationary ECG data • Smoother spectral

components,

• Easy

post-processing of

the spectrum,

• Lower requirements

on the length of data

than FFT,

• Also widely available

in commercial

devices and

research toolboxes

• Not appropriate for

non-stationary data,

• Complexity in

choosing the suitable

models, thus lack

comparability

between studies.

200–512 RRIs

MTRS • Rudiger et al. (18) • Only general

requirements for

HRV analysis such

as free of ectopic

beats and arrhythmia

• Can work on

relatively short data

segments (20–30 s),

• Can be applied in

non-stationary

conditions,

• Do not need

interpolation and

capture real

physiological oscillations

• Relatively less

widely available

1–5min; 1.5–2min is

most frequently chosen

ECG, electrocardiography; FFT, fast Fourier transform; HRV, heart rate variability; MTRS, multiple trigonometric regressive spectral analysis; RRI, RR interval.
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THE ISSUE OF TIME WINDOW IN
SPECTRAL HRV ANALYSIS

The time window of ECG analyzed is a key issue in the spectral
analysis of HRV (39, 40). Most of the studies using spectral
analysis of HRV via fast Fourier transform or autoregressive
method work on ECG segments of 2–5min, and previous
applications ofMTRS are on ECG segments of 1–2min. Recently,
various techniques for time-frequency analysis in non-stationary
conditions have been developed, which mainly include short
time Fourier transform, time variant autoregressive modeling,
wavelet transform, and Wigner-Ville transform (41, 42). These
techniques can obtain instant power spectral profiles of HRV
during highly dynamic processes. Spectral analysis of HRV
using longer time windows (usually from 1–24 h) has been
reported, mainly using fast Fourier transform or autoregressive
method. Long-term spectral analysis of HRV has been used in
determining the autonomic function, assessing its changes, and
predicting prognosis. Shorter and longer timewindows have their
own advantages and disadvantages according to the particular
application scenarios. In the following sections, we will discuss
the characteristics of short-term and long-term HRV analysis. In
addition, we will also introduce our newly developed long-term
MTRS analysis.

LONG-TERM SPECTRAL HRV ANALYSIS
BASED ON SHORT-TERM SPECTRAL HRV
ANALYSIS

Fast Fourier transform and autoregressive based HRV analyses
conventionally work on ECG recordings of 2–5min (2, 3, 8).
As mentioned earlier, short-term MTRS analysis mainly works
on 1–2min (2, 3). The short-term HRV analysis is often the
basis for longer time windows. The most common strategy for
long-term HRV analysis is to divide the target time window
(e.g., 1 or 24 h) into consecutive 1–5min epochs, and averaging
the individual values of HRV parameters of all these epochs to
obtain the mean value of the target time window (2, 39, 40).
MTRS has been traditionally used in short-term HRV analysis,
but recently we have developed a newer version of MTRS, which
also used the averaging strategy. For a target ECG segment of
30min to 24 h, this target ECG segment is firstly divided into
consecutive 1–2min global data segments. The spectral profiles
of these consecutive 1–2min global data segments are obtained
through the shifting local data segments of 20–30 s as described
before. Then the results of all the 1–2min global data segments
are averaged to obtain the mean values of the spectral parameters
of the whole target time window. Figure 1 illustrates the strategy
by showing how a given 30min ECG recording is divided into
15 2-min global data segments. Each 2-min global segment
was analyzed as our traditional short-term MTRS analysis, and
then the results of all these 2-min global data segments are
averaged to obtain the mean value of the whole targeted 30-
min segment. This strategy can be applied even in longer time
windows including 24 h. Figure 2A shows the LF and HF values
of the 30 2-min global segments within an hour in a patient with

multiple sclerosis, these 2-min values will be averaged to obtain
the targeted 1-h results. Figure 2B shows an application of this
long-term MTRS analysis in a patient with multiple sclerosis,
who had taken 0.5mg fingolimod. This figure shows the mean
1 h LF and HF powers of the 6 h after fingolimod intake. This
dividing and averaging process is a common strategy for long-
term spectral analysis of HRV, and the underlying algorithm
can be fast Fourier transform, autoregressive method, or MTRS,
etc. (43, 44).

Another strategy is to view the target time window as a whole
data segment, and perform spectral analysis on this data segment
en bloc (e.g., 1 or 24 h). For LF and HF, these two strategies
obtained similar results over the 24 h time window (43).

THE ADVANTAGES AND DISADVANTAGES
OF SHORT AND LONG TIME WINDOWS

The cardiovascular system is a spatially and temporally complex
system. It is built from a dynamic web of interconnected feedback
loops. Heart rate, blood pressure, and HRV parameters keep
fluctuating constantly, both in the resting state and under various
internal and external stimulations (9, 45, 46). We can estimate
HRV parameters in the resting state, during standing and daily
activities, in different stages of sleep, and their responses to
medications. Choosing the most appropriate time window for
HRV analysis can optimize its application. Table 2 summarizes
the advantages and disadvantages of short- and long-term
spectral analysis of HRV.

The advantages of short-term HRV analysis are as follows.

1. It is easy to perform; only several minutes’ recording
is enough.

2. It is convenient to control the confounding factors such as
body position, physical activity, respiration, environmental
factors like temperature.

3. It needs least time for data processing compared to long-
term analysis.

4. Can describe dynamic HRV change within a short period.

Its main disadvantage is that the short-term HRV analysis
might not be stable owing to the constant fluctuation of HRV
parameters. Furthermore, short-term spectral analysis cannot
estimate long RRI fluctuations, such as the ultra-low frequency
component (ULF) (2, 39).

Time-frequency analysis can be viewed as a special case
of short-term spectral analysis; it is able to closely track
the instant changes of the spectral profiles of HRV. This is
a fast developing area attracting active research. Short time
Fourier transform and time variant autoregressive modeling are
based on fast Fourier transform and autoregressive modeling;
their time resolutions are not satisfactory (42). Wigner-Ville
transform based time frequency-analysis has better temporal
and frequency resolutions by independent controls of time
and frequency filtering (47). However, its main limitation is
the interference of cross-terms, which influences the accuracy.
Various techniques seek to address this issue. Among them,
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FIGURE 1 | This is a tachogram from the MTRS software. For the specified time window of 30min (from 07:52 to 08:22), we calculated the frequency domain

parameters of 15 2-min global data segments (Global 1 to Global 15) and then computed the average of these 15 segments.

smoothing in the time and frequency directions significantly
suppresses the cross-terms, and smoothed pseudo Wigner–
Ville distribution (SPWVD) have excellent performance in
comparison with short time Fourier transform and time variant
autoregressive modeling methods in comparative studies (42,
48). Wavelet transform also provides a good time resolution
and the time-frequency resolution can be optimized by setting
an appropriate wavelet filter. In contrast to short time Fourier
transform, which has fixed windows for time and frequency, time
resolution of wavelet transform depends on the frequency of
interest and can obtain more precise spectral components (49).
The limitations of wavelet analysis are: (1) the obtained frequency
bands are not exactly the same as the recommendations of
the Task Force of The European Society of Cardiology and
The North American Society of Pacing and Electrophysiology.
(2) The performance is unsatisfactory when more than one
spectral component is present (49, 50). In several comparative
studies, wavelet transform outperformed short time Fourier
transform and time variant autoregressive modeling (42, 51,
52). Although mainly used in time-frequency analysis, wavelet
transform has also been used in short-term spectral analysis,
and was consistent with the output of fast Fourier transform
(53). Other relatively less used time-frequency analyses include
Gabor transform, modified B distribution, etc. Gabor transform
can implement a signal adaptive analysis which eliminate the
influence of noise and improves the accuracy (54, 55). Modified
B distribution can achieve high time-frequency resolutions and
suppress cross-terms (48). Time-frequency analysis is a fast
developing field; further researches are needed to establish well-
accepted techniques.

Long-term HRV analysis can collect ECG information
from 1 h to an entire day. It is more stable than short-
term analysis. Directly analyzing the entire long-term target
time window can estimate longer fluctuations including the
ULF power (2, 39). However, long-term recordings are
more expensive and time-consuming; long-term recordings
obtain more noise and dealing with the noise is challenging.

In addition, environmental factors (temperature, humidity,
etc.) and daily activities during recording vary within and
between subjects.

To some extent, the comparison between short-term and
24-h long-term HRV analysis is similar as the comparison
between office blood pressure and 24 h ambulatory blood
pressure monitoring. Because the blood pressure also fluctuates
constantly, office blood pressure has substantial randomness,
while ambulatory blood pressure monitoring incorporates
recordings during resting, activity, and sleeping of a whole day
and is more stable than office blood pressure (56, 57).

THE APPLICATION OF SPECTRAL HRV
ANALYSIS IN DIFFERENT OCCASIONS

It is noteworthy that age and gender can influence frequency
domain HRV parameters. Generally, females have higher total
power and HF power, and lower LF power and LF/HF ratio
than males (40, 58–60). Some studies reported that this gender
difference gradually disappear after the age of 40–50 (58, 59).
With increasing age, total power and absolute values of LF
and HF power decrease, while this trend is not significant
for normalized values of LF and HF (22, 58–61). LF/HF ratio
gradually increases until about 50 years, then decrease afterwards
(60, 61). We should keep the effect of age and sex in mind in the
application of spectral analysis of HRV.

Evaluate Autonomic Function in a Specific
Population
Short-term HRV analysis is frequently used in assessing the
cardiovascular autonomic function of a specific population.
Many diseases lead to a decreased HF power and/or an
increased LF power, including patients with myocardial
infarction (62), hypertension (63), cardiac syndrome X (64, 65),
neurodegenerative diseases including Parkinson’s disease,
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FIGURE 2 | (A) LF and HF powers of the 30 2-min global segments within an hour (from 9:14 to 10:14 in the morning) in a patient with multiple sclerosis. Each square

indicates the LF or the HF power of an individual 2-min global segment. Red line represents low frequency band, and green line represents high frequency band. The

x-axis represents time and the y axis represents the relative LF and HF powers (the proportions (in percent) of LF and HF powers in the total power). (B) Mean LF and

HF powers of the 6 h after fingolimod intake in a patient with multiple sclerosis. Each square indicates the mean value of LF or HF power of a targeted 1 h time

window. Red line represents low frequency band, and green line represents high frequency band. The x-axis represents time and the y axis represents the relative LF

and HF powers [the proportions (in percent) of LF and HF powers in the total power].

multiple system atrophy, and progressive supranuclear palsy
(26, 66), affective disorders (67), and septic shock (68).

Long-term HRV analysis for this purpose is often
performed on holter recordings, the researchers can select
the daytime/awakening and the nighttime/sleep periods for
analysis, or use the entire 24 h recording. In patients with panic
disorder, the decrease of total power and ULF power is more
pronounced during sleep than the whole day averaged values
(69). In addition, HRV analysis of the recordings during sleep
has shown that the patients with panic disorder had higher LF
power than the controls, but the LF power during daytime or
of the whole 20 h were similar in panic disorder patients and
the controls (69). Haapaniemi et al. found that all the spectral
components of HRV were lower in the patients with Parkinson’s
disease (70). Endurance-trained men have an increased HF
power compared to untrained men over the 24 h (71).

Although in general, HRV analyses based on different lengths
of time windows are closely correlated (72, 73), the results from
different time windows are sometimes inconsistent. In the study
by Yeragani et al. HRV analysis of the sleeping hours showed
a higher relative LF power in the patients with panic disorder,
which was not found for the awakening hours or the entire 24 h
recordings (69). A study using short-term HRV analysis revealed
an increased LF power in panic disorder during awakening
time (67).

Considering the constant fluctuations of cardiovascular
autonomic function, long-term HRV parameters may be
more stable for describing the autonomic function in a
specific population. If feasible, long-term ECG recordings of
several hours to 24 h should be preferred over short-term
ECG recordings for the assessment of autonomic state of a
specific population.

Frontiers in Neurology | www.frontiersin.org 6 May 2019 | Volume 10 | Article 545

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Short- and Long-Term Spectral HRV Analyses

TABLE 2 | Advantages and disadvantages of short- and long-term spectral analysis of HRV.

Advantages Disadvantages

Short-term • Easy to perform

• Convenient to control the confounding factors

• Needs less time for data processing

• Can describe dynamic HRV change within a

short period

• Not stable owing to the constant fluctuation of heart beat intervals

• Cannot analyze ULF power

Long-term • A stable tool for HRV analysis

• Can analyze ULF power

• More expensive and time consuming

• Include more noise

• Influenced by activities and environmental factors

HRV, heart rate variability; ULF, ultra-low frequency component.

Description of Changes of Cardiac
Autonomic Function
Both short and long time windows have been applied in
evaluating changes across hours or months. In addition, short-
termHRV analysis is able to track dynamic changes within a short
time period such as several minutes.

Short-term HRV analysis has been widely used in tracking
changes. It can measure real-time cardiac autonomic alterations
during interventions. Thayer et al. computed 3.5–5min ECG
recordings during baseline, relaxation, and worry states. They
found that worry was associated with decreased HF power
(74). With short-term MTRS, Friedrich et al. assessed HRV
changes from the resting state to deep breathing, orthostasis, and
Valsalva maneuver in healthy controls, patients with Parkinson’s
disease, multiple system atrophy, or progressive supranuclear
palsy, and found the different responses in the autonomic
examinations of these distinct diseases (21). Short-term HRV
analysis has also been used to measure changes over hours,
such as circadian rhythm, changes during an acute disease
course, and response after a medication. For this application,
data segments of several minutes were selected from each hour,
and then the HRV variables of the selected data segments were
calculated as the representative results of the corresponding
hours. This approach has been used to measure the circadian
rhythm of HRV parameters in healthy subjects and shift workers,
as well as the abnormalities of the HRV circadian rhythm in
patients with hypertension (75–77). In addition to circadian
changes, short-term HRV analysis has been used to delineate
the cardiac autonomic function changes within several hours
after taking a medication or other interventions, including
levodopa, fingolimod, alcohol, and coronary angioplasty (78–81).
Comparing resting short-term HRV parameters at baseline with
those parameters several weeks, months, or even years later, it
could reflect the changes of cardiac autonomic function across
a long period. We have conducted a study which followed up
patients with Wilson’s disease for 3 years. We applied short-
term MTRS analysis on ECG and blood pressure recordings
during rest, deep breathing, orthostasis, and handgrip test. The
short-term MTRS analysis on various examinations showed
that cardiovascular autonomic function in Wilson’s disease was
generally stable across 3 years, though there were mild changes in
a few parameters (79).

The remarkable ability to track instant changes of HRVmakes
time-frequency analysis a rapidly expanding field of research.

Especially SPWVD and wavelet transform have an excellent
temporal resolution, and have been used in delineating transient
changes of HRV. In a study by Jasson et al., SPWVD continuously
followed the changes of LF and HF during an orthostatic tilt
test (52). In a recent study, SPWVD can be used to detect
drowsiness by analyzing the HRV of three driving databases
(82). Toledo et al. used wavelet transform to detect the instant
change of autonomic tone during thrombolysis in myocardial
infarction patients, at least one of the HRV parameters presented
remarkable changes during the reperfusion process, and the
infarct locations were related to the pattern of HRV parameter
changes (83).

Long-term HRV analysis is commonly used in the studies of

the circadian rhythm of cardiac autonomic function. In this type

of studies, hourly HRV parameters (either averaging consecutive
short segments within each hour or directly analyzing the
whole hour en bloc) were usually calculated on selected
hours of a 24 h holter recording. In addition, some studies
computed the averaged daytime and nighttime averaged HRV
parameters. In healthy subjects, LF power and LF/HF ratio
have higher values during the daytime and lower values during
the nighttime, while HF power has lower values during the
daytime and higher values during the nighttime (84, 85). On
the contrary, this circadian rhythm disappears in patients with
acute myocardial infarction or ischemic stroke (84, 86). In
addition to circadian rhythm, long-term HRV analysis can be
used to measure the change of cardiac autonomic function
caused by various interventions. Recently, we have applied
our long-term MTRS HRV analysis in the investigation of the
effects of fingolimod first dose on cardiovascular autonomic
function. We calculated hourly HRV parameters using the
long-term MTRS tool which employed an averaging approach
as mentioned before. That study has revealed that the LF
power decreased and HF power increased in the several hours
after initial fingolimod administration, and these changes were
consistent with heart rate alteration (40). Long-term HRV
analysis integrating heart rate information of a whole day is
a stable tool for the evaluation of the changes of cardiac
autonomic function across long time spans. Initiating fingolimod
treatment induces a transient alteration in cardiac autonomic
function; its chronic effect has been disclosed by long-term
HRV analysis. Simula et al. followed up the multiple sclerosis
patients treated with fingolimod for 3 months. The long-term
HRV analysis showed decreased absolute values of LF and HF
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powers compared with baseline, while the LF/HF ratio remained
unchanged (58).

Generally, for changes across a long time, these HRV analyses
based on different time windows yield similar results, such
as two studies of HRV changes induced by fingolimod across
several months in patients with multiple sclerosis, one of the
studies used a 10min finger arterial blood pressure recording
and the other study used 24 h Holter recording (87, 88).
However, we need to consider the effects of time window
length. Although both short-term and long-term HRV analysis
using the TRS algorithm showed that fingolimod increased
HF in patients with multiple sclerosis, only long-term MTRS
analysis showed that the changes of LF and HF were consistent
with other related HRV parameters. This comparison indicates
that long-term HRV analysis is more stable and can acquire
consistent results among related variables (40, 79). Again,
longer time windows obtain more stable results than short
time windows. Thus, for tracking changes of cardiovascular
autonomic function across minutes, only short-term HRV
analysis can be used, while long-term HRV analysis should be
preferred for depicting changes across hours to even longer time
span if feasible.

Predict the Patients’ Outcomes
Initially, only long-term HRV parameters were used for the
prediction of prognosis in patients with cardiovascular diseases
(89). Then gradually, a variety of time windows have been applied
in predicting the outcome in diverse diseases.

Short-term HRV analysis has been used in predicting
outcomes both in the short-run and the long-run. Pontet et al.
have identified LF calculated from a 10min ECG as a good
predictor of multiple organ dysfunction syndrome in the next few
days in septic patients (90). In another study on sepsis patients,
normalized HF power and standard deviation of the NN interval
(SDNN) were valuable predictors of in-hospital mortality (91).
For outcome prediction in the long-run, reduced short-term
LF power during controlled respiration is a strong predictor of
sudden death in the patients with chronic heart failure (92),
and multiple time and frequency domain parameters obtained
from a 2-min ECG recordings could predict end-stage renal
disease and chronic kidney disease related hospitalization in the
participants of the Atherosclerosis Risk in Communities (ARIC)
study (93).

Because of its stability, long-term HRV analysis has been
widely applied in the prediction of outcomes. Tsuji et al.
analyzed the 2 h of ambulatory ECG recordings of the subjects
of the Framingham Heart Study. After a 4-year follow-up,
SDNN, and all the frequency domain parameters were associated
with mortality, especially LF was the strongest predictor in
a multivariate model (94). Long-term HRV analysis of 24 h
ECG recordings performed in the acute, subacute, and chronic
stages of myocardial infarction can predict mortality (44, 95,
96). Twenty-four-hour long-term HRV analysis has also been
used to predict prognosis in patients with other cardiovascular
diseases such as sudden cardiac death and idiopathic dilated
cardiomyopathy (97, 98).

In addition to traditional frequency domain parameters,
power law relationship of HRV is a derivative approach of
long-term spectral HRV analysis. It describes the distribution of
the spectral characteristics of RRI oscillations, and is computed
by regressing the log (power) on the log (frequency) of HRV
between frequencies 10−2 and 10−4 (99–101). The slope of the
regression line is the most commonly used power law parameter
for risk stratification (101, 102). The slope of the power law
relation outperformed traditional long-term frequency domain
HRV parameters in patients with acute myocardial infarction and
elderly people (101, 102). Its performance in other populations
warrants further investigation.

Comparing the predicting performance of different time
windows is a critical issue, and previous studies have produced
inconsistent results. Lü et al. demonstrated that SDNN of a 5-
min ECG recording could predict the mortality of patients with
myocardial infarction, but was inferior to long-termHRV indices
(103). In contrast, Bigger et al. compared the power spectral
measures of HRV calculated from short ECG recording segments
(2, 5, 10, and 15min) with those from 24 h long-term recordings,
and concluded that both short and long-term HRV analyses
were excellent predictors of mortality in patients with myocardial
infarction (104). Malik et al. showed that HRV analysis of 24 h
predicted prognosis better than HRV analysis based on arbitrary
selected 1 h ECG segments in patients with myocardial infarction
(105), while Voss et al. found that HRV analysis calculated
from stationary daytime and nighttime 30min ECG recordings
provided at least a comparable prognosis prediction as 24 h
long-term analysis (106).

Although these results seem incompatible, we need to note
their methodological differences. Lü only used time domain
parameters and other studies used frequency domain with or
without time domain parameters. Voss et al. selected the most
stationary daytime and nighttime 30min ECG recordings, while
some other studies chose the segments arbitrarily. We can refer
to the researches on the abilities of office blood pressure and
ambulatory blood pressure monitoring to predict prognosis.
Ambulatory blood pressure monitoring predicts cardiovascular
outcomes better than office blood pressure (57, 107). Similarly,
long-term HRV analysis should be preferred for prediction of
prognosis if applicable.

SUMMARY

In medical research, HRV analysis has been used to describe
the autonomic function of specific populations, track the
change of autonomic function across various time spans, and
predict the patients’ outcome. Short-term HRV analysis is
easy to perform, with the prominent advantage that it can
track dynamic changes of cardiac autonomic function within
minutes. Recently developed time-frequency analysis further
enhances the ability of HRV analysis to track active changes
of cardiovascular autonomic function. The most predominant
advantage of long-term HRV analysis is its stability, it is a
stable tool for assessing the autonomic function, describe the
chronic autonomic function changes over hours or even longer
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time spans, and can reliably predict prognosis in patients with
cardiovascular diseases.
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