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ABSTRACT: 

 

The automatic extraction of windows from photogrammetric data has achieved increasing attention in recent times. An unsupervised 

windows extraction approach from photogrammetric point clouds with thermal attributes is proposed in this study. First, point cloud 

segmentation is conducted by a popular workflow: Multiscale supervoxel generation is applied to the image-based 3D point cloud, 

followed by region growing and energy optimization using spatial positions and thermal attributes of the raw points. Afterwards, an 

object-based feature (window index) is extracted using the average thermal attribute and the size of the object. Next, thresholding is 

applied to extract initial window regions. Finally, several criterions are applied to further refine the extraction results. For practical 

validation, the approach is evaluated on an art nouveau building row façade located at Dresden, Germany. 
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1. INTRODUCTION 

An increased interest in point cloud segmentation and window 

extraction from point cloud data has emerged in recent years. In 

order to extract structures (e.g. windows) from a raw 

unstructured point cloud, one popular approach is point cloud 

segmentation followed by feature extraction. Point cloud 

segmentation, which merges adjacent points or voxels into 

subsets using one or more criterions (e.g. similar normal vectors, 

similar attributes), provides basic meaningful regions (e.g. 

planar) for further detection and recognition. After segmenting 

the whole façade point cloud into dozens of regions, feature 

extraction is needed to describe the characteristics of different 

objects (e.g. windows, doors) and thus is helpful for further 

target detection and recognition. 

 

Point Cloud Segmentation: The extensive work targeted on 

point cloud segmentation in the last years can roughly be 

classified to four categories: model fitting, region growing, 

feature clustering and energy optimization. 

 

Model fitting extracts connected points by fitting their 

geometric features (e.g. positions and normal vectors) into a 

local or global geometric model. Specifically, points satisfying 

the same geometric model fitting criteria are extracted from the 

whole point cloud as one segment. The most commonly used 

approaches are random sample consensus (RANSAC) and 

Hough transform (HT). RANSAC first generates several models 

by randomly sampling points, then the model with the largest 

set of inliers is chosen (Fischler and Bolles, 1981; Schnabel, 

2007). HT first transforms each point into a parameter space 

according to the geometric expression, then the segments are 

extracted by selecting the local maxima in the accumulator 

space using a voting-strategy (Ballard, 1981; Vosselman et al., 

2004). Although RANSAC and HT are able to extract 

meaningful geometric primitives (i.e. planes, spheres, cylinders, 

cones) from point cloud with noises, they are sensitive to 

parameter selection (e.g. threshold for inliers). In addition, 

applying RANSAC for multiple plane detection is not only 

computationally expensive, but will also often deliver sub-

optimal results (e.g. inaccurate first plane detection would 

negatively affect the accuracy of the following planes) (Pham et 

al., 2016). 

 

Region growing (RG) extract segments by iteratively merging 

adjacent points or voxels with similar features (e.g. normal 

vector, curvature). Point-based RG (Tóvári and Pfeifer, 2005), 

voxel-based RG (Deschaud and Goulette, 2010), octree-based 

RG (Vo et al., 2015) and hybrid RG (Xiao et al., 2013) have 

been extensively investigated and discussed for point cloud 

segmentation. Most of these methods start picking up some 

points or voxels as seeds, then the neighbours of the seeds are 

merged when these neighbours satisfy the predefined criterion 

(e.g. similar normal vector). A main benefit of these approaches 

is the high computational efficiency, while a major drawback is 

that they are sensitive to noise and varying point density. 

Furthermore, segmentation results largely depend on the 

growing criteria and the selection of the seeds. 

 

Similar to RG, feature clustering is also a process of grouping 

points with similar features into a cluster under common 

constraints. K-means (Shi et al., 2011), fuzzy C-means (Biosca 

and Lerma, 2008), hierarchical clustering (Xu et al., 2018) are 

frequently adopted for segmentation task of the point clouds. 

Compared with RG, one advantage of such approaches is that 

no seeds are needed for initialization. However, such 

approaches are also not robust to noise and outliers due to the 
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difficulty in definition of the neighbourhood and the chosen 

clustering criterion. 

 

Energy optimization formulates the segmentation issue as an 

energy function minimization problem and is widely used with 

both 2D image and 3D point cloud data (Isack and Boykov, 

2012; Pham et al., 2016; Pham et al., 2018; Dong et al., 2018). 

Yan et al. (2014) formulated the roof segmentation task from 

airborne laser scanner point clouds as an energy minimization 

problem and adopted -expansion approach (Delong et al., 

2012) to minimize the function. Dong et al. (2018) 

implemented a guided sampling algorithm to optimize the 

global energy function in a mutually reinforcing manner and 

mainly targeted on façade point clouds. Wang et al. (2016) 

utilized a similar energy optimization approach for multiple 

plane detection in indoor point clouds. When compared to other 

methods, the main benefit of energy optimization approaches is 

they are rather robust to noise. However, the main drawback is 

they are computationally expensive and dependent on initial 

planes. 

 

Window Extraction: Windows, as basic elements of facades, 

play an important role in various applications. Windows belong 

to openings in CityGML standard with five levels of details 

(LoD). Specifically, LoD3 requires detailed modelling of 

windows. And rows of windows can be used to determine the 

number of floors. In energy inspection of buildings, the ratio of 

windows to the façade area is important to estimate the energy 

consumption of buildings. Windows are often regarded as the 

main possibility as thermal leakage potentials. Therefore, 

automatic window detection is of vital importance for thermal 

inspection of buildings. In general, there are two main strategies 

available in existing publications: pattern recognition and hole-

based methods. 

 

Pattern recognition takes advantage of shape grammar to detect 

symmetries and repetitive structures for window or door 

extraction. Pauly et al. (2008) detected repetitive patterns based 

on accumulating local symmetry votes in the transformation 

space. Pairwise similarity transformation is conducted in a 

regular grid. Then an aggregation procedure is conducted to 

detect rotational and cylindrical grids, helices, and spirals. 

Although this approach is able to estimate missing data, it is 

computationally expensive and sensitive to the calculation of 

curvatures. Friedman and Stamos (2013) proposed a real-time 

3D registration procedure during data acquisition. Utilizing this 

approach, they employed vertical periodicity to detect window 

groups with similar widths for high-rise buildings. However, 

this approach might fail in low-rise residential structures where 

vertically repetitive features are unlikely to contain. Becker 

(2009) combined data-driven and model-driven strategies to 

reconstruct façade elements using grammar rules, which is 

robust to incomplete data and erroneous data. 

 

Windows, which have texture-less, transparent and highly-

reflective surfaces, could introduce large artifacts and cause 

data gaps in point clouds acquired by terrestrial laser scanning 

(TLS). Therefore, another popular approach to extract windows 

is hole-based method. Pu and Vosselman (2009), Truong-Hong 

et al. (2011) implemented Triangular Irregular Network (TIN) 

based approaches for window extraction. The basic principle of 

these approaches is the triangles with long sides correspond to 

boundary points where holes exist. More recently, Zolanvari 

and Laefer (2016) presented a slicing method (SM) to detect 

openings and boundary points of facades. Given the pre-

segmented facades, openings could be obtained by slicing the 

façade into strips horizontally and vertically, projecting the 

boundary points into one dimension, and searching for gaps. 

Later, Zolanvari et al. (2018) extended the SM approach for full 

3D structures and sloped roofs. 

 

As shown above, most of the existing approaches focus on only 

utilizing geometric features from given point clouds and ignore 

other attributes. Although Pu and Vosselman (2009) reported 

that integrating RGB information cannot guarantee to achieve 

better segmentation results than solely using spatial position 

information, in this study, we try to combine attributes obtained 

from a thermal camera with geometric features for point cloud 

segmentation and window extraction. 

 

2. DATA DESCRIPTION 

The 3D point cloud used in this paper is generated using the 

approach described by (Lin et al., 2019). The principle is as 

follows: Firstly, a RGB image sequence is used for reference 

3D point cloud generation using structure from motion (SfM) 

tools (e.g. Agisoft PhotoScan®). Next, a thermal point cloud, 

which is generated by a thermal image sequence, is registered to 

the RGB point cloud using a coarse point cloud registration 

followed by a fine image-based registration. Afterwards, a 

global image pose refinement is applied to remove blur effects 

and to increase consistency in texture mapping results. An 

example of a generated photogrammetric point cloud with 

thermal attributes is shown in Figure 1. 

 

Although the data are equipped with geometric features (e.g. 

XYZ coordinates), RGB attributes and thermal attributes, this 

paper focuses on segmenting the point cloud and extracting 

windows using only geometric features and thermal attributes. 

Note that achieving accurate thermal attributes also requires a 

radiometric calibration approach (Lin et al., 2018). Figure 1 

shows the colour-coded temperature distribution of the entire 

building facade. In this paper, these thermal attributes, linearly 

scaled to 8 bit as temperature derived RGB values, are used for 

later segmentation and extraction works. The reason why we 

use temperature derived RGB values rather than real 

temperature values (°C) for segmentation procedure, is the input 

requirements of the used supervoxel generation algorithm, 

which asks for three 8 bit scalars as inputs. An energy 

optimization based segmentation followed by an object-based 

extraction approach is proposed in this study.  

 
Figure 1. Projection of a 3D point cloud of a façade with thermal attributes (°C) (Lin et al., 2019) 
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3. METHODOLOGY 

Similar to the workflow implemented in Dong et al. (2018), the 

segmentation approach implemented in this study includes three 

main steps: multiscale supervoxel generation, region growing 

and energy optimization. 

 

Multiscale Supervoxel Generation: Multiscale supervoxel 

generation starts to oversegment the point cloud into 

supervoxels at the largest scale ( ), then the supervoxels are 

classified as planar or nonplanar according to saliency features. 

Afterwards, the nonplanar supervoxels are further segmented 

into supervoxels at a smaller scale ( ). The algorithm 

repeats such steps until the scale parameter  is less than the 

preset minimum scale parameter ( ). 

 

The voxel cloud connectivity segmentation (VCCS) method 

(Papon et al., 2013) is applied here to over-segment the point 

clouds into supervoxels at different scales. Specifically, spatial 

distance, normal vector deviation and colour distance (here 

applied to the thermal attributes) are considered during 

supervoxel generation. And the weights of spatial distance, 

normal vector deviation and colour distance are set equal. 

Furthermore, the planar determination criterion for each 

supervoxel is as follows: 

 

First, a covariance matrix is calculated using all points of the 

supervoxel. Then eigenvalues ( ) and the 

corresponding eigenvectors ( , , ) are computed using 

principle component analysis. Afterwards, the saliency features 

are calculated using equation (1). Finally, the supervoxel is 

classified as planar or nonplanar according to equation (2). 

Note that ,  represent normal vector of point  and 

normal vector of supervoxel , respectively.  denotes the 

number of the points in supervoxel .  represents the average 

angle between the normal vectors of all the inlier points and the 

normal vector of their supervoxel. As photogrammetric point 

clouds are usually more noisy than TLS point clouds,  should 

be taken into consideration during planar determination. 

Multiscale supervoxel generation results are shown in Figure 2. 

 

 

(1) 

 

 
(2) 

 

After multiscale supervoxel generation, planar regions and 

individual points serve as basic units for further region growing 

and energy optimization. For each basic unit, statistical features, 

which are used in later segmentation steps, are calculated by 

equation (3). 

 

 

(3) 

 

where  represents the normal vector of basic unit , 

 is the centre position of basic unit ,  is the 

distance from origin to the implicit plane, thermal  

represent the average thermal attribute of all the inlier points in 

basic unit . Such temperature derived RGB colours are utilized 

for further segmentation.  is the curvature of the basic unit . 

Note that supervoxels take advantage of all their inlier points to 

calculate the covariance matrix, while individual points 

consider their k adjacent points to compute the covariance 

matrix. 

 

 
(a) 

 
(b) 

Figure 2. Multiscale supervoxel generation. (a) Multiscale supervoxels (b) Multiscale planar classification results. Red points belong 

to planar regions while blue points refer to non-planar points. 
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Region Growing: A hybrid region growing is implemented 

here to generate initial planes for the later energy optimization 

procedure. The algorithm gradually merges adjacent basic units 

with similar statistical features to generate a number of planes. 

The basic workflow is as follows:  

 

Region growing starts at the basic unit with the minimum 

curvature. Then the neighbouring basic units, which have 

similar normal vector , similar thermal attributes 

 and a similar implicit plane distance , is merged into 

current plane. In this case, angle criterion for normal vector 

deviation is 10°, implicit plane distance deviation criterion is 

0.2m and thermal attributes deviation threshold is 60 (8 bit). 

The repeated merging process is performed with the depth-first 

search (DFS). DFS explores the potential unmerged basic units 

as far as possible to generate one plane. If no more satisfying 

basic units are found, the DFS will start from another 

unsegmented basic unit with the lowest curvature and repeat the 

searching process. Note that the neighbouring basic units are 

defined using radius consideration rather than k adjacent. In 

addition, the minimum number of inlier points for a valid plane 

is set to  (e.g. 20); thus, those planes, which have inliers lower 

than , are removed during region growing. The hybrid region 

growing result is shown in Figure 3. All the segments generated 

by hybrid region growing are taken as initial inputs for energy 

optimization process. 

 

Energy Optimization: In this part, point cloud segmentation is 

formulated as an energy function minimization problem shown 

in equation (4). 

 

 

(4) 

 

The energy function is formed by data cost, smoothness cost 

and label cost. In this study, the data cost term measures spatial 

distance and thermal attribute distance between the basic units 

and the planes, which is shown in equation (5). 

 

 

 

(5) 

 

where  represents the inlier point of the basic unit . Spatial 

distance between basic unit  and plane  sums up all the 

spatial distances between the inlier points  and the plane . 

Similarly, thermal attribute distance sums up all the colour 

distances between the inlier points  and the plane .  is the 

weight parameter for spatial distance, while  is the weight 

parameter of colour distance. As shown in equation (5), the 

lower the spatial and colour distance between the basic unit  

and the plane , the higher the possibility of merging  into  is. 

 

The smoothness cost, shown in equation (4), encourages the 

adjacent basic units to have the same labels, i.e. to belong to the 

same plane. A TIN is constructed to define the neighbourhood 

system for all of the basic units. Note that neighbouring basic 

units means they are connected by an edge line in the TIN. Potts 

model (Boykov et al., 2001) is selected to describe the 

smoothness cost for each pair of the neighbouring basic units, 

which is shown in equation (6). Thus, if the neighbouring basic 

units  and  belong to the same plane, the smoothness cost 

 is 0. Otherwise,  is set to 1. 

 

 
(6) 

 

The label cost, shown in equation (4), penalizes the number of 

planes.  is the minimum point number for a plane,  

represents the number of the generated planes after 

segmentation. This term aims to reduce the number of over-

segmented planes. 

 

The energy function minimization process is implemented in an 

iterative manner and terminates if the energy function is not 

decreased anymore. During each iteration, statistical features of 

all the planes are re-computed using their newly derived inlier 

points. The energy optimization result is shown in Figure 4. 

 

Window extraction: After segmentation, objects are obtained. 

Thus, object-based features could be calculated (e.g. object-

based thermal features could be computed by averaging all the 

thermal attributes of points in the objects). The size feature of 

an object is calculated according to equation (7). 

 

 (7) 

 

where ,  and  correspond to the bounding box of an 

object in X, Y, Z axis respectively. As shown in the 

segmentation result (Figure 4), window objects usually have 

smaller scales than other objects (e.g. wall objects). 

 

Windows in thermal images will usually reflect objects nearby 

due to mirror-reflection effects. Specifically, from a terrestrial 

point of view, most of the windows, especially those located at 

relatively higher levels of the building, reflect the cold sky, thus 

windows will usually have lower temperatures compared to 

walls. Furthermore, the higher temperature derived B (blue) 

value and smaller Size value an object has, the more likely the 

object will be a window object. Thus, a window index (WI) is 

defined as equation (8). 

 

 
(8) 

 

For the whole point cloud, object-based WI feature is illustrated 

in Figure 5. 

 

Thus, several criterions are designed and implemented to 

generate windows extraction results. First, a simple threshold of 

window index (e.g. more than 15) is applied to extract windows 

from the point clouds. Afterwards, as the normal vectors of the 

windows are considered to be almost parallel to the Z axis, a 

constraint is to set a threshold for the intersection angle between 

the normal vector of initial windows objects and axis Z (e.g. 

lower than 20°). Then, objects with relatively large area (e.g. 

more than 3m2), which almost stand on the ground (e.g. 

distance to the lowest part of the building model lower than 

0.3m), are considered to be doors rather than windows. Thus, 

the extraction result is shown in Figure 6. 
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4. DISCUSSIONS AND CONCLUSION 

To evaluate the window extraction result, correctness and 

completeness are used, which are shown in equation (9) and 

(10). 

 

 
(9) 

 

 
(10) 

 

where true positive (TP) is a window region and is detected as a 

window, false positive (FP) is a non-window region however is 

detected as a window, and false negative (FN) is a window 

region but is not detected as a window. The ground truth 

(bounding boxes of the windows) is measured manually. 

Similar to the work (Malihi et al., 2018), if at least 70% of 

points in a segment are located inside a reference bounding box, 

this segment is considered to be a TP. While if more than 50% 

of points in a segment are not located inside a reference 

bounding box, this segment is counted as a FP. If a reference 

bounding box has no corresponding segment or at least 50% of 

points in a segment, this is considered to be a FN. The 

evaluation is shown in Table 1. 

 

TP FP FN Correctness Completeness 

98 22 17 82% 85% 

Table 1. Correctness and Completeness of window extraction 

result 

 

As shown in Table 1, the window extraction result shows a 

Correctness rate of 82% and a Completeness percentage of 85%. 

One assumption this method relies on is significant temperature 

differences between windows and their neighbouring objects 

(e.g. wall). This is the reason why some windows were not 

recognized, for instance due to the reflections of the nearby 

warm objects, such differences are largely moderated, which 

increases the difficulty in extracting windows using our 

approach. In future work, the wrongly extracted segments, 

which do not belong to windows, should be removed by 

utilizing shape-based rules and topology analysis. 
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Figure 3. Hybrid region growing result 

 

 
Figure 4. Energy optimization result 

 

 
Figure 5. Objected-based window index feature. 
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Figure 6. Window extraction result. Red segments refer to windows regions. 
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