
TECHNOLOGY REPORT
published: 29 May 2019

doi: 10.3389/fgene.2019.00432

Frontiers in Genetics | www.frontiersin.org 1 May 2019 | Volume 10 | Article 432

Edited by:

Dariusz Mrozek,

Silesian University of Technology,

Poland

Reviewed by:

Hai Jiang,

Arkansas State University,

United States

Leyi Wei,

Tianjin University, China

*Correspondence:

Che-Lun Hung

clhung@mail.cgu.edu.tw

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 28 February 2019

Accepted: 24 April 2019

Published: 29 May 2019

Citation:

Zhang H, Hung C-L, Liu M, Hu X and

Lin Y-Y (2019) NCNet: Deep Learning

Network Models for Predicting

Function of Non-coding DNA.

Front. Genet. 10:432.

doi: 10.3389/fgene.2019.00432

NCNet: Deep Learning Network
Models for Predicting Function of
Non-coding DNA

Hanyu Zhang 1,2, Che-Lun Hung 3,4,5,6*, Meiyuan Liu 7, Xiaoye Hu 7 and Yi-Yang Lin 6

1College of Computing and Informatics, Providence University, Taichung City, Taiwan, 2 Labo MICS, École CentraleSup élec,

Université Paris Saclay, Gif-sur-Yvette, France, 3Department and Graduate Institute of Computer Science and Information

Engineering, Chang Gung University, Taoyuan City, Taiwan, 4Division of Rheumatology, Allergy and Immunology, Chang Gung

Memorial Hospital, Taoyuan City, Taiwan, 5 AI Innovation Research Center, Chang Gung University, Taoyuan City, Taiwan,
6Department of Computer Science and Communication Engineering, Providence University, Taichung City, Taiwan, 7 Affiliated

Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China

The human genome consists of 98.5% non-coding DNA sequences, and most of them

have no known function. However, a majority of disease-associated variants lie in these

regions. Therefore, it is critical to predict the function of non-coding DNA. Hence, we

propose the NCNet, which integrates deep residual learning and sequence-to-sequence

learning networks, to predict the transcription factor (TF) binding sites, which can then

be used to predict non-coding functions. In NCNet, deep residual learning networks

are used to enhance the identification rate of regulatory patterns of motifs, so that

the sequence-to-sequence learning network may make the most out of the sequential

dependency between the patterns. With the identity shortcut technique and deep

architectures of the networks, NCNet achieves significant improvement compared to

the original hybrid model in identifying regulatory markers.

Keywords: Non-coding DNA, residual learning, LSTM, sequence to sequence learning, deep learning

1. INTRODUCTION

Owing to the rapid development of the next-generation sequencing (NGS) technologies, various
scale sequencing data can be produced in days. Large amounts of omics data, including
genomics, transcriptomics, proteomics, and metabolomics, have been accumulated rapidly.
Biologists can utilize these datasets to extract knowledge (Mrozek et al., 2016; Małysiak-Mrozek
et al., 2018; Mrozek, 2018). Machine learning (ML) algorithms have been applied to various
bioinformatics applications (Mohri et al., 2012), resulting in significant improvement. Particularly,
ML algorithms such as linear and logistic regression, random forests, hidden Markov models,
Bayesian networks, Gaussian networks, and support vector machines are most commonly used
in gene function prediction.

Recently, deep neural networks (DNNs), also known as deep learning, have been proved to
be superior to traditional ML algorithms in most applications aimed at finding patterns from
training data and building models to make predictions (Hinton et al., 2012; Krizhevsky et al.,
2012). Typically supervised deep learning algorithms learn a model from a given labeled training
data, then the learned model is used to predict labels for unseen data (Mohri et al., 2012). As a
result of the rapid growth of hardware technologies in graphic processing units (GPU) by NVIDIA,
numerous deep neural networks have been proposed. In 2012, AlexNet (Krizhevsky et al., 2012),
the first deep convolutional neural network (CNN) approach using a GPU, was introduced for
image classification. Since then various new architectures have been proposed including VGG

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00432
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00432&domain=pdf&date_stamp=2019-05-29
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:clhung@mail.cgu.edu.tw
https://doi.org/10.3389/fgene.2019.00432
https://www.frontiersin.org/articles/10.3389/fgene.2019.00432/full
http://loop.frontiersin.org/people/637850/overview

Zhang et al. NCNet

(Simonyan and Zisserman, 2014), NiN (Lin et al., 2013),
Inception (Chen et al., 2017), ResNet (He et al., 2015), DenseNet
(Huang et al., 2016), and NASNet (Zoph et al., 2017), SENet (Hu
et al., 2017). The accuracy of top-1 classification in ImageNet
(Russakovsky et al., 2014) has been increased from 62.5%
(AlexNet) to 82.7% (NASNet-A). All of these networks are based
on a CNN. Among the recent deep learning network approaches,
another useful networks are recurrent neural networks (RNNs),
which have been successfully applied with tremendous success
(Graves et al., 2013; Bahdanau et al., 2014; Xu et al., 2015) such
as in speech recognition, neural machine translation, and image
caption generation. To improve the training efficiency of RNNs,
including long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) or a gated recurrent unit (GRU) (Cho et al.,
2014) has been proposed to control the gradient information
in the training procedures. LSTM is one of the most well-
known RNN units that has been applied in many deep learning
applications (Graves et al., 2013; Kalchbrenner et al., 2015;
Danihelka et al., 2016). LSTM can reduce the vanishing or
exploding gradient problem in RNNs with gates that are used to
memorize past information.

Since the successes are recognized by researchers, now
the deep learning approaches have been introduced into
bioinformatics domain to improve the performance of prediction
or classification tasks. For example, CNNs surpass previous
algorithms such as support vector machines or random forests
in predicting the protein binding and accessibility based on a
DNA sequence (Alipanahi et al., 2015). DeepSEA (Zhou and
Troyanskaya, 2015) is a useful tool to predict the chromatin
effects of sequence alterations with single nucleotide sensitivity.
It adopts CNN to learn a regulatory sequence code from large-
scale chromatin-profiling data. DeepBind (Alipanahi et al., 2015)
is another useful tool to discover the sequence specificities of
DNA- and RNA-binding proteins based on the patterns learned
from experimental data using CNNs. In 2016, Danil et al. (Quang
and Xie, 2016) proposed a DanQ model, similar to DeepSEA,
but as a hybrid framework integrating a CNN and bi-directional
LSTM RNN for predicting the noncoding function de novo from
a sequence. Kelley et al. introduced Basset (Kelley et al., 2016)
to serves as a tool to predict the accessibility of DNA sequences
in utilizing CNNs to learn the functional activities of DNA
sequences. More recently in 2017, Wei et al. proposed a DeepPSL
predictor (Wei et al., 2018) based on stacked auto-encoder
networks to learn high-level feature representations of proteins
to predict protein subcellular localization without handcrafted
features. Later in 2018, Wei et al. developed a DeepM6APred
(Wei et al., 2019) predictor, which is trained on features extracted
by a deep belief network together with handcrafted features by a
support vector machine, to improve the ability of predicting N6-
methyladenosine m6a sites. All the models above either create
a new method or outperform previous existing methods in
accomplishing the tasks.

In this work, we propose several enhancements of the
convolutional part in the hybrid framework proposed in DanQ
model. Particularly, we choose to employ the identity shortcut
technique proposed in ResNet as it significantly reduces the
difficulty in training a very deep neural network and successfully

FIGURE 1 | An example of one-hot encoded vector for a DNA fragment of

length 15-bp.

improves the performance of convolution networks. We confirm
that the depth of deep neural networks is crucial in improving
performance as deep architecture allows to build a better
representation of the underlying problem than a shallow one
does. We also investigate how reversing the arrangement of the
convolutional and recurrent part in the hybrid framework may
improve the performance.

In the remainder of this paper, we first introduce the materials
that we use and describe the proposed models in section 2 in
details. Then in section 3, we will report the results of evaluations
of the proposed models in comparison with a reimplemented
DanQ model for several metrics. In the same section, we also
carefully analyze and discuss the improvements obtained by
the proposed models. Costs in terms of time and space are
investigated as well for the proposedmodels. Finally, we conclude
in section 4 that the proposed models are valuable enhancements
which outperform the original hybrid model, and we also suggest
some possible work path in future.

2. MATERIALS AND METHODS

2.1. Features and Data
Our models use the segmented GRCh37 reference genome
as the data. Target TF bindings are computed from the
intersections of the ChIP-seq and DNase-seq peak sets, which are
uniformly processed from the ENCODE (The ENCODE Project
Consortium, 2012) and Roadmap Epigenomics (Roadmap
Epigenomics Consortium et al., 2015) data. Briefly, we use the
same dataset that were used in the DanQ (Quang and Xie,
2016) model. The complete dataset is divided into three non-
overlapping sets: training set (4,400,000 samples), validation set
(8,000 samples), and testing set (455,024 samples). The former
two are used in the training phase, whereas the latter one belongs
to the testing phase.

In this dataset, each 1,000-bp length input genome fragment
is transformed into a 1, 000×4 one-hot encoded vector, part (15-
bp) of an imaginary sample is shown in Figure 1. Components
from top to bottom correspond to nucleobases adenine (A),
cytosine (C), guanine (G), thymine (T), respectively. When one
of the nucleobases appears, the corresponding component is set
to one and the others are set to 0. And for each of the
1,000-bp genome fragments, 919 target TF bindings are labeled
as “True” or “False” in a certain order to denote their presences
or absences. An illustration of target TF bindings’ distribution for

Frontiers in Genetics | www.frontiersin.org 2 May 2019 | Volume 10 | Article 432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

the first 1,838 samples extracted from the training set is made in
the left of Figure 2, in which each column represents a sample
and each row represents a target TF binding, hence, a black spot
denotes the existence of the horizontally relevant target for the
vertically corresponding sample. We also give the probability
density of every target TF binding’s occurrence in the middle of
Figure 2, from which we may easily deduce that the dataset is
quite imbalanced, as majority of the targets are only observed in
<5% of the training samples. Moreover, more than half of the
targets never spread to 2.5% of the samples. And in the right of
the Figure 2, we plot the histogram of the number of targets that
are possessed by each sample in the training set, most of them
can have only a few of the target TF bindings. The testing set
has similar statistics as the training set does, therefore, we omit
them here.

2.2. NCNet Models
We derive three novel hybrid networks, aiming at enhancing
the performance of the hybrid DanQ model by employing
some techniques developed recently in deep learning. We
retain the main idea of introducing a bi-directional LSTM
network in the framework; however, wemodify the convolutional
part by applying deep residual CNNs, which have been
proven to be successful in many domains, such as image
classification and object detections. We also attempt to reverse
the arrangement of the recurrent part and convolutional part
in the hybrid framework. The comparisons show that our
models are either better in some aspects or comparable to the
DanQ model.

2.2.1. Re-implementation of DanQ Model

Our implementation uses Keras library of the latest version
(2.2.4) as well as the latest version (1.0.2) of Theano backend
together on Python 3.5.6 when writing this work. The original
DanQ model’s implementation is no longer compatible with
these more recent libraries. Hence, we reimplement the DanQ
model, and we shall call this model as r-DanQ model whenever
we refer to it in the rest part. Then we re-build the model with
the training set, and set the performance baseline with the testing

set in our environments, therefore, the results are not exactly the
same as in the original paper.

For completeness, we concisely describe the DanQ model,
an illustration of the model is given in Figure 3. The Input
layer regards the one-hot encoded vector of 1,000-bp genome
fragments as a linear sequence of fixed length 1,000 with 4
channels and feed them to the following regular convolution
layer to extract the local consecutive spatial features. And this
single convolution layer constitutes the convolutional part of the
hybrid framework. Then a max pooling layer is used in order
to reduce the length of sequence before connecting to the bi-
directional LSTM layer which constitutes the recurrent part in the
framework. The main reason for including a recurrent network
is that the regulatory grammar and repetitive combinations
extracted by the convolutional layer maybe recognized more
easily by the bi-directional LSTM because it can remember
important patterns seen previously in some sense. Finally the
recurrent layer is flattened and fully connected to a dense
layer prepared to fully connected to the multi-task output layer
of 919 nodes, each of them conducts a binary classification
for the corresponding target TF bindings. There are also two
dropout layers before and after the recurrent bi-directional LSTM
layer respectively, which are represented by dash-dot arrows in
the illustration.

2.2.2. NCNet-RR Model (Residual Then Recurrent

Network Model)

It is known that deep neural networks tend to build hierarchical
features along the layers (Goodfellow et al., 2016). Base features
are first constructed in the low-level convolution layers, based on
which more abstract features can be built by the high-level layers,
and thus, contain rich information. Furthermore, by stacking
layers, the network indirectly spans the length of the kernels so
that it can learn more local spatial information. However, it is
more difficult to train a deep network. For a classical CNN, as
shown in He et al. (2015), a shallow network yields better results
than a deep network because the latter one is more prone to
local optimization. However, the authors of the work found this
phenomenon could be partially overcome by adding a shortcut
connection linking from the beginning of a convolution block
directly to the end of the same block, then combining both

FIGURE 2 | Distribution of 919 target TF bindings for the first 1,838 samples extracted from the training set of population 4,400,000 (Left); Percentage of training

samples that possess the corresponding TF binding for each target (Middle); and a histogram of numbers of target TF bindings that training samples possess (Right).

Frontiers in Genetics | www.frontiersin.org 3 May 2019 | Volume 10 | Article 432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

FIGURE 3 | An illustration of the hybrid framework of DanQ model, (channels and nodes shown in the figure are not of exact number used in the model, but for

illustrative purpose; dash-dot arrows mean that there are dropouts).

information before flowing to the next block. Such a block is
shown in Figure 4A. Conventionally the shortcut is an identity
mapping and the combination method is addition, therefore, the
input and the output must be congruent. In such a case, the
classical flow of a convolutional layer only needs to learn the
optimal residual part of the target function, which facilitates the
learning phase and helps to enable a deeper network to work
much better. Such a block is called a residual block. This design
made the deep residual network win the first place in the ILSVRC
2015 classification task.

Hence, we borrow the idea to enhance the convolutional part
of the DanQ model with an expectation of a better result. We
replace the single convolution layer with a stack of two residual
blocks, in each block, the following layers are connected in order:
a 1D convolution layer, then a batch normalization layer and
a ReLU activation layer, finally another 1D convolution layer
with another batch normalization layer. And we keep the other
parts intact as in the r-DanQ model. We shall call this Residual
then Recurrent network model as NCNet-RR model whenever
we refer to it in the following text.

2.2.3. NCNet-bRR Model (Bottleneck Residual then

Recurrent Network Model)

However, a deeper network usually means more weights to train
than a shallow one with similar blocks does, which leads to
more time for both training and testing. This in turn limits
the number of layers that can be implemented in the former
model. To overcome this problem, we employ the “bottleneck”
design to reduce the input/output dimensions. In Figure 4B, an
illustration of the bottleneck design is given. The main idea is
to use three 1D convolutions instead of two, with the first and
last convolutions equipped with kernels of size one. These two
convolutions simply mean to reduce and restore the channels
for the middle convolution. In this way, weights are cut down in
favor of more layers. We also decide to reduce the kernel size for
the middle convolution compared to those in the r-DanQmodel,

as deep CNN may compensate the kernel size by its depth in
accessing contiguous local spatial data. With such a reduction, we
are able to stack 8 bottleneck residual blocks before connecting to
the Recurrent part which is kept the same. Whenever refer to this
bottleneck Residual then Recurrent network model later, we shall
call it NCNet-bRR model.

2.2.4. NCNet-RbR Model (Recurrent Then Bottleneck

Residual Network Model)

In previous models, the recurrent part mostly composed by a bi-
directional LSTM layer is the second part after the convolutional
part, as if it is trying to learn the grammar translated by the
convolutional transformations. However, it also makes sense to
directly learn the grammar embedded in the raw DNA fragments
by a recurrent network without a convolutional transformation.
In fact, the convolutional part can then be used to interpret these
globally learned patterns locally. As regions that can be accessed
by a convolution node is limited by the kernel size and depth,
important information may be left unknown simply because the
kernel is not big enough and/or the network is not deep enough,
whereas recurrent network looks into the data globally and may
avoid such defaults. Hence, the rationale behind the reversion of
the two network parts’ arrangement is that the recurrent part may
first recognize important sequences in the DNA fragments and
make the convolutional part combine these global-local spatial
information more easily. An analogy is that we may regard those
patterns found by recurrent part as “alphabet letters,“ then the
convolutional part combines them into meaningful “words.” We
also employs the bottleneck design of residual networks for the
convolutional part, and keep other part as intact as possible.
However, appropriate modification must be made to connection
part, for example, the bi-directional LSTM is fed directly with
the complete input sequences, no dropout is applied before the
recurrent part, and a global max pooling layer is used instead
of a flatten layer in connecting convolution layer to the dense

Frontiers in Genetics | www.frontiersin.org 4 May 2019 | Volume 10 | Article 432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

FIGURE 4 | Illustration of building blocks for the residual convolution network. (A) a residual building block. (B) a “bottleneck” residual building block.

layer. Andwewill refer to this Recurrent then bottleneck Residual
network model as NCNet-RbR in the rest of the paper.

2.3. Training Method
All the models are initialized with the built-in Glorot uniform
random initializer (Glorot and Bengio, 2010) in Keras, and then
the RMSprop algorithm (Tieleman and Hinton, 2012) is applied
to train the model in maximum 60 epochs with each mini-batch
composing 100 samples. And the validation set is used to early
stop the training phase if five consecutive epochs do not improve
the loss in prevention of overfitting.

2.4. Environments
Our implementations are written in python 3.5.6 with Keras
2.2.4 based on Theano 1.0.2. The experiments were carried
out on a computer with operating system Ubuntu 16.04.5-
x86_64 with kernel version 4.4.0-131-generic, running
on two Intel Xeon CPU E5-2620 v4 with 16 processors
clocking at 2.10 GHz with 2 MBytes L3 cache, 256 KBytes
L2 cache, 64 KBytes L1 cache, and 128 GBytes RDIMM
main memory using a clock speed of 2,400 MHz. In the
meanwhile, two NVIDIA Tesla P100 12GB GPUs cooperate
to accelerate the experiments. The v384.130 Nvidia-driver
is installed and the 7101 version of cuDNN (The NVIDIA
CUDA Deep Neural Network) library lays the foundation
to exploit the parallel computational power provided by the
GPUs mentioned.

3. RESULTS AND DISCUSSION

In this section, we present the results of evaluation of
performance with the three proposed models and compare them
to the performance of the r-DanQ model, which is used as
the baseline. All models are tested on the same testing dataset,
for each target, a separate confusion matrix is calculated, and
we first compute several conventional metrics to evaluate the
performance, such as accuracy, sensitivity, specificity, F1 score,
and area under the Receiver operating Characteristic curve
(ROC AUC) and Precision Recall curve (PR AUC). As there
are 919 targets in total, it would be reasonable to use an

weighted average for each of these metrics, where weights are
the percentage of existence of each corresponding targets in
training set after normalization, as it is meaningful to weight
less on extremely imbalanced datasets than more balanced ones,
see the middle part of Figure 2, notice that it is quite clear the
distributions of black spots which represent positive samples
are really sparse, and even the most balanced dataset’s positive
samples do not exceed 20%. Hence accuracy and specificity
are not very useful criterion as they may retain a high value
with a random predictor. Moreover, in our case, it is much
more important for the presence of the target TF bindings
to act as an indicator than the absence; hence, it is normal
to pay more attention to other criterion. However, even with
a weighted scheme, the sensitivity is much lower than the
other criterion for all models, again owing to the imbalanced
dataset. Therefore, we are mostly interested in how much the
enhancement in convolutional part and the reverse arrangement
of the framework improve the performance related to the r-
DanQ mode, so we set it as baseline whose scores are all 100%.
The resulting relative performance are listed in Table 1, which

generally outlines the comparison of performance among the
four models. A score <100% means the model actually performs
worse than r-DanQ model for the corresponding metric. In this
aspect, the NCNet-RR model is only comparable to the r-DanQ
model since it only outperforms r-DanQ model in ROC AUC
and PR AUC and declines a little in others, whereas the other
two models generally outperform the r-DanQ model except for
the specificity, at a little cost of <1% of which, they gain a
big improvement in sensitivity, which is 43.1% for NCNet-bRR
model and 78.5% for NCNet-RbRmodel. And the F1 score is also
naturally raised a lot as it essentially measures a balanced score of
specificity and sensitivity. In fact, ROC AUC and PR AUC are
two criterion usually considered more suitable when evaluating
binary classification tasks than the former four criterion. As we
use a sigmoid activation for the output layer, output may be
interpreted as the probability of presence for the target, therefore
they must be binarized according to a threshold to make a
prediction. Thus, the ROC curve and PR curve would reflect
how the other criterion would dynamically relate to the threshold
when it varies from 0 to 1, so AUCs are overall measurements,

Frontiers in Genetics | www.frontiersin.org 5 May 2019 | Volume 10 | Article 432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

TABLE 1 | Relative performance of NCNet models compared to r-DanQ model.

Models Accuracy(%) Sensitivity(%) Specificity(%) F1 score(%) ROC AUC(%) PR AUC(%)

NCNet-RR model 99.96 99.08 99.88 95.68 101.28 102.60

NCNet-bRR model 100.12 143.08 99.90 140.78 103.64 114.05

NCNet-RbR model 100.13 178.46 99.77 165.18 104.37 117.48

FIGURE 5 | Four typical target TF binding’s ROC (Up) and PR (Down) curves, with the mean ROC and PR curves (in the last column).

whereas the other criterion only report a point performance of
threshold being 0.5.

Since all NCNet models are preferred than r-DanQ model for
ROC AUC and PR AUC, we shall look into them closely. Several
individual target TF bindings’ ROC and PR curves are shown
row by row in Figure 5, respectively. These curves are quite
typical when the target’s corresponding dataset is not extremely
imbalanced. We also give average results for both ROC and PR
curves to the right of rows in the figure, respectively.

Generally speaking, deeper models performs better than
shallow ones, as we can see in figures of ROC curves that, NCNet-
bRR model and NCNet-RbR model performs roughly equal to
each other, and both better thanNCNet-RRmodel, which again is
slightly better than r-DanQ model. And for PR curves, we would
observe the same precedence again, but in cases, the NCNet-RbR
model could even beat the NCNet-bRR model by a reasonable
margin. Such a result implies that both bottleneck design and
small kernels in convolution blocks in trading for depth of the
network are valuable for enhancing the hybrid framework.

However, in order to consolidate this implication, only
four individual observations wouldn’t be enough, hence we
examine all individual targets in statistical ways. We calculate
the percentage of targets for which the NCNet models actually
outperform the r-DanQ model on the testing dataset and report
the ratio in Table 2. The result is consistent with Table 1.
Notice that both of NCNet-bRR model and NCNet-RbR model
perform worse than r-DanQ model on almost all targets by
the angle of specificity, but as we have observed that the
weighted average scores of specificity are eventually rather
close to r-DanQ model, it is not difficult to see that declines
in specificity for each target are negligible. In exchange, the
two models are able to perform better than r-DanQ model
on nearly or more than 60% of the targets in sensitivity.

Such a trade is quite ideal. The ratios get even higher for
the metrics of ROC AUC and PR AUC, by the two metrics,
all three NCNet models manage to improve the performance
on a large majority of the targets, especially for NCNet-bRR
and NCNet-RbR models, the ratios achieve as high as 95%.
Therefore, the observations firmly support the implication
mentioned above.

An interesting point is that NCNet-bRR model beat r-
DanQ model on more targets than the NCNet-RbR model
does on all metrics, yet NCNet-RbR model eventually has
higher weighted average scores than NCNet-bRR model on most
metrics. Therefore, visualizations of the extent of improvements
are realized by a series of scatter comparisons between
NCNet models and r-DanQ model for ROC AUC and PR
AUC, so that we may also investigate exactly how much
improvement are made for each target by NCNet models. See
Figure 6, points above the anti-diagonal segment represents
the targets on which the NCNet models outperform r-DanQ
model, further the point is vertically away from the anti-
diagonal segment, bigger the improvement is. In the figure
two overlapped histograms of relative improvements for ROC
AUC and PR AUC, respectively, are also given. We should
add a remark for those points near the left-bottom corner
for PR AUC as they stand for small values of AUC, and
we exclude those points if they are less than 0.2 for r-
DanQ model in calculating the histogram. Though NCNet-
bRR model possess more targets on which the performance
is better than r-DanQ model, it is clear now that, NCNet-
RbR generally improves more than NCNet-bRR model on
those targets that defeat r-DanQ model, especially for PR
AUC, which explains our interesting observation. And we
conjecture that passing data through max pooling layer
and dropout layer before to the bi-directional LSTM layer,

Frontiers in Genetics | www.frontiersin.org 6 May 2019 | Volume 10 | Article 432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

TABLE 2 | Percentage of targets that perform better with NCNet models than r-DanQ model.

Models Accuracy(%) Sensitivity(%) Specificity(%) F1 score(%) ROC AUC(%) PR AUC(%)

NCNet-RR model 20.67 13.71 31.12 14.80 76.71 67.46

NCNet-bRR model 54.52 64.74 3.92 65.29 98.59 95.42

NCNet-RbR model 52.56 58.54 2.94 58.76 92.49 94.89

FIGURE 6 | Scatter comparison to r-DanQ model for ROC AUC (Top) and PR AUC (Bottom) of NCNet-RR model (First), NCNet-bRR model (Second), NCNet-RbR

model (Third) and an overlapped histogram of relative improvements for the three NCNet models (Forth).

TABLE 3 | Time and Spatial cost of the models.

Models Model size Training time per epoch(h) Testing time(s)

r-DanQ model 375.4 MB ∼ 4 ∼ 1,704

NCNet-RR model 465.5 MB ∼ 19 ∼ 2,648

NCNet-bRR model 69.5 MB ∼ 2 ∼ 617

NCNet-RbR model 18.1 M ∼ 42 ∼ 6,790

some useful information may be lost, and which could
have been captured if raw data are directly fed to the
recurrent layer.

In addition to the comparisons of convolutional metrics
above, we also consider the cost in terms of both the time and
space, as listed in Table 3. The modification to the convolutional
part of NCNet-RR model is disappointed as it takes much
more time to train or to make prediction, and it requires more
space to store the model than the r-DanQ model, but only
brings limited improvements, which suggests that the depth
of convolution network is crucial to the performance. And
for NCNet-RbR model, the modification leads to even more
time than that NCNet-RR model needs, due to the width of
recurrent layer as we feed it with raw DNA fragments. However,
the improvements can not be ignored and the model size is
reduced to <5% of r-DanQ model. Therefore, it is suitable
for cases where storage is the main concern, and it remains
to be potential with developments in fast training recurrent

networks. On the contrary, the enhancement introduced in
NCNet-bRR model is quite successful in both cost of time and
space. Compared to r-DanQ model, it not only takes <20%
space to store the model, but also cuts down half of the time
to train the model or two thirds of the time to predict for
unseen samples. And take the similar performance as NCNet-
RbR model in consideration, it should be the best option in
most cases.

4. CONCLUSION AND PERSPECTIVES

In this work, we mainly explore the modification of the
convolutional part of the hybrid framework with a deep residual
network to enhance the performance. In conclusion, all the
proposed NCNet models outperform the r-DanQ model for
identifying the TF binding sites directly from noncoding DNA
fragments for metrics of ROC AUC and PR AUC, especially
the NCNet-bRR model and NCNet-RbR model. Therefore
their outputs are appropriate candidates as input data for the
following phases in DeepSEA to predict the chromatin effect
or variant functionality. We also confirmed that depth of the
convolution network is crucial for improving performance.
Since the bottleneck design and small kernels of the network
are effective techniques in trading for depth, they should be
considered whenever possible. Moreover, we make the most out
of the residual convolution network when it runs deep. Besides,
when the employment of bottleneck design and small kernels

Frontiers in Genetics | www.frontiersin.org 7 May 2019 | Volume 10 | Article 432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

may even gain us time and space if the whole hybrid framework
is connected appropriately. We also declare that it is possible to
reverse the arrangement of the convolutional and recurrent part
of the hybrid framework tomaintain similar performance or even
achieve better results, though the reversed model may take much
longer time to train or to predict when effectively reducing the
model size.

With the success of applying the idea of residual
convolution network in the hybrid framework, we believe
that other powerful convolution networks could play the
role as well as the residual network or even better in
principle. And this kind of thoughts may also applied
to the recurrent part by some enhancement too. Thus,
we suggest to test other combinations of convolution
network and recurrent network to make performance
improvements in future. Moreover, as the arrangement
of different part of the framework matters, one may
even add multiple convolutional and recurrent part to
the hybrid framework and try different arrangements
of them.

DATA AVAILABILITY

The datasets generated for this study can be found in ENCODE
(The 83 ENCODE Project Consortium, 2012), https://www.
encodeproject.org/ or DanQmodel (Quang and Xie, 2016); p.213
http://github.com/uci-cbcl/DanQ.

AUTHOR CONTRIBUTIONS

HZ and C-LH designed the models, experiments, and revised
the manuscript. HZ implemented the models. C-LH wrote the
Introduction section, whereas HZ wrote the remaining part of
manuscript text. Y-YL carried out these experiments. ML and XH
verified the experimental results.

ACKNOWLEDGMENTS

The research is supported by the Ministry of Science and
Technology under the grants MOST 107-2218-E-126-001 and
MOST 107-2218-E-029-001.

REFERENCES

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J.

(2015). Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol. 33,

831–838. doi: 10.1038/nbt.3300

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation

by jointly learning to align and translate. arXiv:1409.0473 [cs,

stat].

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking

atrous convolution for semantic image segmentation. arXiv:1706.05

587 [cs].

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On

the properties of neural machine translation: encoder-decoder approaches.

arXiv:1409.1259 [cs, stat].

Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., and Graves,

A. (2016). Associative long short-term memory. arXiv:1602.030

32 [cs].

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (Sardinia), 249–256.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,

MA: The MIT Press.

Graves, A., Jaitly, N., and Mohamed, A.-r. (2013). “Hybrid speech recognition

with Deep Bidirectional LSTM,” 2013 IEEE Workshop on Automatic Speech

Recognition and Understanding (Olomouc), 273–278.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. arXiv:1512.03385 [cs].

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly, N., et al. (2012).

Deep neural networks for acoustic modeling in speech recognition. IEEE Signal

Process. Mag. 29, 82–97. doi: 10.1109/MSP.2012.2205597

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2017). Squeeze-and-excitation

networks. arXiv:1709.01507 [cs].

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q.

(2016). Densely connected convolutional networks. arXiv:1608.069

93 [cs].

Kalchbrenner, N., Danihelka, I., and Graves, A. (2015). Grid long short-term

memory. arXiv:1507.01526 [cs].

Kelley, D. R., Snoek, J., and Rinn, J. L. (2016). Basset: learning the regulatory code

of the accessible genomewith deep convolutional neural networks.Genome Res.

26, 990–999. doi: 10.1101/gr.200535.115

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet

classification with deep convolutional neural networks,” in Advances in

Neural Information Processing Systems (Lake Tahoe), 1097–1105.

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv:1312.4400 [cs].

Małysiak-Mrozek, B., Baron, T., and Mrozek, D. (2018). Spark-IDPP: high-

throughput and scalable prediction of intrinsically disordered protein regions

with Spark clusters on the Cloud. Cluster Comput. 1–22. doi: 10.1007/s10586-

018-2857-9

Mohri, M., Rostamizadeh, A., Talwalkar, A., and Bach, F. (2012). Foundations of

Machine Learning. Cambridge, MA: The MIT Press.

Mrozek, D. (2018). Scalable Big Data Analytics for Protein Bioinformatics: Efficient

Computational Solutions for Protein Structures. Computational Biology.

Springer International Publishing.

Mrozek, D., Daniłowicz, P., and Małysiak-Mrozek, B. (2016). HDInsight4psi:

boosting performance of 3d protein structure similarity searching with

HDInsight clusters in Microsoft Azure cloud. Inf. Sci. 349–350, 77–101.

doi: 10.1016/j.ins.2016.02.029

Quang, D., and Xie, X. (2016). DanQ: a hybrid convolutional and recurrent deep

neural network for quantifying the function of DNA sequences. Nucleic Acids

Res. 44, e107–e107. doi: 10.1093/nar/gkw226

Roadmap Epigenomics Consortium, Kundaje, A., Meuleman, W., Ernst,

J., Bilenky, M., Yen, A., et al. (2015). Integrative analysis of 111

reference human epigenomes. Nature 518, 317–330. doi: 10.1038/nature

14248

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2014).

ImageNet Large Scale Visual Recognition Challenge. arXiv:1409.0575 [cs].

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv:1409.1556v6 [cs].

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA

elements in the human genome. Nature 489, 57–74.

Tieleman, N., and Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by

a running average of its recent magnitude. COURSERA 4, 26–30.

Wei, L., Ding, Y., Su, R., Tang, J., and Zou, Q. (2018). Prediction of human protein

subcellular localization using deep learning. J. Parallel Distributed Comput. 117,

212–217. doi: 10.1016/j.jpdc.2017.08.009

Wei, L., Su, R., Wang, B., Li, X., Zou, Q., and Gao, X. (2019). Integration

of deep feature representations and handcrafted features to improve

Frontiers in Genetics | www.frontiersin.org 8 May 2019 | Volume 10 | Article 432

https://www.encodeproject.org/
https://www.encodeproject.org/
http://github.com/uci-cbcl/DanQ
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.1007/s10586-018-2857-9
https://doi.org/10.1016/j.ins.2016.02.029
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1038/nature14248
https://doi.org/10.1016/j.jpdc.2017.08.009
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. NCNet

the prediction of N6-methyladenosine sites. Neurocomputing 324, 3–9.

doi: 10.1016/j.neucom.2018.04.082

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., et al. (2015).

Show, attend and tell: neural image caption generation with visual attention.

arXiv:1502.03044 [cs].

Zhou, J., and Troyanskaya, O. G. (2015). Predicting effects of noncoding

variants with deep learning–based sequence model. Nat. Methods 12, 931–934.

doi: 10.1038/nmeth.3547

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning

transferable architectures for scalable image recognition. arXiv:1707.07012 [cs,

stat].

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Zhang, Hung, Liu, Hu and Lin. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 9 May 2019 | Volume 10 | Article 432

https://doi.org/10.1016/j.neucom.2018.04.082
https://doi.org/10.1038/nmeth.3547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	NCNet: Deep Learning Network Models for Predicting Function of Non-coding DNA
	1. Introduction
	2. Materials and Methods
	2.1. Features and Data
	2.2. NCNet Models
	2.2.1. Re-implementation of DanQ Model
	2.2.2. NCNet-RR Model (Residual Then Recurrent Network Model)
	2.2.3. NCNet-bRR Model (Bottleneck Residual then Recurrent Network Model)
	2.2.4. NCNet-RbR Model (Recurrent Then Bottleneck Residual Network Model)

	2.3. Training Method
	2.4. Environments

	3. Results and Discussion
	4. Conclusion and Perspectives
	Data Availability
	Author Contributions
	Acknowledgments
	References

