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ABSTRACT

This article is mainly motivated by the growing needs for highly resolved measurements for
wall-bounded turbulent flows and aims to proposes a spatial correction coefficient in order to
increase the wall-shear stress sensors accuracy. As it well known for the hot wire anemometry, the
fluctuating streamwise velocity measurement attenuation is mainly due to the spatial resolution and
the frequency response of the sensing element. The present work agrees well with this conclusion
and expands it to the wall-shear stress fluctuations measurements using electrochemical sensors and
suggested a correction method based on the spanwise correlation coefficient to take into account
the spatial filtering effects on unresolved wall-shear stress measurements due to too large sensor
spanwise size.

Keywords: Spatial resolution; Wall-shear stress measurements; Electrochemical method; Inverse
method.

NOMENCLATURE

C active ion concentration in the
layer

C0 active ion concentration (in solution)
D diffusion coefficient
f ∗ dimensionless frequency
h channel height
subscript m denote the measured value
subscript r denote the real value
subscript c denote the corrected value
l sensor length
supercript + inner scaling (using uτ and ν)
subscript ∗ dimensionless value (mass

transfer)
Pe Péclet number
R spanwise correlation coefficient
Reτ = h+/2 Kármán number
S velocity gradient at the

wall
S average velocity gradient at the wall
Sh Sherwood number
U mean velocity
u′ fluctuating velocity
uτ friction velocity
x streamwise direction
y normal direction
z spanwise direction

τ mean wall-shear stress
τ′ fluctuating wall-shear stress
ν cinematic vicosity
δc diffusion thickness
ξz spanwise shift
α correction coefficient
λ constant parameter

1. INTRODUCTION

So far, there is no consensus about wall-shear
stress statistics of wall-bounded flows (e.g.,
pipe, channel and boundary layer)(Buschmann
and Gad-el-Hak 2010; Monty et al. 2009;

Monty et al. 2009), the Reynolds number
dependency of such quantities is not fully
explained yet (Wu and Moin 2010). These
dependencies are still a controversial topic,
although many investigators have been studying
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wall-bounded flow (Alfredsson et al. 1988;
Durst et al. 1996; Degraaff and Eaton
2000; Morrison et al. 2004; Hutchins
and Marusic 2007; Hultmark et al. 2010).
The physical reason is not clearly understood
and need to have access to well resolved
measurements in wall-bounded turbulent flows
and especially in the near wall region. But
in the literature, some discrepancies between
experimental and numerical data of such flows
have still observed and reported by different
groups of researchers (Fischer et al. 2001;
Örlü et al. 2010). It is now well known
that these discrepancies observed between
high-resolved direct numerical simulation and
experimental velocities statistics could be
explained and are attributed to unresolved
experimental measurements. In a recent letter,
Örlü and Schlatter (Örlü and Schlatter 2011)
demonstrated that this discrepancy is linked to
the spatial resolution effects using spanwise
filtering DNS Data in order to mimic the
experimental measurements limited in spatial
resolution. A spatial filtering over small
flow scales may occurs when the length of
the probe used to measure turbulent quantities
close to the wall is larger than the size of
these turbulent small scales. Clear attenuation
of the small-scale DNS energy was observed
as the filter length was increased and good
agreement was noted with hot-wire experiments
from Österlund thesis (Österlund 1999) over
a range of sensing lengths up to l+ =
60, where l is the sensor length and the
inner scaling is denoted by + superscript.
Insufficient spatial resolution is known to affect
hot-wire measurements accuracy and could
account for some discrepancies in published
results also mentioned in the well-known and
well-cited study of Ligrani and Bradshaw
(Ligrani and Bradshaw 1987). Consequently,
hot wire anemometry (HWA) measurements
spatial resolution could be explained the main
difference between DNS and experimental
velocities statistics in the near wall region
especially for high Reynolds numbers. Most
experimental studies on the topic used these
popular techniques that generally displays a
very low spatial resolution due to the relatively
large spanwise measuring volume or sensing
length (Cameron et al. 2010). Unresolved
velocity measurements in turbulent flows close
to walls resulting from the finite size of a
hot-wire probe can be however corrected. A
number of correction schemes are available in
the literature over the last ten years, based on
heuristic curve fitting (Monkewitz et al. 2010;
Hutchins et al. 2009) or physical models

(Talamelli et al. 2013; Smits et al. 2011;
Segalini et al. 2013). With regard to its progress
to obtained well resolved turbulent velocities
statistics, only few studies are devoted to direct
wall-shear stress measurements. For example,
the classical way to determine the relative
wall-shear stress fluctuation is generally not
based on direct wall-shear stress measurements,
but on an asymptotic behavior of velocities
measurement as follows:

lim
y+→0

√
u′2+

U+
=

√
τ′2

τ
(1)

with U , the mean velocity, u′, the fluctuating
velocity, τ, the mean wall-shear stress, τ′, the
fluctuating wall-shear stress and y, the distance
from the wall. So, another possibility to explain
the systematic departure of the experimental
wall-shear stress fluctuation compared to
the DNS, could be also accounted by the
accuracy of the values found from the limiting
behavior of the turbulence intensity that are
slightly under-estimated. Indeed, velocity
measurements suffer from a lack of accuracy
close to the wall, especially due to the wall heat
transfer phenomena for HWA measurements.
Of the several methods available for the
direct time-series measurement of wall-shear
stress, the hot-film sensor is perhaps the most
widespread Chew et al. (1998). As also
mentioned by Örlü and Schlatter (Örlü and
Schlatter 2011), there has been considerable
progress over the last decade in innovative
techniques to measure directly the mean and
especially fluctuating wall-shear stress (Naqwi
and Reynolds 1991; Miyagi et al. 2000;
Brückeret al. 2005). Nevertheless, the main
problem of these pointed techniques is the poor
frequency response and there is still room for
improvement. In order to discuss the anomalous
decrease in overall experimental statistical wall
measurements, the electrochemical method
(see Hanratty and Campbell (Hanratty and
Campbell 1996) for a thorough review), based
on the determination of the limiting diffusion
current at the surface of an electrode, is used
to provide information on the wall-shear stress
fluctuations. We also proposed to expand the
theoretical correction for non-uniform flow,
introduced by Mitchell and Hanratty (Mitchell
and Hanratty 1966) based on the spanwise
correlation coefficient to take into account the
spatial filtering effects on the wall-shear stress
measurements.
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Fig. 1. Boundary conditions for the numerical solution of Eq. 3 on the study control area
(L∗,y∗max).

2. INVERSE METHOD FOR THE
DETERMINATION OF THE WALL
SHEAR STRESS

In the presence of an inert electrolyte in excess,
the governing mass transfer equation, in the
case of a two-dimensional flow (xy plan), and
assuming further that the mass boundary layer
is very small compared to the viscous boundary
layer, can be written as:

∂C
∂t

+yS(x, t)
∂C
∂x
− y2

2
∂S
∂x

∂C
∂y

= D
(

∂2C
∂x2 +

∂2C
∂y2

)
(2)

where

S(x, t) =
∂U
∂y

∣∣∣
y=0

is the wall shear stress, C the concentration
of the active species and D the diffusion
coefficient.

Most of the works assume that S(x, t) = S(t)
over the study control volume. This assumption
remains valid if the integration domain is small
compared to the spatial scales of the flow.
In these conditions, Eq. 2 becomes using
dimensionless quantities:

f ∗Pe−2/3 ∂C∗

∂t∗
+y∗S∗

∂C∗

∂x∗
= Pe−2/3 ∂2C∗

∂x∗2
+

∂2C∗

∂y∗2
(3)

where : x∗ = x/l, y∗ = y/δc , t∗ = t. f , C∗ =
C/C0, S∗ = S/S, l is the width of the electrode
(probe), S is the mean wall shear stress and with,

δc =
( l.D

S

)1/3
, f ∗ = f

l2

D
, Pe = S

l2

D

are respectively, the diffusion thickness,
the dimensionless frequency and the Péclet
number. The Sherwood number (Sh), which
is a dimensionless measured limiting diffusion
current, is defined as:

Sh(t) = Pe1/3
∫ 1

0

(
∂C∗

∂y∗

)
y∗=0

dx∗ (4)

In steady regime, by neglecting the tangential
distribution for high Péclet numbers, Eq. 3 can
be written as:

y∗S∗
∂C∗

∂x∗
=

∂2C∗

∂y∗2
(5)

This equation has a dimensionless analytical
solution (Mitchell and Hanratty (1966)) as
follow:

Sh = 0.807Pe1/3 (6)

This solution is commonly referred to Lévêque
solution, where Sh denotes the Nusselt mass
number, commonly called Sherwood number.
In the case of small flow fluctuations, the use of
this relationship in quasi-steady regime remains
involved. However, if the amplitude of these
fluctuations becomes important, solution of Eq.
3 is substantially different from that known as
quasi-steady one. Therefore, it appears a phase
shift, an attenuation of the amplitude (compared
to the real one) and the appearance of higher
order harmonics. All these phenomena are due
to a capacitive effect caused mainly by the mass
boundary layer. In our case, Eq. 3 was solved
numerically using the finite volume method.
An implicit approach with upwind scheme was
used on time with a structured and variable
mesh. This mesh was tight in the vicinity of the
probe boundary, where the concentration varies
a lot, near the wall, and progressively relaxed
elsewhere. The boundary conditions for the
numerical solution, are shown in Fig. 1.

After a direct solving of Eq. 3 starting from
a known wall shear stress, the concentration
field is therefore used to calculate the Sherwood
number. The numerical integration of this
Sherwood number was done using the Simpson
method (accurate method) on more than 100
cells along the probe surface (along x∗).
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Fig. 2. Flow sheet of the inverse method.

In fact, the inertia of the concentration
boundary layer manifests itself in flows with
variable wall shear stresses. Due to the
low molecular diffusivity of the species which
compose the electro-diffusional solution, the
limiting diffusion current exhibits a phase
shift and smaller amplitude than in the case
without inertia (Ambari et al. 1985).
This inertia is one of the limiting factors of
electro-diffusion method (Tihon, Legrand, and
Legentilhomme 1995; Soboliket al. Sobolik
et al.1987). Thus, the true wall shear
stress S evaluation from the measured limiting
diffusion current (or dimensionless current Sh),
cannot be easily obtained because of the big
nonlinearity between S and Sh, especially when
fluctuations are important. Only, a linearization
between Sh and S (assuming many hypotheses:
permanent regime or very small wall shear
stress fluctuations, high Péclet numbers, and
so on...) can be used to transform measured
limiting current into wall velocity gradient
(Ambari et al. 1985; Soboliket al. Sobolik
et al.1987).

In practice, the direct problem (direct numerical
solution of the convection-diffusion equation)
cannot be useful for us, because we measure a
mass transfer (Sherwood number) from which
we must determine the wall shear stress.
Thus, we must inverse the convection-diffusion

equation in order to find a wall velocity gradient
S from a measured Sherwood number (mass
transfer) Sh. Indeed, Eq. 3 cannot be inversed
neither analytically, nor numerically. Only
a numerical specific procedure can be used
to approach this inversion, using the called
indirect problem or inverse method. The inverse
problem (Mao and Hanratty 1991; Rehimi
et al. 2006), takes into account of the
inertia parameter. The principle of this method
is well described for the heat conduction
problems (Chantasiriwan 1999; Tortorelli and
Michaleris 1994; Chantasiriwan 2001; Beck
et al. 1985). Until recently, the analysis
of the wall shear stress from mass transfer
measurement used linear approaches (Lévêque
quasi-steady method and transfer functions).
Furthermore, the majority of the studied cases
were validated under a specific hypothesis (for
a specific range of Péclet numbers (Ling 1963)
or a specific range of oscillation frequencies
(Sobolik et al. 1986), neglecting also the
gap effect (Dumaine 1981). An important
consideration was therefore considered for the
inverse method using the the polarography
technique, by taking into account of the
frequencies effect, the inertia on the probe (axial
diffusion effect) and the angle effect (using
tri-segmented probe). This inverse method was
validated in some practical situations (Berrich
et al. 2011).
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The inversion is based on the minimization
of the difference between the experimental
measurements (Sherwood numbers) and those
calculated from convection-diffusion equation.
By minimizing this gap, we can obtain the
desired functional. In our case, we want to
minimize the gap between measurements
of limiting diffusion current converted into
experimental Sherwood numbers, and mass
transfer obtained numerically using the
convection-diffusion equation for the same
conditions. The objective is to find the true
wall shear stress. To minimize the difference
between the numbers of Sherwood measured
and calculated, we must inverse the convection
diffusion equation (Rehimi et al. 2006).

The application of an inverse method to the
mass transfer problems is original. This method
carries numerical inversion of the convection
diffusion equation, which cannot be reversed
analytically, in order to obtain the true wall
shear stress in the case of unsteady flows. In
our case, the inverse method is based on a
sequential estimation in order to simulate the
response of electro-diffusion probe to a wall
shear stress S(t) by resolving the convection
diffusion equation. It was introduced by Beck
et al. (1985) to solve heat transfer problems.
Then Mao and Hanratty (1992) and Patankar
(1980) used it to solve mass transfer problems.
This method was well developed by Berrich
(Berrich et al. 2011; Berrich et al. 2013a;
Berrich et al. 2013b) for known simulated
solutions of the convection-diffusion equation,
and consists in the iterative determination of the
wall velocity shear stress from the measured
mass transfer. The flow sheet of this method
is presented in Fig. 2. Starting from a
guessed wall shear stress obtained using a
classical method (Lévêque or transfer function),
the convection diffusion equation is solved
numerically to obtain mass transfer coefficient.
The wall shear stress is then corrected and
substituted in the convection diffusion equation,
and new mass transfer coefficient is calculated.
This process consists in the minimization of the
difference between experimental data and the
mass transfer coefficient obtained numerically
thanks to the numerical inversion. The finite
volume method with implicit scheme was
applied by Beck et al. (1985). To spare
the calculation time, resolution of the direct
problem was optimized, and an optimization
method was used in order to compress the
calculation matrix of the convection-diffusion
equation (Jeremy 1999; Markovic 1995). This
allows to perform the method.

3. SETUP AND METHODS

An electrochemical cell consists of two
electrodes (Fig. 3). The working electrode
has a very small dimension to allow a local
study of the mass transfer phenomena. The
counter-electrode has a great dimension to
have diffusion control on the working electrode
only. The polarization voltage is chosen to
obtain a diffusional plateau on current-voltage
curves, which also corresponds to a zero
where C0 is the initial concentration of the
reactive ion, As the active surface of the
probe, the width of the rectangular probe,
D the diffusion coefficient, F the Faraday
number, n the number of electrons exchanged
by a stoichiometric reaction and Sh the
Sherwood number. The Sherwood number is a
dimensionless number which is proportional to
the rate (mass diffusivity/molecular diffusivity).

I = n.F .C0.A.
D
l
.Sh (7)

where Sh is defined by Eq. 4.

Fig. 3. Sketch of an electrochemical probe
with its electronic circuit.

The wall-shear stress is experimentally
determined using a 0.1mm×0.5mm rectangular
electrode (Fig. 4) in a turbulent channel
flow (Fig. 5). The electrolytic solution
used is a mixture of ferri-ferrocyanide of
potassium (10 mol/m3) and potassium sulphate
(240 mol/m3). The chemical reaction at the
electrodes is described by:

Fe(CN)4−
6 
 Fe(CN)3−

6 + e− (8)

The limiting diffusion current was converted
to voltage using a Keithley 6514 system
electrometer, and acquired using a 12 bit
A/D converter from an acquisition system
Graphtec GL1000 that was controlled by a
computer. The minimum sampling frequency
was set above the u2

τ/ν limit during 300 s for
each measurement.
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Fig. 4. Rectangular sensor used in this study
to evaluate the fluctuating wall-shear stress:

(a) Photography, (b) Detailed diagram.

The set-up originally designed for a turbulent
boundary layer flow detailed in Lagraa et al.
(2004), has been slightly modified to a channel
flow configuration. For more information
about the present experimental apparatus, see
Keirsbulck et al. (2012). The dimensions
of the channel cross-section are 150× 10 mm,
providing a 15 : 1 channel aspect ratio and
the present measuring location was taken at a
distance from the channel inlet of 125h, where
h denote the channel height. Full setup is shown
in Fig. 5.

Fig. 5. Side view of the channel setup.

Very accurate evaluation of the relative wall
shear stress fluctuation was sought after,
consequently two correction processes must be
made to ensure the quality of the wall statistics
measurements. The first one is the frequency
response correction of the electrochemical
sensors and the second one is the spanwise
correction of the non-uniformity flow over the
electrode. We focus, on this second point
and an important discussion will be made in
the last part of this work. Considering the
first point, Mao and Hanratty (1992) have
developed a technique for the inverse problem,
based on a numerical solution of the mass
balance equation. More recently, the inverse
method has been used by Rehimi et al. (2006)
and also validated on transient flow (Zidouh
et al. 2009; Berrich et al. 2011; Berrich
et al. 2013a; Berrich et al. 2013b). The
inverse method was applied in the present
study for the determination of the “true”

wall-shear stress fluctuations of the turbulent
flow for different Kármán numbers (Reτ =
uτ.h/2

ν
, where uτ is the friction velocity). A

typical time history of wall-shear stress with the
quasi-steady assumption and using the inverse
method are both plotted in Fig. 6 and have
shown a significant increase in the wall-shear
stress fluctuation when the inverse method is
used.

Fig. 6. Typical time history of wall-shear
stress fluctuation using quasi-steady
assumption and the inverse methods.

4. RESULTS AND DISCUSSION

In this paper, the study concerned firstly the
correction method of the spatial averaging
of the wall-shear stress fluctuations over the
sensor surface leading to an underprediction
of wall-statistics. As already mentioned
by Alfredsson et al. (1988), it is also
important to size down the sensors compared
with the turbulence structures scale, so that
local values of the fluctuating flow can be
measured. Reiss and Hanratty (1963) suggested
that turbulent velocity fluctuations close to a
wall are dominated by flow structures featuring
small spanwise dimensions and that are greatly
elongated in the flow direction. These results
suggest that spatial averaging in the flow
direction is negligible but that, if the spanwise
dimension of the probe is large compared to
the spanwise dimension of the wall eddies,
the assumption of a homogeneous flow over
the probe surface will not be valid especially
for high Kármán number. In order to take
into account the spatial filtering effects on
the wall-shear stress measurements due to
the size of the wall-shear stress sensor, we
proposed to extend the theoretical correction for
non-uniform flow, introduced by Mitchell and
Hanratty (1966). This formulation based on
the spanwise correlation coefficient related to
the eddy scaling methods recently suggested by
Smits et al. (2011) for streamwise Reynolds
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stress measurements close to the wall. The new
formulation based on eddies concept seems to
work very well for wall-bounded flows. Thus,
for a rectangular electrode, the intensity of the
wall-shear stress fluctuation can be corrected
using the relationship originally proposed by
Reiss and Hanratty (1963):

τ′2m

τ′2r
=

2
l

∫ l

0
(l−ξz)R(ξz)dξz (9)

where, l denotes the width of the rectangular
electrode, R is the spanwise correlation
coefficient and ξz, the transversal shift (Fig. 4b).
Subscripts m and r denote the values measured
and the real values respectively.

At this point, the development is somewhat
arbitrary because of the necessity of introducing
an assumption regarding the variation of the
spanwise space correlation coefficient. The
spanwise space correlation coefficient, defined
bellow,

R(ξz) =
τ′(z)τ′(z+ξz)√

τ′2(z)
√

τ′2(z+ξz)
(10)

is plotted for different authors (Lagraa et al.
(2004), Moser et al. (1999), Österlund
(1999), Py (1990), Lee et al. (1974))
as a function of ξ+z (Fig. 7), data from
Lagraa et al. (2004) are in excellent
agreement, especially with the correlation
from Moser et al. (1999). The spanwise
correlations reveal the existence of peaks,
indicating that the quasi-streamwise structures
were tilted in (x,z)-plane in accordance with
the model suggested by Jeong et al. (1997).
Knowledge of the streaks topology played
a pivotal part in order to design suitable
sensors that could be able to measure the
wall-shear stress fluctuations with a sufficient
accuracy. Assuming the spanwise space
correlation shown in Fig. 7 to be independent
of the Kármán number, we assume that
the distribution R(ξ+z ) = exp(−

( ξ+z
λ+

)2
) fits

correctly with the experimental and numerical
data till ξ+z ≈ 30 with λ+ = 21. This plot
was used for the correction of the non-uniform
flows, using Eq. 9 and the previous fit of the
correlation, leading to the following expression
of the correction coefficient for non-uniform
flows:

τ′2m

τ′2r
=

1
α2 =

λ+
√

π

l+
er f
(

l+

λ+

)
+

(
λ+

l+

)2[
e−
(

l+
λ+

)2

−1
]

(11)

Fig. 7. Spanwise correlation coefficient
against ξ+z from experiments and DNS data.
CHF indicates channel flow data, TBL, the

turbulent boundary layer data and Elec. Ch,
the electrochemical data.

The correction factors α of the relative
wall-shear stress fluctuation due to the spanwise
resolution are plotted in Fig. 8 and fit well with
the spanwise filtering DNS Data from Örlü and
Schlatter (2011).

Fig. 8. Spanwise correlation coefficient
against ξ+z from experiments and DNS data.

The relative wall-shear stress fluctuation
for different l+ is reported in Table 1 with
and without spanwise correction (frequency
response correction are, for both cases,
systematically applied). The measurements
uncertainties on the relative wall-shear stress
fluctuation are estimated to be equal to 0.02
(c subscript denotes the span correction and
the DNS data obtained from Tsukahara et al.
(2005)). Relative wall-shear stress fluctuation
are in good agreement with the DNS values
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when the spanwise correction is applied. But as
mentioned by Örlü and Schlatter (2011), for a
non-dimensional width l+ > 7–8 wall units, the
spanwise averaging effects are quite important
as shown in Table 1. Abe et al. (2001) observed
a similar decrease in the relative wall-shear
stress fluctuation as a function of l+. They
found for Reτ = 180 an asymptotical value of
the relative velocity fluctuation of 0.361 for
l+ = 1.1 and 0.359 for l+ = 4.5. The present
formulation is also of considerable interest
from an experimental point of view and aims at
explaining the seemingly discrepancy between
experimental and numerical relative wall-shear
stress results. The correction method proposed
in the present study could be expanded to the
velocity measurement and developed to remedy
the turbulence intensity attenuation that occurs
close to the wall as previously mentioned
by Ligrani and Bradshaw (1987) using the
corresponding velocity correlation and suitable
λ parameter.

Table 1 Relative wall-shear stress
fluctuation against the spanwise electrode

dimension
Elect. DNS Elect. DNS

Reτ 105 110 390 395
l+ 3.80 2.75 16.80 4.94√

τ′2
τ

0.331 − 0.376 −(√
τ′2
τ

)
c 0.332 − 0.395 −

lim
y+→0

√
u′2+

U+ − 0.335 − 0.398

5. CONCLUSION

The present paper attempts to put forward the
electrochemical technique as an experimental
methodology to contribute to the improvement
of wall turbulence measurements and to
propose a new correction formulation to take
into account the spatial resolution effects for
different sensors up to l+ ≤ 30. This correction
method is base on the spanwise correlation
function in order to take into account the
non-uniform flow behavior observed for large
spanwise sensors. In an experimental point of
view, most of the sensor have a size less than l+

of 30. Consequently, our present formulation
seems to be of interest to improve the relative
wall-shear stress fluctuation accuracy and to
explain some of the discrepancy observed in
the literature concerning this statistical quantity.
The use of inverse method was important in
this study to obtain the local and instantaneous
“correct” wall shear stress. For the use of
electrochemical measurement technique with

higher fluctuations of the Sherwood number, all
linear approaches create amplitude attenuation
and phase shifts, and the inverse method
remains the only good solution.
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