
ORIGINAL RESEARCH
published: 29 May 2019

doi: 10.3389/fpsyg.2019.01254

Frontiers in Psychology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 1254

Edited by:

Annalisa Setti,

University College Cork, Ireland

Reviewed by:

Jennifer Campos,

University Health Network, Canada

Jason Chan,

University College Cork, Ireland

*Correspondence:

Lirong Yan

lirong.yan@whut.edu.cn

Specialty section:

This article was submitted to

Performance Science,

a section of the journal

Frontiers in Psychology

Received: 27 November 2018

Accepted: 13 May 2019

Published: 29 May 2019

Citation:

Yan F, Liu M, Ding C, Wang Y and

Yan L (2019) Driving Style Recognition

Based on Electroencephalography

Data From a Simulated Driving

Experiment. Front. Psychol. 10:1254.

doi: 10.3389/fpsyg.2019.01254

Driving Style Recognition Based on
Electroencephalography Data From a
Simulated Driving Experiment

Fuwu Yan 1,2, Mutian Liu 1,2, Changhao Ding 1,2, Yi Wang 1,2 and Lirong Yan 1,2*

1Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan

University of Technology, Wuhan, China, 2Hubei Collaborative Innovation Center for Automotive Components Technology,

School of Automotive Engineering, Wuhan University of Technology, Wuhan, China

Driving style is a very important indicator and a crucial measurement of a driver’s

performance and ability to drive in a safe and protective manner. A dangerous driving

style would possibly result in dangerous behaviors. If the driving styles can be recognized

by some appropriate classification methods, much attention could be paid to the

drivers with dangerous driving styles. The driving style recognition module can be

integrated into the advanced driving assistance system (ADAS), which integrates different

modules to improve driving automation, safety and comfort, and then the driving safety

could be enhanced by pre-warning the drivers or adjusting the vehicle’s controlling

parameters when the dangerous driving style is detected. In most previous studies,

driver’s questionnaire data and vehicle’s objective driving data were utilized to recognize

driving styles. And promising results were obtained. However, these methods were

indirect or subjective in driving style evaluation. In this paper a method based on objective

driving data and electroencephalography (EEG) data was presented to classify driving

styles. A simulated driving system was constructed and the EEG data and the objective

driving data were collected synchronously during the simulated driving. The driving style

of each participant was classified by clustering the driving data via K-means. Then the

EEG data was denoised and the amplitude and the Power Spectral Density (PSD) of

four frequency bands were extracted as the EEG features by Fast Fourier transform and

Welch. Finally, the EEG features, combined with the classification results of the driving

data were used to train a Support Vector Machine (SVM) model and a leave-one-subject-

out cross validation was utilized to evaluate the performance. The SVM classification

accuracy was about 80.0%. Conservative drivers showed higher PSDs in the parietal

and occipital areas in the alpha and beta bands, aggressive drivers showed higher PSD

in the temporal area in the delta and theta bands. These results imply that different driving

styles were related with different driving strategies and mental states and suggest the

feasibility of driving style recognition from EEG patterns.
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INTRODUCTION

Driving style generally refers to the way a driver prefers to or
habitually drives the car (Motonori et al., 2007; Martinussen
et al., 2014). It is based on a compilation of cognitive, emotional,
sensory and motor factors occurring over space and time
(Lin et al., 2006a; Yang et al., 2018). Rather than events that
happen at any given moment, the driving style, as describe by
internal states of the human, seems to be less informative than
the measurable driving behaviors. However, the driving style
does have some relationship with the driving behaviors. Previous
studies have suggested that the driving style can be classified into
three types: Aggressive type, Moderate type, and Conservative
type (Chu et al., 2017; Deng et al., 2017; Li et al., 2017; Palat
et al., 2019). Different driving styles can result in different kinds of
behaviors and actions of the drivers and vehicles. The Aggressive
driving style is usually associated with faster speed, acceleration,
and larger steering wheel rotation angle and angular velocity,
whereas a Conservative driving style is usually associated with
longer space headway, larger angle of the brake pedal, and longer
deceleration. The moderate driver drives with relative steady
motions that are neither too conservative nor too aggressive (Lu,
2011; Hooft van Huysduynen et al., 2018; Yang et al., 2018). In
general, driving style is affected by personality, and the physical
and mental state of the driver, and externally manifested as
driving behaviors. It is noted that the driver with dangerous
driving styles would not necessarily, but quite possibly, conduct
the dangerous driving behaviors, hence the driving style would
be a very important indicator and a crucial measurement
of a driver’s performance and ability to drive in a safe and
protective manner. If the driving styles can be recognized by
some appropriate classification methods, much attention could
be paid to the drivers with dangerous driving styles. The driving
style recognition module can be integrated into the advanced
driving assistance system (ADAS), which integrates different
modules to improve driving automation, safety and comfort, and
then the driving safety could be enhanced by pre-warning the
drivers or adjusting the vehicle’s controlling parameters when
the dangerous driving style is detected. Therefore, driving style
recognition has been intensively investigated in the field of
transportation and automobile safety.

Over the years, researchers have developed a number of
driving style recognition methods based on questionnaire data.
For example, a quantitative method based on the Driving
Behavior Questionnaire (DBQ) was proposed to classify driving
styles and investigate the distinction among three aberrational
driving behaviors, i.e., violations, errors and lapses. Violations
are the intended acts that a person is most likely aware of, such
as speeding or running a red light. People know clearly the
consequences but still conduct the violations intentionally. Errors
are acts that fail at the planned and intended outcome due to
misjudgments, such as abrupt braking. Lapses are unintentional
behaviors performed because of poor attention or memory
deficits, such as missing the motorway exit (Reason et al.,
1990). Lajunen and Summala (1995) constructed the Driving
Skill Inventory(DSI) to measure the skill and safety-motive
dimensions (transient motivational, personality and attitudes

toward safety and traffic) in drivers’ self-assessments of their
driving styles and abilities. Furthermore, Motonori et al. (2007)
developed the Driving Style Questionnaire(DSQ) to specifically
classify driving styles and demonstrated validity using a car-
following experiment. A hybrid model based on DBQ and DSI
was proposed to classify drivers into sub-groups based on their
driving styles and driving skills (Martinussen et al., 2014). Deng
et al. (2018) applied DBQ-based driving styles to curve safety
speed model to determine the theoretical curve safe speed, and
the results indicated the new model could not only prevent
the risks of rollover and sideslip during turning, but also could
adapt to the driver’s driving style. Although promising results
were obtained, the questionnaire investigation was prone to the
subjective factors of the researchers and the participants. In
addition, this approach could not provide dynamic real-time
identification and prevention of dangerous behaviors and hence,
is not useful during actual driving.

Objective driving data such as vehicle speed and acceleration
were also utilized as the data sources for driving style recognition.
In actual driving experiments, these driving data were collected
by in-vehicle sensors, transported by the vehicle’s Controller Area
Network (CAN)-Bus, and then analyzed to identify driving style
by using the pattern recognition method (Choi et al., 2007; Ly
et al., 2013). Due to the complexity and low repeatability of
the actual driving experiment, a number of researchers chose
to conduct experiments on simulated driving platforms (Hooft
van Huysduynen et al., 2018; Yang et al., 2018). In contrast
to the questionnaire studies, driving style recognition based
on objective data is not prone to subjectivity, and the online
real-time analysis can be achieved. But these objective driving
data mostly reflect the behaviors of the vehicle, which are the
external or resultant outcome of the driver’s driving style. As
noted above, dangerous driving styles are more likely to trigger
dangerous behaviors, but not necessarily. The purpose of driving
style recognition is to evaluate the possibility of the occurrence
of dangerous driving behaviors and then introduce prevention
measures. It may be insufficient to build up the temporal and
causal relationship between driving behavior and driving style
only by using objective driving data. More direct and precise
evaluation of the driver’s state might be helpful.

A number of studies have utilized electroencephalography
(EEG) to identify dangerous driving states, such as fatigue
and distraction (Chuang et al., 2015; Hajinoroozi et al., 2016;
Belakhdar et al., 2018; Guo et al., 2018; Ma et al., 2018), driving
behaviors, such as emergency braking (Haufe et al., 2011),
speeding (Lutz et al., 2008) and turning (Taghizadeh-Sarabi et al.,
2013), and driving styles, such as car-following and obstacle-
dodging (Lin et al., 2006b; Yang et al., 2018). Specifically, some
researchers classify and assess the driver’s behavior and style
based on the amplitude and power spectral density information
of α, β, δ, and θ bands of EEG signals. For example, Lin et al.
(2006b) used the power spectrum analysis to investigate the
correlation between driving style and brain activities revealed by
EEG, and found power difference at 10Hz and 20Hz between
aggressive and conservative drivers. Taghizadeh-Sarabi et al.
(2013) extracted the absolute power of these four bands by
Fast Fourier Transforms (FFT) to assess the driver’s cognitive
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responses when turning left and right. Yang et al. (2018)
combined the amplitude and the power spectral density to
classify the driver’s driving skill and driving style. As mentioned
above, driving style is related with cognitive, emotional, sensory
and motor factors, and EEG patterns across different brain areas
can effectively reflect these factors. Compared with the moderate
and conservative drivers, the drivers with the aggressive driving
styles had more intensive emotion fluctuations and difficulties
in emotion regulation (Trógolo et al., 2014; Zhang et al., 2016),
which was associated with the delta and theta power in the
temporal area (Knyazev et al., 2008, 2009). The aggressive drivers
were more likely to engage in aberrational driving behaviors
(Reason et al., 1990; Martinussen et al., 2014; Lee and Jang, 2017),
which was resultant from the poor cognitive states and cognitive
failures (Wickens et al., 2008) and related with the theta/beta
ratio of the EEG signal in the frontal area (Angelidis et al., 2018;
Puma et al., 2018). Besides, some studies suggested that high
beta power in the parietal area was associated with the pro-
active driving state, which was related with a better anticipation
and active use of ongoing information, and a more proactive
planning of future responses (Tao et al., 2010; Garcia et al., 2017;
Getzmann et al., 2018). Compared with the traditional driving
data and the questionnaire data, EEG shows several advantages
in driving style recognition. Specifically, EEG data has a time
resolution of milliseconds, allowing for more accurate real-time
classification; EEG can provide physiological data and emotional
data, without disturbing driving behaviors (Yang et al., 2018).
More importantly, EEG data is not only an objective, but also
a direct reflection of the driver’s cognitive status, which can be
predictive of future unsafe driving behaviors. Therefore, EEG has
great potential in driving style recognition.

The aim of this study was to develop a driving style
recognition method based on EEG data. A simulated driving
system was constructed, the driving data and the EEG data
were collected synchronously and then analyzed by machine
learning algorithms. Our results demonstrated the strong
correlations between driving style as measured by driving data
and EEG patterns.

MATERIALS AND METHODS

Experiment and Participants
Participants
Twenty-three healthy participants with a driver’s license, 21
males and 2 females, with a mean age of 23.6 ± 1.6 years and
average driving experience of 2.9 ± 1.7 years, were recruited
and participated in the simulated driving experiment. This
study was carried out in accordance with the recommendations
of the ethical review committee of Wuhan University of
Technology with written informed consent in accordance with
the Declaration of Helsinki from all participants. The protocol
was approved by the ethical review committee of Wuhan
University of Technology.

Driving Scenario and Task
The driving scenario was designed based on Unity 3D (Unity
Technologies, USA). Previous studies demonstrated the coupling

between turning and driving styles (Ly et al., 2013; Choi
et al., 2017; Deng et al., 2018), brain dynamics (Garcia et al.,
2017). Hence a seven-kilometer circular road containing two
consecutive S-shaped curves, two curved roads with a radius of
20m and seven other curves in a montanic scenery was applied
(Figure 1A). There was a left or right turn sign before each
curve and some simulated vehicles were placed on the road. Each
participant was asked to start a simulated compact car at the
starting line and drive along the circular road. Four laps of driving
was taken as a driving task and each participant completed two to
four tasks. After each task, they took a break for a few minutes
to avoid driving fatigue. The participants were asked to pay
attention to the traffic signs and the real-time speed of the vehicle,
and drive according to their driving habits and styles in daily life.
The speed limit was 60 km/h. The driving task was performed
using a simulated driving system including a driving simulator
(G29, Logitech Inc., Fremont, CA) consisting of a steering wheel,
a full-size driving seat, a stick shift and three pedals, and a 50-
inch screen (Figure 1B). All participants were given at least half
an hour to adapt to the simulator and the driving task to ensure
they were all proficient in driving in the simulator.

Data Acquisition
When the participants were performing the driving task, their
EEG signals as well as the state of the steering wheel were
collected. EEG signals were recorded continuously using a 16-
channel (Fz, Cz, Pz, T6, T5, C4, C3, F8, T4, T3, O2, O1, P4,
P3, Fp1, Fp2) Biopac MP150 system (Biopac, Goleta, USA)
with a 10–20 system layout at a sampling rate of 1000Hz. The
left earlobe was used as the reference. A photoelectric encoder
was tightly coupled with the steering wheel by a synchronous
belt so that the rotation of the steering wheel drove the axle
of the photoelectric encoder to rotate synchronously. A circuit
based on the photoelectric encoder was developed using Arduino
microcontrollers to acquire the steering wheel’s angular velocity,
rotation angle and angular acceleration at a transmission rate
of 128000Bd. During driving, the number of collisions and the
number of lane excursions were recorded.

Data Analysis
A driving style recognition schema was proposed (Figure 2). The
schema contained two sections: driving performance data-based
recognition and EEG-based recognition. In section Introduction,
the driving data was considered as the measure for classifying
the driving style and the participants were divided into different
groups. In section Materials And Methods, the EEG data,
combined with the classification results of section Introduction
as labels, were utilized to establish the Support Vector Machine
(SVM) model to recognize the driving styles.

Driving Data Analysis
Seven variables including the steering wheel’s rotation angle,
angular velocity, angular acceleration, total driving time, vehicle
velocity and the number of accidents (collision) and aberrations
(lane excursion) were selected as the driving data for further
analyses. All participants completed the violation-item and
error-item of the DBQ, and were divided them into three
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FIGURE 1 | Simulated driving system. (A) driving track, (B) simulated driving platform. The participant has provided written consent for the publication of this image.

FIGURE 2 | Flow chart of the EEG-based driving style recognition.
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driving style groups according to their scores. Firstly, the seven
key variables of the 75 tasks were averaged and standardized
using the Z-score method. These 7-dimension Z-scores were
reduced to 2-dimensions using Principal Component Analysis
(PCA) (Jolliffe and Cadima, 2016). A low-dimensional matrix
ML (ML∈R

75×2) was obtained and then clustered by the
K-means clustering method. The K-means algorithm is an
unsupervised learning method aiming to classify n samples into
K clusters by minimizing the squared error over all K clusters
(Bolin et al., 2014; Yang et al., 2018). The K-means algorithm can
be formulated as follows.

(1) Initialization. Specify the number of clusters K, form the
initial cluster centroids (µk as the centroid for cluster Ck)
either by using random selection or through pre-specification
of cluster centroids by the researcher, and assign each
observation to the nearest cluster.

(2) Calculate the squared Euclidean distance (ESS) (Equation 1)
based on the current cluster.

ESS=

K
∑

k=1

∑

Xi∈Ck

‖Xi−µk‖
2 (1)

where Xi is a observation of cluster Ck.

(3) Reassign each observation to the cluster whose centroid is
the nearest.

(4) Update the cluster centroids based on the new
observation clusters.

(5) Repeat steps 2–4 until there is no further reassignment of the
observations (i.e., each observation is in the cluster with the
nearest centroid and ESS is minimized).

The number of clusters K can either be specified according to
the experience of the researcher, the priori knowledge of the data,
or the clustering quality assessment indicators such as Calinski-
Harabasz score (Łukasik et al., 2016), Silhouette Coefficient
(Luan et al., 2012), etc. We utilized Calinski-Harabasz score and
computed it as follows:

s (k)=
tr(Bk)

tr(Wk)

m− k

k− 1

where m is the number of training samples, k is the number of
clusters, Bk is the covariance matrix between clusters, Wk is the
covariance matrix within a cluster, tr is the trace of matrix.

K that maximizes the criterion is chosen.

EEG Data Analysis
Firstly, all EEG data was denoised and preprocessed. Secondly,
Fast Fourier transformation (FFT) and the Welch method
were utilized to extract the EEG features, and then Linear
Discriminant Analysis (LDA) was utilized to generate the core
EEG features. These core EEG features were utilized to train the
SVMmodel. Finally, the classification performance was evaluated
using a leave-one-subject-out validation method. The detailed
procedures are as follows.

(1) EEG data preprocessing
Because EEG signals are weak and easily contaminated by eye

movements and muscular tension, it is necessary to remove the
noise from the original signals. EEGLAB (Delorme and Makeig,
2004) and MATLAB (v.2016a; MathWorks, USA) were utilized
for preprocessing.

The whole EEG data acquired in each task was down-sampled
to 512Hz. Because the driver’s driving state is closely related to the
four EEG frequency bands: delta (δ: 0.5–4Hz), theta (θ: 4–8Hz),
alpha (α: 8–13Hz), and beta (β:13–30Hz) (Khushaba et al., 2011;
Li et al., 2012; Lin et al., 2014; Ma et al., 2018), a bandpass Finite
Impulse Response (FIR) filter (0.5–30Hz) was applied to the
EEG data and the information in these four frequency bands was
retained. Independent Component Analysis (ICA) was utilized
to decompose the filtered EEG data into several components
and the components caused by artifacts such as eye movements,
blinking and muscular tension were identified based on ADJUST
(Mognon et al., 2011), an EEGLAB plugin, and then removed
(Akhtar et al., 2012; Ma et al., 2018). The bad channels were
detected and replaced by the average of the two neighboring
channels. Finally, the EEG data was re-referenced to the average
reference to reduce the forward model error of each channel
and baseline corrections were performed to eliminate the noise
caused by spontaneous brain activity.

(2) EEG features extraction
The features of the EEG data in the frequency domain were

extracted. The amplitude of the EEG signal in δ, θ, α, and β bands
were obtained by using FFT, and the power spectral densities
(PSDs) in these four bands were estimated using the Welch’s
method (Upadhyay et al., 2012).

Each participant’s FFT and PSD features were integrated
to generate an 8-dimensions feature vector, along with the
driving style label. Then, the feature vectors were reduced to 2-
dimensions using LDA for simplifying calculations in the next
SVM training process and improving the final classification
accuracy. Unlike PCA, LDA is a supervised dimension reduction
method which needs the labeled information. It projects the
original data into a low-dimensional space by maximizing the
between-class distance and minimizing the within-class distance
(Martinez and Kak, 2001; Yuan and Tao, 2015).

(3) EEG data classification via SVM
SVM is a supervised learning model that is commonly used

for pattern recognition, classification, and regression analysis.
The core content of SVM is creating hyperplanes that separate
the data points of a binary classification problem. Assuming
train data in the form of

{(

S1,y1
)

,
(

S2,y2
)

,. . .,
(

Sn,yn
)}

, where
Si is a train sample and yi is the label of Si, yi∈ {−1,1}. In
this SVM model, all labels were acquired based on the driving
data clustering (section Driving Data Analysis), where “−1”
represented “the Conservative driving style” and “1” represented
“the Aggressive driving style”. The separating hyperplane can be
formulized as:

W · S+b=0 (2)

where W is the vector of the separating hyperplane, and
b

‖W‖
is offset of the separating hyperplane from the origin along
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vector W. The linear SVM utilizes two parallel hyperplanes
(W · S+b=± 1) to divide the train data points into two groups.
The train data points in the two parallel hyperplanes are
called “support vector.” The distance between the two parallel
hyperplanes is 2

‖W‖
, which is called “margin.” To search for a best

separating hyperplane, the “margin” needs to be maximized, or
‖W‖2 needs to be minimized as follows:

min
1

2
‖W‖2 (3)

subject to yi (W·Si+b)≥ 1 i=1,2,. . .,n (4)

The Lagrange method is utilized to obtain W and b as
the key parameters of the optimal hyperplane. For multi-
classification problems, the core idea is to transform a single
multiple classification problem into multiple binary classification
problems (Duan and Keerthi, 2005), there are two methods:
(1) One-Versus-Rest (OVR), Building binary classifiers that
distinguish between one of the labels and the rest; (2) One-
Versus-One (OVO), Building binary classifiers that distinguish
between every pair of classes. In this paper, we used OVO
to perform the classification. A leave-one-subject-out cross
validation and the F-measure were utilized to evaluate the
performance of the classification.

RESULTS

Driving Data Classification Results
No instances of simulator sickness were observed in our
experiments. The 23 participants completed 75 driving tasks and
hence 75 samples of driving data and EEG data were acquired.
The 7-dimension feature vectors of the driving data, i.e., steering
wheel rotation angle, angular velocity, angular acceleration, total
driving time, vehicle velocity, the number of collisions and the
number of lane excursions, were calculated and processed by
PCA and reduced to 2-dimensions. The Calinski-Harabasz score
was utilized to determine the optimal number of clusters, which
was 3 for our dataset (Figure 3). In addition, previous studies
have suggested that driving style can be classified into Aggressive
type, Moderate type, and Conservative type (Chu et al., 2017;
Deng et al., 2017; Li et al., 2017; Palat et al., 2019), accordingly
in this paper K is 3. Three random samples were selected as the
initial clustering centroids and the samples were clustered into
three driving style groups via the K-means algorithm (Figure 4).

The mean values and standard deviations of the driving data
for each group were calculated (Table 1) and the three groups
were referred to as the Aggressive group, Moderate group and
Conservative group. The analysis of variance (ANOVA) indicated
that there was significant difference of the driving data among
three groups of different driving styles (Table 1, all P < 0.01).
The pairwise differences were all significant. The Aggressive
group had the most accidents and aberrations including lane
excursion and collision, and the largest rotation angle, angular
velocity, angular acceleration of the steering wheel and faster
vehicle velocity. The Conservative group had the least number
of accidents and aberrations, and the smallest rotation angle,

FIGURE 3 | Calinski-Harabasz score corresponding to different number of

clusters.

FIGURE 4 | Results of K-means based on the driving data.

angular velocity, angular acceleration, and the vehicle velocity.
The Moderate group had mid-level parameters between the
Aggressive and Conservative groups.

We compared the clustering of driving behavior results with
the questionnaire results and the driving style labels of 49 samples
were consistent with the participants’ self-reports, including 11 in
the Aggressive group, 18 in the Conservative group and 20 in the
Moderate group.

EEG Characteristics of Three Groups With
Different Driving Styles
The averaged PSDs of EEG data in each group are shown
in Figure 5. Generally, the PSDs in all groups decreased with
an increase of the frequency, except for the Conservative
group, where there was an obvious bump around 15Hz. The
PSD was the highest in the Aggressive group and lowest in
the Conservative group, i.e., Aggressive group > Moderate
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TABLE 1 | Driving variables of the three groups.

Driving variable Aggressive

group (n = 19)

Moderate

group (n = 25)

Conservative

group (n = 31)

F/P/ η2 Aggressive

vs.

moderate

Aggressive

vs.

conservative

Moderate

vs.

conservative

Velocity(Km/h)** 68.2 ± 4.1 62.2 ± 3.3 51.4 ± 2.1 118.2/0.000/0.77 0.000 0.000 0.000

Total time of

driving(s)*

430.3 ± 18.6 428.3 ± 15.2 499.5 ± 9.6 7.0/0.002/0.15 0.598 0.001 0.000

The number of

lane excursions**

10.0 ± 4.4 4.8 ± 3.0 1.8 ± 2.1 40.9/0.000/0.53 0.000 0.000 0.000

The number of

collisions**

4.6 ± 1.9 2.8 ± 1.5 0.7 ± 0.9 47.6/0.000/0.57 0.001 0.000 0.000

Angular velocity of

steering

wheel(rad/s)**

1.96 ± 0.38 1.49 ± 0.18 1.15 ± 0.19 61.8/0.000/0.63 0.000 0.000 0.000

Angular

acceleration(rad/s2 )**

1001.1 ± 167.5 697.6 ± 148.7 413.5 ± 118.8 101.8/0.000/0.74 0.000 0.000 0.000

Rotation angle of

the steering

wheel(◦)**

48.8 ± 12.6 32.2 ± 5.7 26.2 ± 2.5 57.6/0.000/0.62 0.000 0.000 0.000

*P < 0.01 **P < 0.001

FIGURE 5 | Power spectrum of different driving styles. An obvious bump can

be observed in the Conservative group around 15Hz.

group > Conservative group between 0.5–7Hz (Band 1), and
Conservative group > Moderate group > Aggressive group
between 7–21Hz (Band 2), and Moderate group > Conservative
group >Aggressive group between 21–30Hz (Band 3).

The detailed PSD information of all the electrodes in these
bands in the three groups are listed in Table 2 and the scalp
topography is shown in Figure 6. In Band 1, PSDs were
significantly different among the three groups in the parietal (all
P < 0.05, η2 > 0.11), temporal (all P < 0.05, η2> 0.10) and left
frontal areas (P < 0.01, η2 > 0.37). The Aggressive group had
higher Band 1 power density in the parietal (except C4, all P <

0.05), temporal (all P < 0.05) and the left frontal areas (P < 0.01)
compared with Conservative group. There existed PSD difference

in the parietal (all P < 0.05) and left frontal areas (P < 0.01)
between the Aggressive and Moderate groups. In Band 2, PSDs
were significantly different among the three groups in the parietal
(all P < 0.05, η2 > 0.11) and occipital areas (P < 0.05, η2 >

0.11). The Conservative group had the significantly highest PSD
values. In band 3, PSDs were significantly different among the
three groups in left temporal area (P < 0.01, η2 = 0.13), and the
Moderate group clearly had the significantly highest PSD values.

EEG Data Classification Results
The original 8-dimension EEG feature vectors were reduced to 2-
dimensions by using the LDAmethod, and then used as the input
data to train the SVM model. The classification performance
evaluated by the leave-one-subject-out cross validation approach
is listed in Table 3. The overall accuracy was 80.0%, the precision
and recall for the Aggressive group were 83.3 and 78.9%
respectively, for theModerate group 70.0 and 84.0%, respectively,
and for the Conservative group 88.9 and 77.4%, respectively. The
F-measures of the Aggressive group, the Moderate group and the
Conservative group were 81.0, 76.4, and 82.8% respectively.

We compared the SVM classification results with the
questionnaire results. The driving style labels based on SVM of
47 samples were consistent with the participants’ self-reports,
including 9 in the Aggressive group, 16 in the Conservative group
and 22 in the Moderate group.

DISCUSSION

In this study we presented a driving style recognition schema
based on a combination of EEG and driving behavioral data.
The driving data included the velocity, the total driving time,
the number of lane excursion, the number of collision, the
rotation angle, the angular velocity and the angular acceleration
of the steering wheel, which mainly reflected the driving behavior
of the participants. EEG data mainly reflected the cognitive
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TABLE 2 | Power spectral densities of three groups in three frequency bands.

Band Channel Aggressive Moderate Conservative F/P/η2 Aggressive

vs.

moderate

Aggressive

vs.

conservative

Moderate

vs.

conservative
(dB) (dB) (dB)

(x ± s,n=19) (x ± s,n=25) (x ± s,n=31)

Band 1 Fz −60.7 ± 2.1 −62.6 ± 1.4 −58.1 ± 4.1 1.6/0.20/0.04 - - -

F8 −59.4 ± 2.3 −59.1 ± 3.1 −61.6 ± 1.8 0.7/0.51/0.02 - - -

Cz −56.9 ± 4.0 −61.8 ± 1.5 −62.6 ± 1.3 13.0/0.00/0.26 0.00 0.00 0.15

Pz −59.5 ± 2.7 −61.2 ± 2.5 −57.6 ± 4.1 0.5/0.60/0.01 - - -

T6 −56.3 ± 4.1 −58.7 ± 3.1 −59.7 ± 2.8 2.1/0.14/0.05 - - -

T5 −51.9 ± 5.7 −54.4 ± 4.7 −58.3 ± 2.4 3.7/0.03/0.10 0.27 0.02 0.01

C4 −53.3 ± 4.8 −56.8 ± 3.9 −54.0 ± 5.1 4.6/0.01/0.11 0.00 0.75 0.31

C3 −60.1 ± 2.7 −62.9 ± 1.5 −63.2 ± 1.1 9.5/0.00/0.21 0.01 0.00 0.40

T4 −54.9 ± 3.9 −55.6 ± 4.2 −61.4 ± 1.7 4.3/0.02/0.11 0.84 0.00 0.27

T3 −54.4 ± 4.7 −55.9 ± 3.3 −60.7 ± 2.3 5.9/0.00/0.14 0.34 0.00 0.01

O2 −59.8 ± 2.3 −61.9 ± 1.6 −61.9 ± 1.7 1.3/0.28/0.03 - - -

O1 −57.8 ± 2.7 −59.2 ± 1.8 −58.5 ± 3.0 0.6/0.55/0.02 - - -

P4 −59.0 ± 3.3 −62.4 ± 1.9 −63.2 ± 1.4 13.2/0.00/0.27 0.04 0.00 0.19

P3 −61.4 ± 2.9 −63.9 ± 1.8 −63.7 ± 2.3 4.7/0.01/0.12 0.01 0.02 0.79

Fp2 −58.0 ± 2.6 −60.0 ± 2.6 −60.3 ± 2.2 1.0/0.38/0.03 - - -

Fp1 −57.0 ± 2.5 −60.5 ± 2.1 −61.4 ± 1.2 21.1/0.00/0.37 0.00 0.00 0.19

Band 2 Fz −68.5 ± 0.5 −68.6 ± 0.2 −68.2 ± 0.6 1.1/0.34/0.03 - - -

F8 −68.4 ± 0.5 −68.3 ± 0.7 −68.3 ± 0.5 0.2/0.79/0.008 - - -

Cz −67.0 ± 1.1 −67.4 ± 0.2 −65.8 ± 1.8 5.5/0.01/0.13 0.04 0.11 0.00

Pz −67.9 ± 1.3 −65.3 ± 3.0 −60.8 ± 3.5 4.5/0.01/0.11 0.47 0.00 0.00

T6 −68.7 ± 1.0 −68.6 ± 0.2 −68.3 ± 0.6 2.1/0.13/0.06 - - -

T5 −67.5 ± 1.0 −67.6 ± 0.6 −67.7 ± 0.8 0.8/0.46/0.02 - - -

C4 −68.2 ± 0.9 −65.9 ± 3.1 −67.4 ± 1.9 1.6/0.22/0.04 - - -

C3 −68.2 ± 2.0 −68.6 ± 0.3 −67.5 ± 1.7 1.1/0.35/0.03 - - -

T4 −67.8 ± 1.3 −68.0 ± 1.1 −68.2 ± 0.5 0.8/0.46/0.02 - - -

T3 −67.8 ± 0.6 −66.2 ± 2.0 −67.7 ± 1.4 0.9/0.42/0.02 - - -

O2 −68.1 ± 0.5 −68.1 ± 0.2 −68.0 ± 0.4 0.4/0.64/0.01 - - -

O1 −63.5 ± 3.7 −68.2 ± 0.3 −62.4 ± 3.3 5.2/0.01/0.13 0.26 0.00 0.00

P4 −69.3 ± 0.5 −69.0 ± 1.2 −66.8 ± 2.7 2.1/0.13/0.06 - - -

P3 −69.2 ± 2.9 −71.9 ± 0.4 −68.1 ± 3.4 1.2/0.29/0.03 - - -

Fp2 −65.4 ± 3.0 −65.2 ± 3.2 −66.2 ± 2.6 0.2/0.84/0.005 - - -

Fp1 −68.3 ± 0.4 −68.4 ± 0.2 −68.2 ± 0.5 1.2/0.32/0.03 - - -

Band 3 Fz −70.8 ± 0.1 −70.7 ± 0.2 −70.5 ± 0.5 5.0/0.01/0.12 0.02 0.01 0.07

F8 −70.7 ± 0.1 −70.6 ± 0.2 −70.6 ± 0.4 1.2/0.30/0.03 - - -

Cz −69.9 ± 0.2 −69.8 ± 0.2 −69.3 ± 1.0 7.1/0.00/0.17 0.30 0.01 0.01

Pz −70.4 ± 0.7 −70.6 ± 1.2 −70.3 ± 1.5 0.4/0.66/0.01 - - -

T6 −71.7 ± 0.9 −71.4 ± 0.3 −71.3 ± 0.6 2.7/0.08/0.07 - - -

T5 −70.8 ± 0.5 −70.7 ± 0.4 −70.9 ± 0.6 0.5/0.58/0.02 - - -

C4 −71.2 ± 0.5 −70.9 ± 1.1 −71.1 ± 0.8 1.2/0.32/0.03 - - -

C3 −71.5 ± 0.5 −71.6 ± 0.1 −71.3 ± 0.6 2.1/0.13/0.06 - - -

T4 −71.2 ± 0.2 −70.9 ± 0.6 −71.0 ± 0.7 0.5/0.59/0.01 - - -

T3 −69.0 ± 0.4 −66.8 ± 3.4 −68.8 ± 1.9 5.0/0.01/0.13 0.02 0.47 0.03

O2 −71.1 ± 0.1 −71.0 ± 0.2 −70.9 ± 0.5 1.0/0.37/0.03 - - -

O1 −71.2 ± 0.8 −71.2 ± 0.3 −70.6 ± 1.3 4.7/0.01/0.11 0.76 0.06 0.01

P4 −72.0 ± 0.1 −71.7 ± 1.0 −71.5 ± 1.0 1.4/0.25/0.04 - - -

P3 −74.9 ± 0.6 −74.9 ± 0.4 −74.4 ± 1.3 3.1/0.04/0.08 0.90 0.10 0.04

Fp2 −71.0 ± 0.7 −70.7 ± 0.7 −70.8 ± 0.8 0.8/0.45/0.02 - - -

Fp1 −71.4 ± 0.1 −71.4 ± 0.1 −71.3 ± 0.4 0.2/0.81/0.006 - - -

ANOVA among the three groups was performed. If P <= 0.05, then the pairwise comparison (LSD) among three groups was performed.
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FIGURE 6 | Power topographic maps for the three driving styles in four bands.

TABLE 3 | Confusion matrix of the SVM model.

Accuracy 80.0% True label Precision

Aggressive

driving

style

Moderate

driving

style

Conservative

driving

style

Predicted

label

Aggressive

driving

style

15 2 1 83.3%

Moderate

driving

style

3 21 6 70.0%

Conservative

driving

style

1 2 24 88.9%

Recall 78.9% 84.0% 77.4%

Bold values indicate that the true label is consistent with the predicted label.

status of the participants during driving. The driving data was
clustered into three clusters using the K-means algorithm, which
corresponded to three driving styles, i.e., Aggressive, Moderate
and Conservative. The EEG features in the frequency domain,

including the amplitude and the PSDs of the EEG signal in
δ, θ, α, and β bands, along with the cluster results of the
driving data, were utilized to train the SVM classification model.
The leave-one-subject-out cross validation approach showed
considerable classification performance of the schema with the
total accuracy of 80.0%, the highest precision 88.9% and the
highest recall 84.0%. The F-measures showed that this classifier
was approximately equally sensitive to the three driving styles
and the classification performance was balanced. These results
suggested a close relationship between EEG and driving style
and demonstrated the feasibility of driving style recognition and
prediction using EEG data.

Relationship of Driving Behavior and
Driving Style
Large mean values of the driving behaviors indicated the driver’s
preference for speeding and turning sharply and quickly, which
meant the driver was inclined to an “Aggressive driving style,”
whereas small mean values indicated the driver’s preference
for keeping a low speed and turning the steering wheel
conservatively, which meant the driver was inclined to a
“Conservative driving style.” As shown in Table 1, steering
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wheel rotation angle, angular velocity, angular acceleration,
total driving time, vehicle velocity, and number of collisions
and number of lane excursions were all the highest in
the Aggressive group and lowest in the Conservative group.
Moreover, the number of accidents and aberrations increased
with the agressiveness of the driving style. Consistent with
previous studies (Reason et al., 1990; Martinussen et al., 2014; Lee
and Jang, 2017), these results demonstrate the close relationship
between driving behavior characteristics and driving styles.

Previous studies have regarded a driver’s driving style as
fixed and difficult to change (Chen et al., 2013; Shi et al.,
2015). However, in this paper, we found that 13 participants
maintained the driving style during the whole experiment, 4
participants’ driving styles varied between conservative and
moderate, 4 participants’ driving styles varied between aggressive
and moderate, and 2 participants’ driving styles varied between
aggressive and conservative. These results indicate that a driver’s
driving style may fluctuate to some extent.

Driving skill refers to how good a person is at handling
a car, and it is typically measured by the standard deviation
of the driving data, which is negatively correlated with the
stability of the driving skill (Lu, 2011; Martinussen et al., 2014).
As shown in Table 1, the standard deviations for almost all
driving variables were Aggressive group > Moderate group >

Conservative group, which indicated that driving skill may have a
potential relationship with the driving style. The more aggressive
the driving style, the more variable the driving skills.

Relationship of EEG Characteristics and
Driving Style
In Band 1 (0.5–7Hz), the Aggressive group had significantly
higher PSD values in the left temporal area than the Conservative
group (Figure 6), which meant more delta and theta power in
the temporal gyrus of aggressive drivers, which was related with
more emotion fluctuations when driving (Knyazev et al., 2009).
As shown in Figure 5, in the theta band (4–7Hz), the Aggressive
group had the highest PSD among the three groups. While in
the beta band (13–30Hz), the Aggressive group had the lowest
PSD. Moreover, the Aggressive group had the highest PSD in
the frontal area in Band 1 (Figure 6, Table 2). These results
indicate that the Aggressive group had highest theta/beta ratio
in the frontal area compared with the other two groups, which
implies that aggressive drivers had poorer executive cognitive
control and attentional control (Angelidis et al., 2016, 2018),
and might have greater mental workload (Matthews et al., 2017;
Karthaus et al., 2018; Puma et al., 2018). In Figure 5, it can be
seen that the Conservative group’s PSD increased along with an
increase of in frequency and was the highest in the alpha band
(7–13Hz), which possibly implies that conservative drivers had
a more relaxed mental state (Karthaus et al., 2018). In beta 1
(13–18Hz) and beta 2 (18–21Hz), the Conservative group’s PSD
was the highest (Figure 5) and concentrated over the parietal
area which was related with associate sensory function(Tao et al.,
2010) (Figure 6). It seems that conservative drivers were more
inclined to the pro-active driving state (Garcia et al., 2017),
which was associated with a better anticipation and active use of

ongoing information, and a more proactive planning of future
responses (Getzmann et al., 2018). According to the above
analysis based on EEG signals, conservative drivers were less
likely to have aberrational driving behaviors like “violations” and
“errors” (Reason et al., 1990).

Novelty and Limitations of This Study
Prior studies utilized questionnaires and/or objective driving
behavior data to recognize driving styles (Ly et al., 2013;
Martinussen et al., 2014; Hooft van Huysduynen et al., 2018).
Different from these studies, we developed a driving style
recognition schema based on the combination of objective
driving data and a psychophysiological signal—EEG data. The
objective behavior driving data is a direct reflection of the
driving behavior, which is associated with the driver’s brain
activity and cognitive state. The traditional questionnaire is a
subjective and indirect reflection of the human cognitive trait.
Furthermore, because its measurement would occupy the full
attention or interrupt the normal activity of the driver, it can’t
be applied to evaluate the driver’s driving style in real time
without interference. In contrast, EEG data is a direct reflection
of the underlying cognitive state. Except for the requirement of
wearing an electrode cap, there is not much interference with
the behavior of the participants. Besides, EEG is the objective
evaluation, which is less likely to be affected by the subjective
factors of the experimenters and the participants (Taubman-Ben-
Ari et al., 2004; Martinussen et al., 2014). Accordingly, the results
could be more reliable and comparisons among different studies
would be more feasible. EEG has high temporal resolution, which
is at the same time scale as the underlying mental activity, so it
can be applied on the real-time online occasions in the future.
Considering that driving is a time-varying behavior, prediction
and intervention of dangerous behaviors requires the system to
have high temporal performance. Thus, it is of great practical
significance to use EEG to identify the driving style and to warn
the drivers of dangerous behaviors. Generally, our schema of
simultaneous collecting and unified analysis of the driving and
the EEG data from a simulated driving system provided a new
method for driving style recognition.

Driving style recognition plays a significant role in the ADAS,
which could help to identify the current status of the driver
and adjust the vehicle parameters accordingly to ensure safe
driving. As shown in Table 1 and demonstrated by previous
studies, drivers with an Aggressive style tend to operate the
vehicle intensively and cause more accidents (Yang et al., 2018),
so this driving style is regarded as unsafe and should to be
avoided. But it is noted that an Aggressive driving style does
not inevitably result in dangerous behaviors (Taubman-Ben-
Ari et al., 2004; Yang et al., 2018). What is more important,
brain activities are the preconditions of the behaviors, and
usually precede the actual behaviors. By using our schema, the
dangerous driving style related real-time EEG features could be
monitored and detected. And then the driving assistance system
can initiate a warning procedure immediately by reminding
the driver to adjust his/her behavior, or even take over the
vehicle by adjusting the controlling parameters of the steering
wheel and the accelerator pedal. These actions could avoid the
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occurrence and diminish the adverse consequences of dangerous
driving behaviors.

Driving style recognition methods can also be utilized to
improve driving experience and comfort. Previous research
suggested that a driver may exhibit different driving styles in
different traffic conditions (Yang et al., 2018). This variability was
also observed in our results. By integrating our schema with the
driving assistance system, multiple sets of driving parameters can
be set for different driving styles and individualized for different
drivers according to their daily driving behaviors and his/her
own preferences. What’s more, EEG data can reflect the driver’s
physiological state, such as fatigue and distraction (Wang et al.,
2015; Hajinoroozi et al., 2016; Guo et al., 2018; Ma et al., 2018).

There are some limitations of this study. The traffic scenario
was relatively simple without considering multiple driving
scenarios, such as traffic jams. The changes of driving style
under different driving scenarios should be analyzed in future.
The complexity of the scenario would affect the degree of
driving difficulty. Specifically the performance of turning was
related to different driving styles (Ly et al., 2013; Choi et al.,
2017; Deng et al., 2018) and brain dynamics (Garcia et al.,
2017). Hence in this study, a curved mountainous road was
chosen as the scenario. The participants reported difficulty in
driving in this scenario and their performance differed among
groups with different driving styles. The cognitive load and
simulator related side effects were not considered and this is
a limitation of our study. The relationship and differentiation
between driving style and driving ability, and the manifestation
in EEG signals are worthy of further analysis. Other kinds of
scenarios, or the available control scenarios should be studied
further. The participants may have been biased because of their
young ages and short driving years, and the unbalanced male
and female ratio. Because the driving styles were divided based
on the task-specific data instead of the subject-specific data, the
impact of the demographic characteristics of the participants
on the driving styles could not be analyzed by using the
current schema, which is worthy of further analysis. During the
experiment some participants reported fatigue and expressed
their will to terminate the driving tasks. Hence, the number
of the tasks performed by each participant varied between two

to four. How to improve the experiment and how to diminish
the impact of task number inconsistencies among different
participants warrant further research. The presented schema was
offline, which needs to be improved to fulfill the requirement
of online analysis. Its performance under a realtime condition
warrants further research. Finally, because of the limitation of
the simulated driving experiments, the driver’s perception of
the surroundings, the vehicles and the roads may be biased,
so actual driving experiments need to be conducted in the
future studies.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the ethical review committee of
Wuhan University of Technology with written informed
consent in accordance with the Declaration of Helsinki
from all participants. The protocol was approved by
the ethical review committee of Wuhan University
of Technology.

AUTHOR CONTRIBUTIONS

FY and ML designed the data processing schema and wrote the
manuscript. ML, CD, and YW designed the experiment and were
involved in the data collection. LY conceived the basic frame of
this study and revised the manuscript.

FUNDING

This work was supported by the Natural Science Foundation of
China (Grant 61876137).

ACKNOWLEDGMENTS

The authors appreciate Prof. Zhishuai Yin, Prof. Linzhen Nie
and Prof. Yu Wang for their help during the preparation
and implementation of the experiment. We also appreciate
the reviewers for their helpful comments and suggestions on
this study.

REFERENCES

Akhtar, M. T., Mitsuhashi, W., and James, C. J. (2012). Employing spatially
constrained ICA and wavelet denoising, for automatic removal of
artifacts from multichannel EEG data. Signal Process. 92, 401–416.
doi: 10.1016/j.sigpro.2011.08.005

Angelidis, A., Hagenaars, M., Son, D. V., Does, W. V. D., and
Putman, P. (2018). Do not look away! Spontaneous frontal EEG
theta/beta ratio as a marker for cognitive control over attention
to mild and high threat. Biol. Psychol. 135, 8–17. doi: 10.1016/
j.biopsycho.2018.03.002

Angelidis, A., Van, d. D. W., Schakel, L., and Putman, P.
(2016). Frontal EEG theta/beta ratio as an electrophysiological
marker for attentional control and its test-retest reliability.
Biol. Psychol. 121(Pt A), 49–52. doi: 10.1016/j.biopsycho.2016.
09.008

Belakhdar, I., Kaaniche, W., Djemal, R., and Ouni, B. (2018). Single-
channel-based automatic drowsiness detection architecture with a
reduced number of EEG features. Microprocessors Microsyst. 58, 13–23.
doi: 10.1016/j.micpro.2018.02.004

Bolin, J. H., Edwards, J. M., Finch, W. H., and Cassady, J. C. (2014). Applications
of cluster analysis to the creation of perfectionism profiles: a comparison of two
clustering approaches. Front. Psychol. 5:343. doi: 10.3389/fpsyg.2014.00343

Chen, S. W., Fang, C. Y., and Tien, C. T. (2013). Driving behaviour modelling
system based on graph construction. Transport. Res. Part C Emerg. Technol.

26, 314–330. doi: 10.1016/j.trc.2012.10.004
Choi, J., Tay, R., Kim, S., and Jeong, S. (2017). Turning movements, vehicle

offsets and ageing drivers driving behaviour at channelized and unchannelized
intersections. Acc. Anal. Prevent. 108, 227–233. doi: 10.1016/j.aap.2017.08.029

Choi, S., Kim, J., Kwak, D., Angkititrakul, P., and Hansen, J. (2007). “Analysis
and classification of driver behavior using in-vehicle can-bus information,” in
Bienn.Workshop on DSP for In-Vehicle and Mobile Systems (Nagoya), 17–19.

Frontiers in Psychology | www.frontiersin.org 11 May 2019 | Volume 10 | Article 1254

https://doi.org/10.1016/j.sigpro.2011.08.005
https://doi.org/10.1016/j.biopsycho.2018.03.002
https://doi.org/10.1016/j.biopsycho.2016.09.008
https://doi.org/10.1016/j.micpro.2018.02.004
https://doi.org/10.3389/fpsyg.2014.00343
https://doi.org/10.1016/j.trc.2012.10.004
https://doi.org/10.1016/j.aap.2017.08.029
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Yan et al. Driving Style Recognition Based on EEG

Chu, D., Deng, Z., He, Y., Wu, C., Sun, C., and Lu, Z. (2017). Curve speed model
for driver assistance based on driving style classification. IET Intell. Trans. Syst.

11, 501–510. doi: 10.1049/iet-its.2016.0294
Chuang, C. H., Huang, C. S., Ko, L. W., and Lin, C. T. (2015). An EEG-based

perceptual function integration network for application to drowsy driving.
Knowl. Based Syst. 80, 143–152. doi: 10.1016/j.knosys.2015.01.007

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J.
Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Deng, C., Wu, C., Lyu, N., and Huang, Z. (2017). Driving style recognition method
using braking characteristics based on hidden Markov model. PLoS ONE 12,
1–15. doi: 10.1371/journal.pone.0182419

Deng, Z., Chu, D., Wu, C., He, Y., and Cui, J. (2018). Curve safe speed model
considering driving style based on driver behaviour questionnaire. Transport.
Res. Part F Traff Psychol. Behav. doi: 10.1016/j.trf.2018.02.007. [Epub ahead of
print].

Duan, K. B., and Keerthi, S. S. (2005). “Which is the best multiclass SVMmethod?
An empirical study,” in Proc.Inte.Works.MCS05 (Seaside) 278–285.

Garcia, J. O., Brooks, J., Kerick, S., Johnson, T., Mullen, T. R., and
Vettel, J. M. (2017). Estimating direction in brain-behavior interactions:
proactive and reactive brain states in driving. NeuroImage 150, 239–249.
doi: 10.1016/j.neuroimage.2017.02.057

Getzmann, S., Arnau, S., Karthaus, M., Reiser, J. E., and Wascher, E. (2018). Age-
related differences in pro-active driving behavior revealed by EEG measures.
Front. Hum. Neurosci. 12:321. doi: 10.3389/fnhum.2018.00321

Guo, Z., Pan, Y., Zhao, G., Cao, S., and Zhang, J. (2018). Detection of driver
vigilance level using EEG signals and driving contexts. IEEE Trans. Reliabil. 67,
370–380. doi: 10.1109/TR.2017.2778754

Hajinoroozi, M., Mao, Z., Jung, T. P., Lin, C. T., and Huang, Y. (2016).
EEG-based prediction of driver’s cognitive performance by deep
convolutional neural network. Signal Process. Image Commun. 47, 549–555.
doi: 10.1016/j.image.2016.05.018

Haufe, S., Treder, M. S., Gugler, M. F., Sagebaum, M., Curio, G., and Blankertz, B.
(2011). EEG potentials predict upcoming emergency brakings during simulated
driving. J. Neural. Eng. 8:056001. doi: 10.1088/1741-2560/8/5/056001

Hooft van Huysduynen, H., Terken, J., and Eggen, B. (2018). The relation between
self-reported driving style and driving behaviour. A simulator study. Transport.
Res. Part F Traffic Psychol. Behav. 56, 245–255. doi: 10.1016/j.trf.2018.04.017

Jolliffe, I., and Cadima, J. (2016). Principal component analysis: a review and
recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 374:20150202
doi: 10.1098/rsta.2015.0202

Karthaus, M., Wascher, E., and Getzmann, S. (2018). Proactive vs. reactive car
driving: EEG evidence for different driving strategies of older drivers. PLoS
ONE 13:e0191500. doi: 10.1371/journal.pone.0191500

Khushaba, R. N., Kodagoda, S., Lal, S., and Dissanayake, G. (2011).
Driver drowsiness classification using fuzzy wavelet-packet-based
feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58, 121–131.
doi: 10.1109/TBME.2010.2077291

Knyazev, G. G., Bocharov, A. V., Levin, E. A., Savostyanov, A. N., and Slobodskoj-
Plusnin, J. Y. (2008). Anxiety and oscillatory responses to emotional
facial expressions. Brain Res. 1227, 174–188. doi: 10.1016/j.brainres.2008.
0.06.108

Knyazev, G. G., Slobodskoj-Plusnin, J. Y., and Bocharov, A. V. (2009).
Event-related delta and theta synchronization during explicit
and implicit emotion processing. Neuroscience 164, 1588–1600.
doi: 10.1016/j.neuroscience.2009.09.057

Lajunen, T., and Summala, H. (1995). Driving experience, personality, and skill
and safety-motive dimensions in drivers’ self-assessments. Personal. Indiv. Diff.
19, 307–318. doi: 10.1016/0191-8869(95)00068-H

Lee, J., and Jang, K. (2017). A framework for evaluating aggressive driving
behaviors based on in-vehicle driving records. Transport. Res. Part F Traffic

Psychol. Behav. . doi: 10.1016/j.trf.2017.11.021. [Epub ahead of print].
Li, G., Li, S. E., Cheng, B., and Green, P. (2017). Estimation of driving style in

naturalistic highway traffic using maneuver transition probabilities. Transport.
Res. Part C Emerg. Technol. 74, 113–125. doi: 10.1016/j.trc.2016.11.011

Li, W., He, Q. C., Fan, X. M., and Fei, Z. M. (2012). Evaluation of
driver fatigue on two channels of EEG data. Neurosci. Lett. 506, 235–239.
doi: 10.1016/j.neulet.2011.11.014

Lin, C., Chuang, C., Huang, C., Tsai, S., Lu, S., Chen, Y., et al. (2014). Wireless
and wearable EEG system for evaluating driver vigilance. IEEE Trans. Biomed.

Circuit. Syst. 8, 165–176. doi: 10.1109/TBCAS.2014.2316224
Lin, C., Liang, S., Chao,W., Ko, L., Chao, C., Chen, Y., et al. (2006b). “Driving Style

Classification by Analyzing EEG Responses to Unexpected Obstacle Dodging
Tasks”, in 2006 IEEE International Conference on Systems, Man and Cybernetics

(Taipei), 4916–4919. doi: 10.1109/ICSMC.2006.385084
Lin, C. T., Liang, S. F., Chao, W. H., Ko, L. W., Chao, C. F., Chen, Y. C., et al.

(2006a). Driving Style Classification by Analyzing EEG Responses to Unexpected

Obstacle Dodging Tasks (Taipei).
Lu, M. (2011). “Comparison of driver classification based on subjective evaluation

and objective experiment”, in Transportation Research Board Meeting

(Washington).
Luan, S., Kong, X., Wang, B., Guo, Y., and You, X. (2012). “Silhouette coefficient

based approach on cell-phone classification for unknown source images”, in
2012 IEEE International Conference on Communications (ICC) (Ottawa, ON),
6744–6747. doi: 10.1109/ICC.2012.6364928

Łukasik, S., Kowalski, P. A., Charytanowicz, M., and Kulczycki, P. (2016).
“Clustering using flower pollination algorithm and Calinski-Harabasz index”,
in 2016 IEEE Congress on Evolutionary Computation (CEC), 2724–2728.
doi: 10.1109/CEC.2016.7744132

Lutz, J. N., Béatrice, B., andMichaela, E. (2008). Brain activation during fast driving
in a driving simulator: the role of the lateral prefrontal cortex. Neuroreport 19,
1127–1130. doi: 10.1097/WNR.0b013e3283056521

Ly, M. V., Martin, S., and Trivedi, M. M. (2013). “Driver classification and driving
style recognition using inertial sensors”, in 2013 IEEE Intelligent Vehicles

Symposium (IV) (Gold Coast, QLD), 1040–1045.
Ma, J., Gu, J., Jia, H., Yao, Z., and Chang, R. (2018). The Relationship between

drivers’ cognitive fatigue and speed variability during monotonous daytime
driving. Front. Psychol. 9:459. doi: 10.3389/fpsyg.2018.00459

Martinez, A.M., and Kak, A. C. (2001). “PCA versus LDA,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence (New York, NY) 23, 228–233.
doi: 10.1109/34.908974

Martinussen, L. M., Møller, M., and Prato, C. G. (2014). Assessing the relationship
between the driver behavior questionnaire and the driver skill inventory:
revealing sub-groups of drivers. Transport. Res. Part F Traffic Psychol. Behav.

26, 82–91. doi: 10.1016/j.trf.2014.06.008
Matthews, G., Reinerman-Jones, L., Julian Abich, I. V., and Kustubayeva, A.

(2017). Metrics for individual differences in EEG response to cognitive
workload: optimizing performance prediction. Personal. Indiv. Diff. 118, 22–28.
doi: 10.1016/j.paid.2017.03.002

Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). ADJUST: an
automatic EEG artifact detector based on the joint use of spatial and temporal
features. Psychophysiology 48, 229–240. doi: 10.1111/j.1469-8986.2010.
01061.x

Motonori, I., Masayuki, O., Shun’ichi, D., and Motoyuki, A. (2007). “Indices
for characterizing driving style and their relevance to car following
behavior”, in SICE Annual Conference 2007 (Takamatsu), 1132–1137.
doi: 10.1109/SICE.2007.4421155

Palat, B., Saint Pierre, G., and Delhomme, P. (2019). Evaluating individual
risk proneness with vehicle dynamics and self-report data ? toward the
efficient detection of at-risk drivers. Acc. Anal. Prevent. 123, 140–149.
doi: 10.1016/j.aap.2018.11.016

Puma, S., Matton, N., Paubel, P. V., Raufaste, É., and El-Yagoubi, R.
(2018). Using theta and alpha band power to assess cognitive workload
in multitasking environments. Int. J. Psychophysiol. 123, 111–120.
doi: 10.1016/j.ijpsycho.2017.10.004

Reason, J., Manstead, A., Stradling, S., Baxter, J., and Campbell, K. (1990). Errors
and violations on the roads: a real distinction? Ergonomics 33, 1315–1332.
doi: 10.1080/00140139008925335

Shi, B., Xu, L., Hu, J., Tang, Y., Jiang, H., Meng, W., et al. (2015). Evaluating
driving styles by normalizing driving behavior based on personalized
driver modeling. IEEE Trans. Syst. Man. Cybernet. Syst. 45, 1502–1508.
doi: 10.1109/TSMC.2015.2417837

Taghizadeh-Sarabi, M., Niksirat, K. S., Khanmohammadi, S., and Nazari, M.
(2013). EEG-based analysis of human driving performance in turning
left and right using Hopfield neural network. SpringerPlus 2, 662.
doi: 10.1186/2193-1801-2-662

Frontiers in Psychology | www.frontiersin.org 12 May 2019 | Volume 10 | Article 1254

https://doi.org/10.1049/iet-its.2016.0294
https://doi.org/10.1016/j.knosys.2015.01.007
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1371/journal.pone.0182419
https://doi.org/10.1016/j.trf.2018.02.007
https://doi.org/10.1016/j.neuroimage.2017.02.057
https://doi.org/10.3389/fnhum.2018.00321
https://doi.org/10.1109/TR.2017.2778754
https://doi.org/10.1016/j.image.2016.05.018
https://doi.org/10.1088/1741-2560/8/5/056001
https://doi.org/10.1016/j.trf.2018.04.017
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1371/journal.pone.0191500
https://doi.org/10.1109/TBME.2010.2077291
https://doi.org/10.1016/j.brainres.2008.06.108
https://doi.org/10.1016/j.neuroscience.2009.09.057
https://doi.org/10.1016/0191-8869(95)00068-H
https://doi.org/10.1016/j.trf.2017.11.021
https://doi.org/10.1016/j.trc.2016.11.011
https://doi.org/10.1016/j.neulet.2011.11.014
https://doi.org/10.1109/TBCAS.2014.2316224
https://doi.org/10.1109/ICSMC.2006.385084
https://doi.org/10.1109/ICC.2012.6364928
https://doi.org/10.1109/CEC.2016.7744132
https://doi.org/10.1097/WNR.0b013e3283056521
https://doi.org/10.3389/fpsyg.2018.00459
https://doi.org/10.1109/34.908974
https://doi.org/10.1016/j.trf.2014.06.008
https://doi.org/10.1016/j.paid.2017.03.002
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1109/SICE.2007.4421155
https://doi.org/10.1016/j.aap.2018.11.016
https://doi.org/10.1016/j.ijpsycho.2017.10.004
https://doi.org/10.1080/00140139008925335
https://doi.org/10.1109/TSMC.2015.2417837
https://doi.org/10.1186/2193-1801-2-662
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Yan et al. Driving Style Recognition Based on EEG

Tao, W., Liang, W., Mark, H., Kuncheng, L., and Piu, C. (2010). Neural correlates
of bimanual anti-phase and in-phase movements in Parkinson’s disease. Brain
133(Pt 8), 2394–2409. doi: 10.1093/brain/awq151

Taubman-Ben-Ari, O., Mikulincer, M., and Gillath, O. (2004). The
multidimensional driving style inventory - Scale construct and validation. Acc.
Anal. Prevent. 36, 323–332. doi: 10.1016/S0001-4575(03)00010-1

Trógolo, M. A., Melchior, F., and Medrano, L. A. (2014). The role of difficulties in
emotion regulation on driving behavior. J. Behav. Health Soc. Issues 6, 107–117.
doi: 10.22201/fesi.20070780.2014.6.1.48532

Upadhyay, R., Kankar, P. K., Padhy, P. K., and Gupta, V. K. (2012).
“Classification of drowsy and controlled EEG signals,” in 2012 Nia University

International Conference on Engineering (NUiCONE) (Ahmedabad), 1–4.
doi: 10.1109/NUICONE.2012.6493289

Wang, S., Zhang, Y., Wu, C., Darvas, F., and Chaovalitwongse, W. A. (2015).
Online prediction of driver distraction based on brain activity patterns. IEEE
Trans. Intell. Transport. Syst. 16, 136–150. doi: 10.1109/TITS.2014.2330979

Wickens, C. M., Toplak, M. E., and Wiesenthal, D. L. (2008). Cognitive failures
as predictors of driving errors, lapses, and violations. Acc. Anal. Prevent. 40,
1223–1233. doi: 10.1016/j.aap.2008.01.006

Yang, L., Ma, R., Zhang, H. M., Guan, W., and Jiang, S. (2018). Driving
behavior recognition using EEG data from a simulated car-following

experiment. Acc. Anal. Prevent. 116, 30–40. doi: 10.1016/j.aap.2017.
11.010

Yuan, X., and Tao, Z. (2015). “A fault diagnosis approach using SVM with data
dimension reduction by PCA and LDA method”, in 2015 Chinese Automation

Congress (CAC) (Wuhan), 869–874. doi: 10.1109/CAC.2015.7382620
Zhang, T., Chan, A. H. S., Ba, Y., and Zhang, W. (2016). Situational

driving anger, driving performance and allocation of visual attention.
Transport. Res. Part F Traffic Psychol. Behav. 42, 376–388. doi: 10.1016/
j.trf.2015.05.008

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Yan, Liu, Ding, Wang and Yan. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org 13 May 2019 | Volume 10 | Article 1254

https://doi.org/10.1093/brain/awq151
https://doi.org/10.1016/S0001-4575(03)00010-1
https://doi.org/10.22201/fesi.20070780.2014.6.1.48532
https://doi.org/10.1109/NUICONE.2012.6493289
https://doi.org/10.1109/TITS.2014.2330979
https://doi.org/10.1016/j.aap.2008.01.006
https://doi.org/10.1016/j.aap.2017.11.010
https://doi.org/10.1109/CAC.2015.7382620
https://doi.org/10.1016/j.trf.2015.05.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Driving Style Recognition Based on Electroencephalography Data From a Simulated Driving Experiment
	Introduction
	Materials and Methods
	Experiment and Participants
	Participants
	Driving Scenario and Task
	Data Acquisition

	Data Analysis
	Driving Data Analysis
	EEG Data Analysis


	RESULTS
	Driving Data Classification Results
	EEG Characteristics of Three Groups With Different Driving Styles
	EEG Data Classification Results

	Discussion
	Relationship of Driving Behavior and Driving Style
	Relationship of EEG Characteristics and Driving Style
	Novelty and Limitations of This Study

	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


