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ABSTRACT 

In this article the possibility to use Eulerian approach in the conventional ISPH method in simulation of 
internal fluid flows is studied. The use of Eulerian approach makes it possible to use non-uniform particle 
distributions to increase the resolution in the sensitive parts of the domain, different boundary conditions can 
be employed more freely and particle penetration in the solid walls and tensile instability no longer require 
elaborate procedures. The governing equations are solved in an Eulerian framework containing both the 
temporal and local derivatives which make the momentum equations non-linear. Some special treatment and 
smaller time steps are required to remedy this non-linearity of the problem. In this study, projection method is 
used to enforce incompressibility with the evaluation of an intermediate velocity and then this velocity is 
projected on the divergence-free space. This method is applied to the internal fluid flows in a shear-driven 
cavity, Couette flow, a flow inside a duct with variable area and flow around a circular cylinder within a 
constant area duct. The results are compared with the results of Lagrangian ISPH and WCSPH methods as 
well as finite volume and Lattice Boltzmann grid based schemes. The results of the studied scheme have the 
same accuracy for velocity field and have better accuracy in pressure distribution than ISPH and WCSPH 
methods. Non-uniform particle distributions are also studied to check the applicability of this method and 
Good agreement is also observed between uniform and non-uniform particle distributions.  

Keywords: Eulerian; Smoothed particle hydrodynamics; Meshfree; Incompressible flow. 

1. INTRODUCTION

The Smoothed Particle Hydrodynamics (SPH) was 
initially developed for astrophysical problems in 
1977 (Gingold and Monaghan 1977; Lucy 1977). 
In the past couple of decades, this meshfree 
Lagrangian method became popular in many 
branches of computational fluid dynamics, such as 
hydrodynamics (Lee 2007), heat transfer (Danis et 
al. 2013) and fluid-solid interaction (Amini et al. 
2011). Traditionally, the pressure is explicitly 
evaluated from a weakly compressible equation of 
state, which enforces another time step criterion 
related to a virtual speed of sound. The sound 
speed should be at least 10 times higher than the 
maximum flow velocity to limit the 
compressibility effects below 1% (Monaghan 
2005). This weakly compressible smoothed 
particle hydrodynamics (WCSPH) method is easy 
to program but it has some shortcomings. Most 
importantly, it requires a very small time step 
related to the virtual speed of sound as stated 
above. The next drawback is the unnatural 
pressure fluctuations which can cause numerical 
instabilities, especially when the pressure gradient 
is one of the main driving forces of the flow. To 
prevent these problems and achieve a more 

physical pressure field, one can use an 
incompressible SPH method. Cummins and 
Rudman (1999) implemented the projection 
method into the SPH for the first time to enforce 
incompressibility constraint. The projection 
method was first used to solve incompressible 
Navier-Stokes equations by Chorin (1968) for 
Eulerian grid based methods. This method uses a 
fractional step with the evaluation of an 
intermediate velocity field without considering the 
pressure terms initially, and then enforces 
compressibility by projecting this velocity field 
onto a divergence-free space. In a more recent 
study, Lee et al. (2008) compared the weakly 
compressible SPH with an Incompressible SPH 
method and showed that in spite of the need to 
solve an elliptic pressure Poisson equation in each 
time step, an ISPH method is in general more time 
efficient than a WCSPH because of larger time 
steps allowed.  

As explained previously, the SPH is traditionally a 
Lagrangian method. The use of a Lagrangian 
method in Computational Fluid Dynamics has 
both advantages and disadvantages. As one of the 
most notable advantages, it can be stated that the 
capability of modeling free surfaces and 
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interfacial boundaries is inherently available in a 
Lagrangian method. In spite of these capabilities, 
a Lagrangian method may have some major 
drawbacks which have limited the use of 
Lagrangian meshfree methods such as SPH to 
some very slim range of problems. Firstly, a 
Lagrangian method has some serious defects 
concerning the boundary conditions, specially the 
outflow boundaries where the particles leave the 
domain. Secondly, Lagrangian methods have 
particle clustering problems (Tensile instability in 
SPH), which can greatly affect the stability of the 
method. Different solutions have been proposed to 
these problems, but they may cause extra 
programing difficulties or accuracy drawbacks. 
Furthermore, adaptive refinement and the use of 
non-uniform particle distributions are nearly 
impossible in a Lagrangian method because of the 
large movement and deformations of flows. Lastly 
but most importantly, because of the particle 
motion, the particle penetration into the solid 
boundary and particle escaping from the domain 
of computation are major concerns in the 
Lagrangian meshfree methods and require special 
boundary treatments in contrast to an Eulerian 
method. According to the aforementioned 
problems of Lagrangian methods, it seems 
tempting to use an Eulerian frame of reference in a 
meshfree method such as SPH. Danis et al. (2013) 
used ISPH and Boussinesq approximation to 
model transient natural convection in a square 
cavity for an Eulerian uniform grid, to show the 
upper limit of the accuracy of the SPH method in 
general. 

Some specific particle methods facilitate both 
Eulerian as well as the Lagrangian formulations. 
The most famous is the Particle-In-Cell (PIC) 
method. In this method, first proposed by Harlow 
and his coworkers (Harlow 1957; Evans and 
Harlow 1957), the Lagrangian particles carry the 
mass and position data, while other information is 
saved on an Eulerian mesh. The data are transferred 
via interpolation between the two sets of data nodes.  
Some other variants of PIC method are, Fluid-in-
Cell (FLIC) method (Gentry et al. 1966) to 
overcome particle distortions and Marker-and-Cell 
(MAC) method for modeling free surface flows 
(Harlow and Welch 1965).  

There are also some combined Lagrangian-
Eulerian grid-based methods. The Coupled 
Eulerian Lagrangian scheme (CEL) (Mair 1999) 
utilizes both Eulerian and Lagrangian methods. It 
is conventional in a CEL method to use Eulerian 
formulation in the fluid domains and Lagrangian 
in the solid domains. The interaction between 
these two domains is modeled with some kind of 
special interface treatment and interpolations. The 
Arbitrary Lagrangian Eulerian (ALE) method 
(Benson 1992; Hirt et al. 1974; Belytschko et al. 
2000) is traditionally concerned with rezoning 
schemes and intends to adapt the mesh to 
minimize mesh distortion. In this method the 
Lagrangian motion is evaluated in each time step 
and the algorithm determines to rezone the mesh 
or not. These two methods have been 

implemented in some commercial software and 
are especially attractive in fluid-solid interaction 
(FSI) modeling. In both these methods a highly 
distorted mesh can still produce errors in 
numerical simulations and making these methods 
efficient is a very cumbersome task (Liu and Liu 
2003). 

In this study an Incompressible SPH method is used 
in a pure Eulerian frame of reference. The main 
idea behind a pure Eulerian ISPH approach is that 
the particles are dormant during the solution, and 
the transport equations are rewritten in the Eulerian 
reference containing both the temporal and local 
derivatives. This method is applied to the shear-
driven cavity problem, Couette flow, a flow inside a 
duct with variable surface area and internal flow 
around a circular cylinder. The results of the cavity 
problem are compared with the results of 
Lagrangian WCSPH and ISPH methods as well as 
finite volume and Lattice Boltzmann schemes while 
the results of the Couette flow is compared to the 
analytical results and the variable area duct and 
cylinder cases are compared to finite volume 
results. Also, results of non-uniform particle 
distributions are compared to the uniform 
distributions to study the effects of particle 
distortion on this approach. 

2. GOVERNING EQUATIONS 

2.1 Lagrangian Formulations 

In a Lagrangian Incompressible SPH method, the 
governing equations are the Navier-Stokes 
equations in the Lagrangian framework. These 
include the continuity and momentum equations: 

0u  


                                                          (1) 

 1Du
p u F

Dt



      
 

                           (2) 

Where u


,  , p,   and F


are the velocity vector, 
density, pressure, kinematic viscosity and body 
force vector per unit volume, respectively.  

The projection method is used to calculate the 
pressure field and enforce incompressibility, 
simultaneously. This method divides the solution of 
momentum equation into two steps, the prediction 
and the projection steps (Cummins and Rudman 
1999). 

At the prediction step, the effect of pressure 
gradient is ignored and an intermediate velocity 
field is obtained in the (n+1)th time step. 

 
   * n

nu u
u F

t
       

  
                           (3) 

Where (n) refers to the nth time step and *u


 is the 

intermediate velocity. *u


 is zero on the stationary 
walls and equal to the wall velocity for the moving 
walls. 

In the projection step, the effect of pressure gradient 
is included by the following equation: 
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   11 * 1
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p
t 
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                                 (4) 

One should obtain the pressure at the current time 
step to determine the new velocity. To this end, the 
divergence of Eq. (4) is taken as follows: 

    
 1

1 * 1
n

nu u t p



  

          
 

 
        (5) 

The incompressibility in the next time step is 
enforced by neglecting the first term on the left 
hand side of this equation. It should be noticed that 
the intermediate velocity does not necessarily 
satisfy the divergence-free condition. Consequently 
the pressure Poisson equation is obtained: 

   12 *np u
t

   


                                        (6) 

By solving the above elliptic Poisson equation with 
the proper boundary conditions described in section 
3.3, the pressure at the ( 1)n th  time step is 
evaluated. Consequently the velocity field is 
projected onto the divergence-free space by using 
Eq. (4). It can be observed that by solving the 
pressure Poisson equation, the continuity constraint 
is readily satisfied. 

2.2 Eulerian Formulations 

Now consider applying the projection method to an 
Eulerian reference applied initially by Chorin 
(1968). The total derivative in the momentum 
equation should be written in the Eulerian format as 
follows: 

Du u
u u

Dt t


  


                                                (7) 

And now Eq. (3) is rewritten as: 

 
   * n

nu u
u F u u

t
         

    
               (8) 

It should be noted here that the left hand side of Eq. 
(8) is the discretized form of the local derivative of 
velocity while the left hand side of Eq. (3) is the 
total derivative, giving the velocity in the direction 
of a path line. The convective term is regarded 
henceforth as another force, in addition to the 
viscous and body forces; hence it is only added to 
the prediction step. The other parts of the 
formulation are similar to Eqs. (4-7); keeping in 
mind that the velocity obtained from these 
equations for the Eulerian method is the velocity of 
fixed particles in the next time step. 

The use of simple ISPH formulations will not 
move particles in a way to keep the volume 
constant. This is in contrast to the assumptions of 
constant volume of particles in ISPH method 
which will induce some accumulating numerical 
errors that might hamper the convergence and 
stability of solution. The use of an Eulerian view 
point in conventional ISPH methods will keep the 
particles fixed in space which keeps the volume of 
particles constant. In this manner the mentioned 

errors are totally omitted and good stability and 
convergence criteria are achieved. 

3. SPH FORMULATIONS 

3.1 General SPH Relations 

The main idea behind the SPH methodology is that 
any quantity, such as   have an equivalent integral 
representation as: 

     
Ω

' ' 'x x x x dx       
                              (9) 

Where x


, Ω ,   and 'dx


 are the position vector, 

domain of ( )x


, Dirac delta function and a 

differential element of space in Ω , respectively. 
The Dirac delta function can be approximated by a 
kernel or smoothing function hW  with a smoothing 

length of h (Gingold and Monaghan 1977; Lucy 

1977). Therefore ( )x


 can be approximated as: 

     
Ω

' ' 'hx x W x x dx      
                          (10) 

The kernel hW  is an even, normalized function 

(unity condition), with the smoothing length of h. 
The kernel should also approach the delta 
function, as the smoothing length approaches to 
zero. The other property of the kernel function is 
that its value goes to zero when particle b is out of 
the support domain of a (compact condition). The 
support domain is the effective radius related 
directly to the value of h. Any particle b in the 
support domain of a, will impart forces on a. For 
more properties of the kernel function one can 
refer to references (Monaghan 2005; Liu and Liu 
2003). 

After some transformations (Liu and Liu 2003), 
equation (10) will reduce to: 

 b
a b h ab

bb

m
W r 


                                     (11) 

Where b is any particle in the support domain of the 
particle a, and abr  is the distance from particle a to 

particle b. In this study the value of h is set to 1.2 
times the initial particle spacing (dx). 

A kernel function is generally written as: 

   1
h d

W q f q
h

                                            (12) 

Where d is the dimension of the domain of 
simulation and /abq r h  is the dimensionless 

distance between two particles. The kernel used in 
this study is the quartic kernel (Liu and Liu 2003; 
Morris 1995; Morris 1996) with the support domain 
of 2.5h:  
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   (13) 
The gradient of   is basically expressed as: 

 b
a b a h ab

bb

m
W r 


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Where  a h abW r  is the gradient of the kernel 

function with respect to particle a as: 

   h aba b
a h ab

ab ab

W rx x
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r r
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
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There are also other methods available to express 
gradients and divergences as discussed in (Liu and 
Liu 2003; Monaghan 2005). For example the 
gradient of a scalar can also be represented as: 

 2 2
a b

a a b a h ab
a bb

m W r
  
 

 
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 
              (16) 

As stated in (Monaghan 2005; Lee et al. 2008), Eq. 
(16) is asymmetric, which conserves linear 
momentum and is employed for the pressure 
gradient term. 

The divergence of a vector can also be represented 
in different styles. The relation used in this study is: 

 1
a b ab a h ab

a b

u m u W r


     
                   (17) 

Where au


 is any vector such as velocity and 

ab a bu u u 
  

. 

In an Eulerian framework, some attention should be 
given to the convective term in the momentum 
equation, since this term transforms the equations 
into non-linear partial differential equations. 
Because of this non-linearity, the discretization of 
this term can severely alter the numerical results. 
For an incompressible flow, the convective term 
can also be written as: 

    0u u u u             
   

           (18) 

It is observed in this study that discretizing the 
convective term in this conservative manner, gives 
more accurate results than when the convective 
term is kept in its innate form such as in Eq. (7). 
This is due to the fact that by using Eq. (18), the 
continuity equation is again satisfied. This form of 
the convective term can be discretized by the use of 
Eq. (17). 

The diffusion term in the momentum equation is 
discretized using the relation given by Morris et al. 
(1997): 

   
2 2

ab a h aba a b b
b aba

a b abb

x W r
u m u

r

  
  

 
    

 



 

   

   (19) 
Where 0.1h   is a parameter to prevent division 
by zero. There are also other methods to discretize 
the diffusion term such as those given in 
(Monaghan 2005; Cleary and Monaghan 1999), but 
the present numerical studies showed that Eq. (19) 
gives better and more accurate results. 

The next term that should be discretized is the 
Laplacian of the pressure field in Eq. (6). Higher 
order derivatives can be discretized using the higher 
order derivatives of the kernel function directly as 
described in Liu and Liu (2003). But this direct 
discretization can greatly reduce the accuracy of the 
numerical simulation, and a checker-board effect 
such as that observed in grid-based collocated 
methods, may prevail. Hence another method for 
discretization of the Laplacian is used by Cummins 
and Rudman (1999). In this approximation the SPH 
and finite difference formulations are combined to 
give a relation similar to the diffusion term given in 
Eq. (19), such as: 

 2
2 2

2 ab ab a h ab
a b

a abb

p x W r
p m

r 


 



                (20) 

In this study the pressure Poisson equation is solved 
using conjugate gradient method introduced by 
Hestenes and Stiefel (1952) with the boundary 
conditions described in section 3.3. 

3.2 Time Step Constraint 

The time step limit for this method is obtained from 
the criteria on the Courant and viscous conditions. 

2

min 0.4 ,0.125mint
f are

h h
t

u
C



 
 



 




             (21) 

Where uref is the reference velocity of the problem 
and Ct is a constant coefficient. In Lagrangian 
formulations Ct is set to 1, while in Eulerian 
formulations this parameter is set to a number lower 
than 1, such as 0.2. This lower requirement on time 
step is due to the non-linear convective term which 
requires a lower time step for better stability. With 
some numerical experiments it is observed that a 
value of 0.2 can give stable and accurate results for 
a diverse range of flow Reynolds numbers. 

It should be emphasized that in a Lagrangian 
method another criterion limits the authorized time 
step, related to the Lagrangian inertial acceleration 
of the particles (Lee et al. 2008), which is 
disregarded in the present simulations. 

3.3 Boundary Conditions 

In the SPH, like any other CFD method, different 
methods are available to handle boundary 
conditions. In this study, four kinds of boundary 
conditions are used, namely: solid wall, periodic, 
velocity inlet and pressure outlet boundary 
conditions. 
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There are different boundary types in SPH to 
simulate solid walls, namely the use of repulsive 
force (Monaghan 1994), ghost or mirror particles 
(Cummins and Rudman 1999) and dummy particles 
(Shao and Lo 2003).  

The repulsive force boundary condition, first 
proposed by Monaghan in 1994, uses forces similar 
to inter-molecular interactions. A force is exerted 
on a fluid particle having a distance r from a 
boundary particle, which has the form of Lennard-
Jones potential. This force is increased as the 
distance r between a boundary and a fluid particle is 
decreased, preventing the fluid particles from 
penetrating the wall. 

The mirror particle method is used to enforce the 
no-slip as well as the Neumann boundary 
conditions. In this method the particles whose 
support domain is truncated by a solid boundary are 
reflected on the other side of the wall. The mirror or 
ghost particles have the same pressure as their 
corresponding fluid particles but have velocities 
extrapolated from the fluid and wall velocities. 

One of the sources of inaccuracy in the SPH method 
without any kind of kernel or gradient kernel 
correction is the truncation of the boundary 
particles. This means that, not enough particles 
might be present in the support domain of a fluid 
particle. The other method to model solid walls is 
the use of dummy particles. In this method several 
layers of stationary dummy particles are placed 
parallel to the boundary particles, so the support 
domain of the particles located close to the solid 
wall will not be truncated any longer. These layers 
of dummy particles are linked to their 
corresponding boundary particles and have the 
same pressure and velocity as their linked particles. 
In the present study, dummy particles are used to 
model solid walls. A schematic of fluid, boundary 
and dummy particles is shown in Fig. 1. The 
velocity and the intermediate velocities are held 
constant on the boundary particles, but their 
pressure is calculated from the solution of Eq. (6). 
Afterwards, the pressure of the dummy particles is 
updated to their corresponding boundary particles. 
In this way the Neumann boundary condition on the 
walls is approximated. 

 

 
Fig. 1. Position of boundary and dummy 
particles with respect to fluid particles. 

 

The periodic boundary particle in Eulerian 
viewpoint is straight-forward. Any fluid particle 

near one side of these boundaries whose support 
domain is truncated by periodic boundary have 
mirrored support domain near the other end of the 
domain. 

Velocity inlet boundary condition used in this study 
also employs some layers of dummy particles which 
are placed outside the inlet region, and are linked 
with the fluid particles near the inlet. The velocity 
values of these fluid particles exactly located at the 
inlet are held constant at the desired value, but their 
pressures are calculated from the solution of Eq. 
(6). The dummy particles linked with these inlet 
particles are given the same velocity and pressure 
magnitudes.  

 
Fig. 2. The shear driven cavity with uniform 

particle distribution. 

The pressure outlet boundary condition is generally 
the same as the inlet condition with some associated 
linked dummy particles, with the only exception 
that, the pressure of outlet particles are held 
constant while their velocity values are calculated 
from Eq. (4). 

4. RESULTS 

4.1 Shear Driven Cavity 

The shear driven cavity is a benchmark problem for 
most of the CFD methods and simulations. The 
results of this study are compared with the results of 
Ghia et al. (1982) as well as Lagrangian SPH 
methods for the shear driven cavity for the 
Reynolds numbers of 100, 400 and 1000. Two sets 
of particle distributions of 60 by 60 and 110 by 110 
particles are studied.  In order to compare this 
method with other numerical schemes, the results of 
LBM study of Kumar and Agrawal (2013) are also 
presented for Reynolds numbers of 400 and 1000. 

The cavity modeled in this study is a two 
dimensional 1 by 1 square domain. The domain and 
particle distribution is shown in Fig. 2. The flow is 
given constant density and the upper wall velocity 
of 1. The dynamic viscosity of the fluid is altered to 
give the desired Reynolds numbers. It should be 
stated that in this study, 4 dummy particles are 
assigned to each ordinary boundary particle. The 
extra column of dummy particles for the upper 
corners in Fig. 2 is used to prevent particle 
penetration in the Lagrangian simulation; and for 
the matter of comparison, this set-up is also used for  
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Fig. 3. Velocity profiles for Reynolds number of 100 for shear driven cavity. 

 

 
Fig. 4. Velocity profiles for Reynolds number of 400 for shear driven cavity. 

 

 
Fig. 5. Velocity profiles for Reynolds number of 1000 for shear driven cavity. 

 

the Eulerian case.  

After setting up the problem and generating the 
required input data files and geometries with 
different number of particles (uniform and non-
uniform distributions), the shear-driven cavity is 
simulated for different Reynolds numbers. These 
results are compared with Lagrangian WCSPH 
results, Lagrangian ISPH results of Lee et al. 
(2008), the FV results of Ghia et al. (1982) and 
LBM results of Kumar and Agrawal (2013). 

Then, WCSPH and Eulerian ISPH for uniform 
particle distributions are run at Reynolds numbers 
of 100, 400 and 1000 and the velocity profiles along 
the mid horizontal and vertical lines are plotted in 
Figs. 3, 4 and 5, respectively. As expected, by 
increasing the number of particles, the accuracy of 

all methods is increased. For the Reynolds number 
of 100, the results show better agreement with FV 
data. At this Reynolds number, even the coarser 
particle distributions show accurate results. This is 
due to the fact that for lower Reynolds numbers, the 
diffusion term is dominant in the momentum 
equations. Also at these low Reynolds numbers, the 
vortex core in the cavity is much larger than those 
in the higher Reynolds numbers. At these vortex 
cores, the pressures field is smoother than the rest 
of the flow field which decreases the associated 
errors due to the pressure gradient term in the 
momentum equation. Consequently, decreasing the 
Reynolds number will increase the size of vortex 
core and lead to more accurate results. It is also 
evident from Figs. 4 and 5 that LBM shows better 
results in some parts of the domain while ISPH 
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method can capture the FV data better in other 
regions. It should be mentioned here that like ISPH 
method, numerous modifications has been 
performed on LBM to further increase its accuracy 
and performance. For example Rahmati and 
Ashrafizaadeh (2009) proposed a generalized LBM 
for incompressible fluid flow simulations. 

The results of Eulerian and Lagrangian ISPH 
methods for constant particle resolutions are 
practically the same, while the WCSPH velocities 
are not as accurate and show spatial fluctuations, 
particularly for lower resolutions. It should be 
remarked here that, to compensate the inaccuracies 
related to the non-linearity of the convective terms, 
the same accuracy between the Eulerian and 
Lagrangian methods is achieved by lowering the 
time step in the former to about one fifth of the 
latter as stated in section 3.2. The low accuracy of 
the WCSPH is mainly due to the use of an 
unphysical equation of state, which leads to unreal 
pressure field, which in turn decreases velocity 
field’s accuracy as was also seen in Lee (2007).  

The pressure profiles at the horizontal centerline for 
the Reynolds number of 1000 are shown in Fig. 6. 
The parameter Pmid in the ordinate title is the 
reference pressure at the center of the cavity. As 
seen in this figure, the Eulerian pressure profiles of 
different number of particles are close to the finite 
volume result. In spite of higher particle resolution, 
the Lagrangian ISPH suffers in accuracy, albeit it 
shows good spatial stability. The result of the 
Lagrangian WCSPH shows spatial fluctuations in 
the pressure field and confirms the fact that the 
pressure field of a WCSPH method is unphysical. It 
is also evident from this figure that for the 
Lagrangian ISPH method, the Neumann pressure 
boundary condition is not satisfied near the walls 
which might increase the particle penetration inside 
the walls. This difference in the pressure field near 
the solid walls is mainly due to the continual 
movement of the fluid particles, which forces the 
pressure of boundary particles to change 
continuously, in order to match with their 
surrounding fluid particles’ new positions. In the 
Eulerian and FV cases, the pressure profiles are 
normal to the wall surfaces, which confirm that, 
these methods satisfy the pressure Neumann 
condition. 
 

 
Fig. 6. Pressure profiles at the horizontal 

centerline for Reynolds number of 1000 for 
shear driven cavity. 

The results of a FV laminar code, for simulation of 
shear-driven cavity is also used to compare the 
contours of constant velocities and pressures, for 
the Reynolds number of 1000. These contours are 
shown in Figs. 7, 8 and 9. The vortex core near the 
center and the small separation zones at the corners 
of the cavity are identical in the two methods. 
 

 
(a) 

 
(b) 
Fig. 7. Contours of x velocity (a) FV, (b) Eulerian 

ISPH. 

 

 

To further investigate the accuracy of the results of 

this study the relative 2l -norm of the errors for 
different field variables are calculated as: 

    
 

N 2

EISPH Exact2 i 1
N

2
Exact

i 1

X i i

X i

X
l 




 


                        (22) 

Where EISPHX  is the relevant field variable of the 

Eulerian ISPH method and ExactX  is the field 

variable of the benchmark studies. The errors 
calculated from Eq. (22) for the velocity profiles of 
shear-driven cavity for Reynolds number of 1000 
are shown in Table 1 and Table 2. The errors 
corresponding to the pressure field are also shown 
in Table 3. In these tables, the velocity values are 
compared to the results of Ghia et al. (1982), while 
the pressure results are compared to the results of 
the FV code used. 
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(a) 

 
(b) 
Fig. 8. Contours of z velocity (a) FV, (b) Eulerian 

ISPH. 
 

 
(a) 

 
(b) 
Fig. 9. Contours of normalized pressure (a) FV, 

(b) Eulerian ISPH. 

 
Fig. 10. Non-uniform particle distribution, 

colored with the mass of the particles obtained 
from Equation (23). 

 

Table 1 Horizontal velocity 2l -norm errors, 
compared to Ghia et al. (1982) 

Eulerian ISPH, 110 by 110 particles 0.169 

Eulerian ISPH, 60 by 60 particles 0.189 

Lagrangian ISPH, Lee et al. (2008) 0.134 

 

Table 2 Vertical velocity 2l -norm errors, 
compared to Ghia et al. (1982) 

Eulerian ISPH, 110 by 110 particles 0.230 

Eulerian ISPH, 60 by 60 particles 0.325 

Lagrangian ISPH, Lee et al. (2008) 0.266 

 

Table 3 Pressure 2l -norm errors, compared to 
FV results 

Eulerian ISPH, 110 by 110 particles 0.077 

Lagrangian ISPH, Lee et al. (2008) 0.564 

 

It is clear from these tables that the velocity profiles 
of the Lagrangian ISPH method is more accurate 
than the Eulerian method, which is due to the extra 
numerical deficiency associated with the convective 
terms in Eulerian methodology. On the other hand, 
the pressure profile of the Eulerian method is about 
7 times more accurate than the Lagrangian method. 
As stated before, the continual movement of 
particles in the Lagrangian methods causes this 
large pressure error, especially near the solid walls. 

In order to check the generality of this Eulerian 
approach, some non-uniform particle distributions 
are also studied for shear driven cavity problem. 
Two sets of non-uniform particle distributions are 
studied for Reynolds number of 1000, one with 
5465 and the other with 13765 particles, which can 
be compared with the results of uniform 
distributions of 60 by 60 (4771 particles) and 110 
by 110 (14171 particles), respectively. The non-
uniform distribution of 5465 particles is shown in 
Fig. 10, colored with the mass of the particles. The 
non-uniform distribution is obtained by placing  
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Fig. 11. Velocity profiles for the non-uniform particle distributions for Reynolds number of 1000. 

 

particles on the nodes of a finite volume 
unstructured grid containing triangular cells. The 
major difference between uniform and non-uniform 
distributions is the method to calculate the initial 
mass of the particles. In both cases masses are 
calculated from the density and volume of the 
particles. In the uniform distribution the volume of 
the particles is dx2, where dx is the initial particle 
spacing. The volume calculation of particles in the 
non-uniform distribution requires further attention. 
In this study, the volume of particles is calculated 
directly from the SPH formulations. Consider   as 
the inverse of volume of particle a in Eq. (11). With 
some simple substitutions, Eq. (23) is obtained for 
the volume of particle a. 

 
1

a

h ab

b

W r
 


                                                 (23) 

The mass of particles can be evaluated from the 
volumes obtained from Eq. (23) at the beginning of 
solution, and are constant during the rest of the 
solution. 

The velocity profiles of the non-uniform particle 
distributions are shown in Fig. 11. A slight 
difference is present between the uniform and non-
uniform distributions with comparable number of 
particles. This slight difference originates from the 
non-uniformity of particles in the kernel support 
domains which in turn leads to lower accuracy in 
the calculation of derivatives using SPH 
discretization. This non-uniformity mostly affects 
the non-linear convective terms. The use of kernel 
corrections (Liu and Liu 2003) will decrease the 
inaccuracies associated with distorted particle 
distributions. 

4.2 Couette Flow 

Couette flow with no pressure gradient is also 
studied to check the unsteady accuracy of Eulerian 
approach. The case is consisted of two parallel 
plates each with length l=0.6 m and separated by a 
distance d=0.1 m from each other, while the upper 
wall is given a fixed horizontal velocity U0=0.001 
m/s. The kinematic viscosity of the flow is set to 

31 10    m2/s, corresponding to Reynolds 
number of 0.1. The exact solution to this problem 
is: 

   
2 2

2
0 0

1

2
z, 1 sin

n
t

n d

n

U U n
u t z z e

d n d




 
  

  



           (24) 

Where t is time in seconds. 

A particle distribution of 180×30 particles with 
initial particle spacing of 3.4×10-3m is used for this 
simulation. The left and right extremes of the 
domain are periodic boundary conditions. At t=0, 
the fluid is stationary and the upper wall is suddenly 
moved with a constant velocity of U0. At about t=3 
sec, the fluid will reach a steady state solution. 

Because of the fact that pressure gradient is 
neglected in this specific case, the results of an 
incompressible and weakly compressible simulation 
should be the same in similar spatial and temporal 
resolutions. The results of an Eulerian approach 
compared to a Lagrangian one on the other hand 
might be different because of the non-linearity of 
the former approach. The horizontal velocity 
profiles at 4 different times of the solution are 
compared to the exact solutions in Fig. 12. Good 
agreement between these results is observed. There 
is a slight deviation between the Eulerian SPH and 
the exact results, far from the steady state solution, 
while the steady state results show the best 
agreement with the exact solution. 

 

 
Fig. 12. Horizontal velocity profiles of Couette 

flow at different times. 
 

4.3 Variable Area Duct 

The internal flow inside a duct with variable flow 
area is also analyzed using the Eulerian ISPH 
scheme. The geometry used is shown in Fig. 13. D  
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Fig. 13. Variable area duct. 

 

is the internal spacing of the duct, L is the total 
length of the contracted region and x0 is the 
horizontal position of the center of this region. The 
contracted region is created from a cosine profile 
shown in the figure. 

In the test case studied, D is set to 0.1 m, kinematic 
viscosity is set to 0.0001 m2/s, the outlet pressure is 
held constant and equal to 0 and a fully developed 
laminar profile is assumed for the inlet velocity 
condition with mean velocity of 0.3 m/s. With these 
properties the Reynolds number of the case studied 
is 300, which is low enough to be within the 
laminar regime and high enough to stay out of the 
creeping conditions; which makes it possible to 
observe the separation regions in the diverging 
section of the duct.  

Two particle distributions are used for this case. 
The first one has a total of 5296 particles, with a 
uniform particle spacing of 0.005 m. The second 
distribution has a total number of 5312 particles and 
has the same resolution outside the contracted 
region as the first distribution, but has variable 
particle spacing in vertical direction in this region. 
This vertical particle spacing decreases with the 
decreasing of the flow area. These resolutions are 
good enough to capture the reverse flow generated 
after the diverging section of the duct. The 
contracted region of these two distributions is 
compared in Fig. 14. 

 

 
Fig. 14. Uniform (left) and non-uniform (right) 
particle distributions of the variable area duct. 

 

The results of the variable area duct are compared 
to the FV solution. The internal flow simulated has 
Reynolds number of 300, guaranteeing the 
existence of reverse flows near the contraction. The 
horizontal velocity and pressure contours of the 
Eulerian ISPH method are compared to the results 
of the FV method in Figs. 15 and 16, respectively. 
Good agreement is observed with the results of the 
FV simulation. The horizontal velocity profiles of 
the Eulerian ISPH method with uniform particle 
distribution are also compared to FV results at three 
positions, x=3D, x=4D and x=10D in Fig. 17. These 
positions correspond to the center of the contraction 

region, end of the contraction region and the outlet 
of the duct, respectively. It is clear from the 
horizontal velocity profiles at x=4D, that the 
Eulerian method captures the reverse flow after 
diverging section of the duct. It should be noted 
here that in the Lagrangian simulations of this 
problem with these low number of particles, a 
strong void appears after the diverging section of 
the flow, causing the solution of Poisson equation 
unstable and severely error-prone. To solve this 
issue the number of particles should be increased to 
more than 20 thousand particles, increasing the 
CPU time dramatically and making the solution 
practically unacceptable. In an Eulerian approach 
on the other hand, the particles are fixed in the 
domain, and this problem is fully resolved even 
with low number of particles. It is also evident from 
these profiles that, at higher velocities near the 
lower flow areas, Eulerian method has larger 
deficiency. This is mainly due to the fact that in 
these regions the effect of the convective term in 
Eq. (8) has become more dominant, hence the 
numerical error associated with this term is also 
increased. 

 
Fig. 15. Contours of constant horizontal velocity 

of variable area duct, FV (up) and EISPH 
(down). 

 

 
Fig. 16. Contours of constant pressure of 

variable area duct, FV (up) and EISPH (down). 

 

The velocity profiles of uniform and non-uniform 
particle distributions at x=3D are compared in Fig. 
18. The accuracy of the non-uniform distribution is 

slightly increased. The relative 2l -norm errors of 
the profiles in Fig. 18 with respect to the finite 
volume data are 0.0622 and 0.0469 for uniform and 
non-uniform spacing distributions, respectively. 
Flow around a circular cylinder within a constant 
area duct 
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Fig. 17. Horizontal velocity profiles of flow inside 

a variable area duct in different positions. 

 

 
Fig. 18. Horizontal velocity for uniform and non-

uniform distributions at x=3D. 
 

The next case studied is laminar flow around a 
circular cylinder within a duct. The geometry 
considered is shown in Fig. 19. D is set to 0.1 m and 
fluid flows with constant density of 1.0 kg/m3 flows 
from the left side with uniform velocity of 0.2 m/s 
and exits from the right side at constant pressure of 
0.0 Pa. The flow is contained between two parallel 
plates 5D apart. The kinematic viscosity is 0.01 
m2/s, resulting in a Reynolds number of 10 with 
respect to the duct width (5D). Two different 
particle distributions are studied. The first one has a 
constant and uniform particle spacing of 0.01 with a 
total number of 6326 particles. The second one is 
consisted of a multi-resolution particle distribution 
with finer particle spacing around the cylinder with 
a total number of 6618 particles. These two particle 
distributions are shown in Fig. 20 (dummy particles 
of the cylinder wall are not shown). 
 

 
Fig. 19. Geometry of internal flow around 

circular cylinder between two parallel plates. 

 
Fig. 20. Uniform and non-uniform particle 

distributions around the cylinder. 
 

Here, the Eulerian ISPH results are compared to 
two resolutions of Lagrangian ISPH (LISPH), as 
well as the results of the finite volume code. The 
contours of constant horizontal velocity and 
pressure of the uniform distribution are compared 
to finite volume data in Figs. 21 and 22, 
respectively. A small difference is observable 
between the two results. The location of the 
separation on the cylinder surface is nearly at 90 
degrees in both cases. It is also observed that 
magnitudes of horizontal velocity in EISPH are 
slightly larger than those of FV in the central 
regions of the duct. This is in part due to the use of 
specific pressure boundary condition explained in 
section 3.3 in which the pressure of the outlet 
dummy particles is held constant and equal to 
their corresponding boundary particles. Hence 
near the outlet boundary, pressure gradient is 
nearly zero which will create an adverse artificial 
force. In order to circumvent this issue, one can 
extrapolate dummy particles’ pressure values from 
their boundary particles. As this small error does 
not affect the flow near the cylinder’s surface, the 
dummy particles’ are held at constant pressure in 
the current simulation. 
 

 
Fig. 21. Contours of constant horizontal velocity 
of flow around a circular cylinder, FV (up) and 

EISPH (down). 
 

 
Fig. 22. Contours of constant pressure of flow 

around a circular cylinder, FV (up) and EISPH 
(down). 
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The profiles of horizontal velocity at vertical line 
passing through the center of the cylinder (x=1.5D) 
are shown in Fig. 23. The velocity profiles are 
practically the same for the Eulerian ISPH with 
uniform and non-uniform particle distributions and 
the Lagrangian ISPH methods, while they all have a 
slight underestimation of the maximum velocity 
compared to the finite volume result. As seen in 
Fig. 23, both EISPH and LISPH methods show 
acceptable accuracy in prediction of velocity at the 
position shown. They both predict the increase of 
velocity magnitude in vicinities above and below 
the cylinder, because of the concentration of 
streamlines. 

 

 
Fig. 23. Profiles of horizontal velocity at x=1.5D 

for flow around a cylinder. 
 

 
Fig. 24. Pressure on the surface of the cylinder. 

 

The pressure on the cylinder surface is also shown 
in Fig. 24. The EISPH with uniform and non-
uniform distributions show better accuracy with 
respect to finite volume results, while both 
resolutions of the LISPH methods have larger 
inaccuracies. The smooth decrease of pressure 
values from the front of the cylinder to the wake 
region behind it, is evident in the EISPH results; 
while LISPH has some fluctuations in pressure 
magnitudes even though it shows a decreasing 
trend. Even the LISPH with 13168 particles cannot 
reach the accuracy of EISPH results. It can be 
concluded that Lagrangian and Eulerian ISPH 
methods show good accuracy in velocity fields in 
simulation of flow around bluff bodies. But, the 
solution of the pressure field is not the same 
between two methods. The pressure field obtained 
with Eulerian ISPH shows better accuracy even 
though it might have smaller number of particles. 
This difference is again caused by the continual 
movement of the particles around the body in the 

Lagrangian ISPH. The Lagrangian flow around 
bluff bodies causes to create some kind of no-
particle-region behind the body, where adverse 
pressure gradients are dominant as is evident in Fig. 
25 showing the particle distribution at the wake of 
the cylinder in the Lagrangian ISPH method with 
6326 particles. This lack of enough particles around 
the solid wall of the body causes the solution of 
Poisson equation, error prone and in some severe 
cases, completely unstable. In order to solve this 
issue very large number of particles should be used, 
which increases the solution time of even some 
simple scenarios dramatically. Of course at such a 
small Reynolds number as 10, this phenomenon is 
not so severe. At larger Reynolds numbers the 
particles completely exits the wake behind cylinder, 
creating a void, which causes the solution of 
Poisson equation to diverge. 

 
Fig. 25. Void created at the wake of the flow in 

LISPH method, Re = 10. 

5. CONCLUSIONS 

In this study, the possibility to use the Eulerian 
approach in the incompressible smoothed particle 
hydrodynamics for simulating internal flows is 
considered. This approach is applied to a 2-D lid-
driven cavity problem for different particle 
resolutions and Reynolds numbers as well as 
Couette flow problem, flow in a duct with variable 
area and flow around a circular cylinder inside a 
constant area duct. The results are compared with 
the results of Lagrangian WCSPH, Lagrangian 
ISPH and FV methods. The main points concluded 
from this study are summarized in the following 
paragraphs. 

1. The velocity profiles of the Eulerian and 
Lagrangian ISPH methods are practically the same, 
but the velocity profiles of the Lagrangian WCSPH 
method are not as accurate.  

2. The pressure profiles of the Eulerian ISPH 
show great agreement with the FV results, while the 
Lagrangian ISPH method results show some 
inaccuracy especially near the solid walls and the 
Lagrangian WCSPH results are completely 
fallacious. 

3. The required time step associated with the 
Eulerian ISPH method is around one fifth of the 
Lagrangian ISPH. This lower time step originates 
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from the non-linear convective term present in the 
Eulerian scheme.  

4. Some non-uniform particle distributions are 
used to study the effects of non-uniformity of the 
particles on the accuracy of the simulations. The 
non-uniform results showed small inaccuracies 
compared to the results of the uniform particle 
distributions.  

5. In internal flow simulations where the 
pressure field is one of the major results required 
from the problem, the use of Eulerian approach in 
an available ISPH program significantly increases 
the accuracy in pressure fields.  

6. The Eulerian method can make use of a 
diverse range of boundary conditions which are 
presently challenging in Lagrangian SPH methods.  

7. The Eulerian approach of the ISPH method is 
not useable for simulations concerning free surfaces 
or multiphase flows, which is the main advantage of 
SPH method over mesh based schemes.  

8. Non-uniform particle distribution with 
stretching can also be used to increase the 
resolution in the sensitive regions of the flow field. 

9. Because this method is still a meshfree 
method, programming for unstructured distributions 
is not different from the structured and uniform 
distributions, while it is a cumbersome task to 
program a finite volume solver to work with an 
unstructured grid. 

10. This scheme is comparable in accuracy to 
other computational methods such as LBM. 
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