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ABSTRACT: 

 

Over the past decades, a special interest has been given to remote-sensing imagery to automate the detection of damaged buildings. 

Given the large areas it may cover and the possibility of automation of the damage detection process, when comparing with lengthy 

and costly ground observations. Currently, most image-based damage detection approaches rely on Convolutional Neural Networks 

(CNN). These are used to determine if a given image patch shows damage or not in a binary classification approach. However, such 

approaches are often trained using image samples containing only debris and rubble piles. Since such approaches often aim at detecting 

partial or totally collapsed buildings from remote-sensing imagery. Hence, such approaches might not be applicable when the aim is 

to detect façade damages. This is due to the fact that façade damages also include spalling, cracks and other small signs of damage. 

Only a few studies focus their damage analysis on the façade and a multi-temporal approach is still missing. In this paper, a multi-

temporal approach specifically designed for the image classification of façade damages is presented. To this end, three multi-temporal 

approaches are compared with two mono-temporal approaches. Regarding the multi-temporal approaches the objective is to understand 

the optimal fusion between the two imagery epochs within a CNN.  The results show that the multi-temporal approaches outperform 

the mono-temporal ones by up to 22% in accuracy.  

 

 

1. INTRODUCTION 

Remote sensing has been continuously used for automatic 

building damage assessment, since the used platforms can cover 

large areas and attenuate the costly and lengthy ground 

observations. While several sensors coupled with distinct 

platforms have been used (Armesto-González et al., 2010; 

Dell’Acqua and Polli, 2011; Gokon et al., 2015), there has been 

a special interest in the use of images (Duarte et al., 2018a; Tu et 

al., 2017; Vetrivel et al., 2017). 

 

Several approaches have been used to detect damages from 

images. These usually rely on a set of features that are later used 

as input for a supervised classifier. While hand crafted features 

have been used (Vetrivel et al., 2016b), convolutional neural 

networks (CNN) features have recently been found to be 

preferable (Duarte et al., 2018a; Vetrivel et al., 2017). 

 

Hence, current image based damage detection approaches often 

rely on convolutional neural networks to classify a given image 

into damaged and non-damaged regions (Duarte et al., 2018a; 

Vetrivel et al., 2017). These approaches aim at detecting damage 

evidences such as rubble piles and debris from satellite and aerial 

(manned and unmanned) imagery.  While the image 

classification of debris and rubble piles may achieve higher 

accuracy, it might overlook smaller signs of damage (e.g. spalling 

and cracks) which are usually present on the façades. These often 

differ in image characteristics when compared to those of rubble 

piles or debris (see Figure 1 – figure with low levels of damage 

and with totally destroyed areas for comparison). Furthermore, 

when these approaches are used for façade damage detection, 

there is a large number of false positives (Duarte et al., 2017), i.e. 

many images patches depicting intact buildings which are 
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classified as damaged. This indicates the limitation of such 

models trained with image samples depicting rubble piles and 

debris for the façade damage assessment. 

 

In the case multi-view aerial imagery is captured with enough 

overlap, the computation of 3D point clouds through dense image 

matching is possible. These 3D models may then be used to 

detect geometrical deformations of the buildings (Sui et al., 

2014), while the images may be used to detect rubble piles and/or 

debris as well as smaller signs of damage such as spalling and 

cracks (Fernandez Galarreta et al., 2015). The façade planes are 

often tilted respective to the image plane, which increases the 

noise present in the 3D point cloud (Rupnik et al., 2014). These 

dense image matching problems combined with the usual 

decimetre resolution of manned multi-view aerial image surveys 

drastically decrease the chances of identifying cracks and small 

signs of spalling from the point cloud.   

 

In spite of the growing amount of literature regarding the image 

classification of building damages, little attention has been given 

to the detection of damages on the facades. Most of the studies 

focus on the identification of damage evidences such as debris 

and/or rubble piles, which may leave out damage evidences 

present in façades (see Figure 1), such as cracks and spalling. 

 

Specifically focusing on the facades, a few approaches can be 

found in the literature. For example, considering UAV imagery, 

and relying both on the image and 3D features, Fernandez 

Galarreta et al. (2015)  determined several types of damage. 

Among them, cracks and spalling from façades. Gerke and Kerle 

(2011) used multi-view aerial imagery and derived a 3D point 

cloud to extract features and identify damaged buildings, and at 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-29-2019 | © Authors 2019. CC BY 4.0 License.

 
29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200867671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

` 

the same time classified the damage of a given building into three 

classes which were based on the European Macroseismic Scale 

(EMS-98). More recently, Tu et al. (2017) identified damaged 

façades using local symmetry features and the Gini Index 

extracted from aerial oblique images. The authors assumed 

symmetric façades and considered the deviations from that 

symmetry as damaged façade proxies.  

 

Figure 1. Top: example of two completely collapsed buildings. 

Below: examples of extracted facades. Left, partially collapsed 

building. Right and centre, two damaged facades with spalling 

and other damages while the facade is still standing 

 

Only one contribution used pre- and post-event multi-view aerial 

imagery in a multi-temporal approach to detect damaged façades. 

Vetrivel et al. (2016a) tested the potential of multi-temporal 

aerial imagery, using a simple correlation coefficient to 

determine the similarity between two rectified façade image 

patches. However, no statistical measures on the quality of the 

approach were reported. 

 

In this work we assess the impact of considering multi-temporal 

aerial oblique imagery for the detection of damages along the 

façades. To this end we use three different approaches that rely 

on convolutional neural networks. These are then compared with 

two mono-temporal approaches that can be found in recent 

literature. Moreover, and due to the small amount of data, we take 

advantage of the high image overlap of aerial multi-view images 

to generate the needed input for a multi-temporal façade damage 

detection approach. 

 

In the following section the used dataset is presented. Section 3 

introduces the methodology for both the facade image patch 

extraction from the aerial imagery and the mono/multi-temporal 

approaches used in the paper. Section 4 presents the results while 

section 5 and 6, respectively present the discussion and 

conclusion. 

 

 

2. DATA 

Two airborne oblique acquisitions are considered in this paper. 

These datasets were captured in August 2008 and in May 2009, 

depicting the pre- and post-event of the April 2009 earthquake 

which occurred in central Italy.  The images were captured over 

the city of L’Aquila and a nearby village (Tempera).  

 

The dataset was captured with the Pictometry system which 

contains small format DSLR cameras, 4 obliques (one for each 

cardinal direction) and 1 nadir. These were acquired at a flying 

height of approximately 1000m, with an average ground 

sampling distance of 0.14 m on the oblique views. The flight was 

performed considering a forward overlap between 60-70% and a 

side overlap between 35-45%, which allowed to derive a 3D 

point cloud. 

 

2.1 Limitations 

This dataset contains partial and total collapsed buildings but 

mostly depicts damage on the façades (e.g. spalling, cracks, etc, 

see Figure 1). Often, it presents areas with occluded façades due 

to urban design, where narrow streets are common and hence not 

visible in the oblique images (see Figure 2). These two issues 

only allowed to extract 88 damaged façades. 

 

 
Figure 2. Oblique view over L’Aquila, narrow streets and high 

buildings do not allow to visualize some of the facades 

 

3. METHODOLOGY 

In this section the multi-temporal façade damage detection 

approach is presented. This approach assumes as input the façade 

image patches of both pre- and post-event. Hence, the procedure 

to extract the façades image patch from the images is explained 

in the first sub-section. Sub-section 3.2 presents the three multi-

temporal façade damage detection approaches using CNN. These 

muti-temporal approaches were compared with two mono-

temporal approaches, presented also in sub-section 3.2. 

 

Figure 3 shows an overview of the steps, indicating the section 

of each of the steps. 

 
Figure 3. Overview of the steps of the facade damage detection 

using multi-temporal oblique images 
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3.1 Extraction of the façade image patches from both the 

pre- and post-event images 

The extraction of the façades image patches from the multi-

temporal oblique imagery was accomplished by using the pre-

event 3D point cloud. This point cloud was generated considering 

only pre-event images. However, to have the datasets registered, 

the tie-points were computed from both epochs imagery, which 

forced them to share the same local coordinate system. To define 

and extract the façades, a method similar to the one defined by 

Duarte et al. (2017) was followed. 

 

This approach uses the tie-point point cloud derived from highly 

overlapping unmanned aerial vehicles’ (UAV) images, as input 

for the posterior point cloud plane-based segmentation. In this 

case, dense point clouds generated by image matching were used 

for this task instead of the tie-point clouds used in the original 

approach. 

 

The point clouds were used to determine the building roof 

locations through a plane-based segmentation followed by 

connected component analysis. With the roofs defined, a 

minimum bounding rectangle was fitted to each roof segment. In 

this way, four façades per building were located and could be 

extracted from the images using the projection matrices. More 

details can be consulted in the paper (Duarte et al., 2017). 

 

With this approach, buildings with round shaped roofs or with a 

different geometry other than a square may be impacted by 

assumption of having 4 façades per building. However, from the 

performed tests, such assumption showed a small impact in the 

final quality of the façade detection process (see Figure 4). 

 

 
Figure 4. Example of a segmented round roof. In spite of the 

four façades per building assumption, the façade area is 

captured. 

 

Due to the high overlap of aerial multi-view surveys, a given 

facade might be visible from several images. Analogously, each 

façade should be visible in both epochs. Image pairs were, 

therefore, created associating each pre-event façade image patch 

to all the post-event image patches of the same facade. Table 1 

presents the number of façades and corresponding image pairs 

used in this study (~25 image pairs per façade). Given the low 

number of damaged façades; non-damaged façades had to be 

discarded so that the amount of image pairs was the same for both 

classes. In this way it was possible to carry out the current study, 

otherwise there would only be around 180 image samples. Figure 

5 depicts various façade image patches extracted from different 

images but from the same epoch. 

 

 Image pairs Façades 

Damaged 2274 88 

Not damaged 2272 90 

Total 4546 178 

Table 1. Number of façades and image pairs considered in this 

study.  

 

 

 
 

 

 

 

 

  
 

Figure 5. Examples of the same façade and same epoch, from 

different images. 

 

3.2 Mono- and multi-temporal façade damage detection 

using convolutional neural networks. 

Five different CNN approaches were tested using the image pairs 

(or post-event images in the mono-temporal case) to assess the 

value of multi-temporal image data in the image classification of 

façade damages. In the following sub-section, the two mono-

temporal experiments are described, while sub-section 3.2.2 

explains the multi-temporal experiments. 

 

Since the paper published by Krizhevsky et al. (2012), the use of 

convolutional neural networks has become an established 

machine learning technique for, among others, image-based 

tasks. Convolutional neural networks are built by hierarchically 

stacking of convolutions that enable a network to learn from 

lower level features to higher levels of abstraction. Several 

improvements have been proposed by the computer vision 

community and were also successfully used in image-based 

remote sensing applications. The depth of the proposed networks 

has increased since then. However, deeper networks are usually 

harder to train, given the high number of parameters. Residual 

connections, where the input of a given layer is the summation of 

previous layers, have been then proposed (He et al., 2016). This 

allowed to have deeper networks while maintaining the number 

of parameters low. Moreover, to consider feature information not 

only from the previous layer but also from preceding layers, 

allows to consider more feature information that otherwise could 

be lost in backpropagation (Yu et al., 2017).  

 

Another major development of convolutional neural networks is 

the use of dilated convolutions (Yu and Koltun, 2016). These 
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convolutions are applied to a given input using a kernel with pre-

defined gaps. For example, a convolution with a kernel of 3x3px 

and dilation 2, has a receptive field of 7x7px, while maintaining 

a low number of parameters. In this way, more context is 

captured without the need of aggressive down-sampling of the 

feature maps throughout the networks.  

 

In the proposed work, the dilated convolutions aimed at capturing 

the context of the fine details such as the damage along the 

façades (see Figure 1). In this case a maximum dilation of 4 was 

adopted, with a receptive field of 11x11px. The smallest feature 

map size of the network was 28x28px.  

 

In Figure 6, the base network (stream in the figure) used in the 

approach is shown (this is the stream used in Figure 7). This was 

built with sets of convolutions, batch normalizations and relu 

(blue rectangles in Figure 6) (Ioffe and Szegedy, 2015). These 

may or may not have a residual connection indicated by a + in 

the figure. While these connections are used during the increasing 

dilation, they are eliminated in the last set of convolutions where 

the dilation is decreasing. These latter connections were removed 

in order to capture the more local features that might have been 

lost due to the aggressive dilation increase (Yu et al., 2017). The 

down-scale of the feature maps is performed with striding 2 

instead of 1, red rectangles in Figure 6. 

 

 
Figure 6. Network used for the mono- and multi-temporal 

approaches. Residual connections are indicated with a + sign. 

The red rectangles means that striding of 2 instead of 1 was 

used. conv stands for convolution + batch normalization (BN) + 

relu. 

 

The network was empirically tested. For example, the number of 

filters had to be kept to a maximum of 128. Otherwise, the 

network would easily overfit the training data. In this case it was 

found to be better to have a deeper network but with a smaller 

number of filters. Increasing the dilation also did not affect the 

result. 

 

 
Figure 7. Mono- and multi-temporal approaches considered in 

this study. * refers to the network used in Duarte et al. (2018a). 

 

3.2.1 Mono-temporal approaches 

 

Two mono-temporal approaches were tested, depicted in Figure 

7. The mono-temporal traditional (MN-trd) approach directly 

used a network trained with aerial image patches containing 

debris and rubble piles, as in Duarte et al. (2018a). It was trained 

using aerial image patches of several geographical locations, 

including datasets similar to the L’Aquila one (e.g. Amatrice, 

Italian city with similar urban design of L’Aquila). Instead of 

considering the whole façade as in the other mono-temporal 

approach, it divides the post-event façade image patches into 

smaller 50x50px image patches which are then fed to the network 

as described in Duarte et al. (2018a). In the case a given façade 

image patch contains at least 1 smaller image patch classified as 

damage the whole façade is considered damaged. 

 

The other mono-temporal approach (MN-fac) used as input only 

the post-event façade image patches defined in section 2, divided 

in two classes, damaged and not damaged. These were then fed 

to the stream defined in Figure 6. 

 

3.2.2 Multi-temporal approaches 

 

As indicated in Figure 7, three multi-temporal approaches were 

tested. These aimed at understanding how the different streams 

of data (pre- and post-event) could be merged together for an 

optimal image classification of façade damages. The merging of 

the different epochs/modalities of data within a CNN has been 

the focus of many recent research in change detection (Daudt et 

al., 2018; Wang et al., 2018), but also in merging multi-modal 

data (Audebert et al., 2018; Xu et al., 2017). Two distinct 

approaches are tested: early and late fusion of the epoch-specific 

streams. For example, multi-temporal 1-stream (MT-1str) 

concatenated the pre- and post-event images in the image 

channels direction which was subsequently fed to the network. 

On the other hand, multi-temporal 2-stream (MT-2str) 

considered a different set of convolutions for each epoch and then 

concatenated these two streams. Multi-temporal 2-stream-FC 

(MT-2str-FC) is similar to the 2-stream; however, it has a set of 

two fully connected layers after the concatenation of the two 

streams. These fully connected layers were intended to merge the 

different streams of features before the classification layer, 

instead of considering the concatenation directly (Vo and Hays, 

2016).  

 

In addition, dot product and Euclidean distance were also tested 

instead of the concatenation; however, these performed poorly. 
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Given the small amount of data several fine-tuning approaches 

were tested: a) Resnet (He et al., 2016) with ImageNet weights, 

b) using built vs non-built weights (Duarte et al., 2018b), and c) 

using a network used for the image classification of debris and 

rubble piles from aerial images (Duarte et al., 2018a). However, 

these approaches did not perform as well as training from scratch. 

 

4. EXPERIMENTS AND RESULTS 

All the networks were trained with learning rate of 0.1 and weight 

decay of 10^-4. Only one loss function (binary cross-entropy) 

was used in each experiment. The classification part of the 

network was performed using a sigmoid activation over the last 

layer of a given network. The experiments were performed with 

early stopping, e.g. when the validation data loss stopped 

improving.  

 

Data augmentation was performed to further address the issue of 

low number of samples. However, given the fact that we are 

using a network with batch normalization, light data 

augmentation was used (Ioffe and Szegedy, 2015). The skew and 

zoom were limited to small intervals (+/- 5 deg.) in order to make 

the damages still visible on the façade image patch. Apart from 

the zoom and skew, horizontal flips were also used. The same 

data augmentation parameters are applied to both inputs (pre- and 

post-event images). 

 

The training and validation split were performed at an image pair 

level, hence 70% of the image pairs were used for training and 

30% for validation. The split also took into account that no façade 

is present in both training and validation, as several image pairs 

exist per façade. Since the split was made considering the image 

pairs, there were 19 damaged façades and 8 not damaged façades 

used for validation. 

 

The two tables below (Table 2 and Table 3) show the results on 

validation data: recall precision and accuracy. This is presented 

both at an image/image-pair level and on a façade level in Table 

2. Table 3 presents the TP, TN, FP, FN at a façade level. An error 

analyses only at an image pair level would not be enough to 

describe the behaviour of the tested approaches. Hence, the error 

is also determined at a façade level, which considered a majority 

filtering on the predictions of the image pairs (or image in the 

mono-temporal approaches) related to a façade. 

 

Equations 1, 2 and 3 formalize the used accuracy metrics. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑃

# 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

 Image/image-pair 

level 

Façade level 

 Rec. Prec. Acc. Rec. Prec. Acc. 

MN-trd 0.67 0.50 0.51 0.66 0.63 0.52 

MN-fac. 0.52 0.26 0.52 0.83 0.26 0.44 

MT-1str 0.76 0.39 0.63 0.37 1.00 0.56 

MT-2str 0.75 0.50 0.67 0.92 0.58 0.66 

MT-2str-FC 0.73 0.78 0.75 0.92 0.58 0.66 

       

Table 2. Precision, recall and accuracy (0-1) for the defined 

models. This is given at an image or image pair level and on a 

facade level. 

 

Overall, from Table 2 the best performing approach was MT-

2stream-FC. Regarding only the mono-temporal approaches, the 

use of a traditional approach was found to be preferable. In MN-

fac, the results were worse than randomly assigning a label to the 

image pairs, i.e. the network was not able to learn from the given 

input.  

 

While at an image pair level MT-2stream-FC had better results, 

it did not affect the final result at a façade level when compared 

with MT-2stream. 

 

From Table 3, the MT-2stream and MT-2strean-FC had the same 

result with both the higher count of true instances and lower 

count of false instances.  

 

 Façade level 

 TP TN FP FN 

MN-trd 12 2 7 6 

MN-fac. 5 7 14 1 

MT-1str 7 8 0 12 

MT-2str 11 7 8 1 

MT-2str-FC 11 7 8 1 

 

Table 3. True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN) when evaluating the 

models at a facade level. 27 façades are considered in validation 

(19 damaged and 8 not damaged) 

 

Figure 8 shows the results on several façades regarding the multi-

temporal approach. The left columns present the pre and post 

event façade image patches and on the right the activation of the 

post event façade when fed to the MT-2stream-FC. The coloured 

bar on the left indicates the prediction for a given image pair, D 

for damaged and ND for not damaged. The green and red colour 

stand for a correct or wrong prediction, respectively. The 

activations were extracted from the activation layer after the last 

set of convolutions of each of the approaches. The rows a, c and 

f indicate image pairs that were labelled as damaged, and the 

remaining as not damaged. Only in the last example the network 

failed to classify the image pair as damaged. The activations 

indicate the focus of the network on a given post-event façade 

image patch. As can be observed, signs of spalling were detected 

by the multi-temporal approach (row a and b of Figure 8), while 

the detection of cracks (row e of Figure 8) was unsuccessful. 

 

Figure 9 shows some results of the traditional approach, which 

for example does not detect the spalling (a and e), whereas it was 

detected by the MT-2stream-FC (see Figure 8 a). In spite of 

detecting the façade patch relative to the cracks (d), the 

traditional approach detected a cluttered part of that façade as 

damaged. This figure also shows that since this network is trained 

on image samples containing debris and rubble piles, partial 

collapses were correctly classified as damaged. In façade b) a not 

damaged area was classified as damaged due to the cluttered 

scene. 

 

5. DISCUSSION 

Overall, the proposed framework using multi-temporal imagery 

outperformed the mono-temporal approaches when performing 

the image classification of façade damages. However, the poor 

results reported in this study reflect the difficulty in the detection 

of damage along the façades from manned aerial oblique 

imagery. Especially when these damage evidences are smaller 

signs of damage such as cracks and small portions of spalling. 
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Figure 8. Pre- and post-event façade image patch and one of the 

activations coming from the activation layer of the last 

convolutional set of the MT-2str-c. On the left column, red 

means the prediction was correct and green means the 

prediction was incorrect. D stands for damaged and ND for not-

damaged 

 

The traditional mono-temporal approach, which used a network 

trained with image samples containing mostly debris and rubble 

piles resulted in a high rate of false positives and negatives. This 

can be seen in the accuracy metrics, and also in the examples of 

predictions shown in the results. This type of behaviour was 

previously reported in studies that used such type of network for 

façade damage detection (Duarte et al., 2017). The other mono-

temporal approach that considered as training the façades was not 

able to outperform the traditional mono-temporal approach.  

 

 

 
a) b) 

  
c) d) 

 
 

 

e) f) 

Figure 9. Several examples of classification with the mono-

temporal traditional approach. Red squares indicate damaged 

regions within each façade patch. 

 

As expected, all the multi-temporal approaches outperformed the 

mono-temporal ones. Specifically, the multi-temporal approach 

MT-2stream-FC had the best results when considering the 

evaluation on an image pair level. However, at a façade level the 

results were the same as MT-2stream. 

 

The results also indicate that it is better to have a set of epoch 

specific convolutions that are merged at a later stage of the 

network (see MT-1stream vs MT-2stream and MT-2stream-FC). 

Ahmed et al. (2015) reported that for person re-identification it 

would be better to have a specific stream for each branch, being 

merged at a later stage. However, Daudt et al. (2018) and Vo and 

Hays (2016) reported that it would be preferable to have the 

images concatenated and then have a single set of convolutions, 

rather than having epoch specific convolutions for each epoch.  

 

Given the literature and the reported results, it seems that the 

merging of the streams is application dependent. Hence, for the 
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image classification of façade damages, intra-epoch features play 

a role in the final damage score. 

 

Furthermore, while the concatenation of the feature maps was the 

best approach to merge the different streams, this may be further 

improved as reported in Ahmed et al. (2015). The authors 

successfully used a cross-input neighbourhood differences which 

improved the result. 

 

The results shown for the MT-2stream-FC (Figure 8) indicate 

that in spite of localizing correctly several instances of spalling, 

it struggled to detect cracks. 

 

Another issue is the occlusions due to urban design. In this study 

many façades were not visible in the aerial oblique images. 

Hence, such areas should be detected so a further UAV flight can 

be planned and the occluded façades surveyed (Nex et al., in 

review).  

 

In this study a low amount of data was used, with only 88 

damaged façades being considered. The overlap on such aerial 

imagery datasets was taken advantage of by creating multiple 

image pairs per façade. However, overall the amount of data is 

still low, which likely impacted the results. This is especially 

visible in the mono-temporal approach where the network was 

not able to learn. 

 

 

 

6. CONCLUSIONS AND FUTURE WORK 

This paper assessed the use of multi-temporal aerial oblique 

imagery for the image classification of façade damages. Three 

different multi-temporal approaches using convolutional neural 

networks were tested and compared against two mono-temporal 

approaches.  

 

The mono-temporal approaches all performed worse. However, 

it was found that it is preferable to use a traditional approach 

trained with image samples depicting rubble piles and debris, 

rather than use a mono-temporal approach trained only with the 

set of façades. This may be due to the lack of damaged façades, 

where the model is not able to generalize the damage appearance 

given the low amount of data, while the traditional approach can 

at least identify the partial and totally collapsed façades. 

 

Regarding the multi-temporal approaches, not all the methods 

performed in the same way. It was found that it is preferable to 

have an epoch-specific set of convolutions, instead of 

considering a single stream network where both epochs’ inputs 

are concatenated and then fed to a network. Hence, epoch-

specific feature information is valuable for the image 

classification of façade damages. 

A transversal issue to this study were the occlusions due to urban 

design. In such cases the manned-aerial platform could not 

observe the façade, where the use of a more directed UAV flight 

could aid in surveying such occluded façades. 

 

A central aspect of the contribution was to take advantage of the 

redundant information in multi-view aerial imagery. While the 

number of damaged façades was low (88), a mean of 

approximately 25 image pairs per façade is considered due to the 

redundancy present in such datasets. Only in this way it was 

possible to test the presented approach. 

 

Despite the better results using multi-temporal imagery, the 

accuracy is still only 66%. Hence, more research is needed to 

improve the detection of façade damages. One of the issues might 

be the low number of damaged façades; non-damaged ones were 

discarded with the objective of having a balanced set of damaged 

and non-damaged image pairs for training. In future work this 

unused set of data should be taken advantage of, for example, 

with oversampling where new image samples are generated from 

the initial set of images (Buda et al., 2018). Given the small signs 

of damage, sometimes only affecting a few pixels, a 

segmentation and/or localization approach could improve the 

façade damage detection rate. 
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