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ABSTRACT 

The problem of unsteady as well as steady hydromagnetic natural convection and mass transfer flow of 

viscous reactive, incompressible and electrically conducting fluid between two vertical walls in the presence 

of uniform magnetic field applied normal to the flow region is studied. Thermal diffusion, temperature 

dependent variable viscosity and thermal conductivity are assumed to exist within the channel. The governing 

partial differential equations are solved numerically using implicit finite difference scheme. Results of the 

computations for velocity, temperature, concentration, skin friction, rate of heat and mass transfer are 

presented graphically to study the hydrodynamic behavior of fluid in the channel. 

 

Keywords: Thermal diffusion; Variable thermal conductivity; Variable viscosity; Natural convection; Heat 

transfer; Mass transfer. 

1. INTRODUCTION 

In many previous studies, the thermal conductivity 

and viscosity of the saturating fluids was usually 

assumed to be a constant. This approximation 

works well as the fluid thermal conductivity and 

viscosity depend weakly on temperature or the 

temperature difference is small compared with the 

average temperature of the system. As the fluid 

thermal conductivity and viscosity strongly depend 

on temperature or temperature difference is very 

large, the thermal conductivity and viscosity are not 

negligible and will influence the fluid flow and heat 

transfer behavior significantly. To accurately 

predict flow behavior and heat transfer rate, it is 

necessary to take into account the variation of 

thermal conductivity and viscosity (Elbarbary and 

Elgazery, 2004). Most of the practical situations 

demand for physical properties with variable 

characteristics. Examples of such engineering areas 

are nuclear plants, gas turbines and various 

propulsion devices for aircraft, missiles, satellites 

and space vehicles. Arunachalam and Rajappa 

(1978) reported forced convection in liquid metal 

with variable thermal conductivity. Chiam (1996, 

1998) investigated the effect of variable thermal 

conductivity on heat transfer. Abdou (2010) studied 

effect of radiation with temperature dependent 

viscosity and thermal conductivity on unsteady flow 

over a stretching sheet. Khan et al. (2011) examined 

the effect of variable viscosity and thermal 

conductivity on a thin film flow over a 

shrinking/stretching sheet. Siddheshwar et al. 

(2014) investigated heat transfer flow in a 

Newtonian liquid with temperature dependent 

properties over an exponentially stretching sheet. 

Uwanta and Hamza (2014b) studied unsteady flow 

of reactive viscous, heat generating/absorbing fluid 

with Soret and variable thermal conductivity. 

On the other hand, the study of hydromagnetic fluid 

flow is of considerable important in nuclear 

engineering control, plasma aerodynamics, 

mechanical engineering, manufacturing processes, 

astrophysical fluid dynamics and 

magnetohydrodynamic (MHD) energy systems 

(Shercliff, 1965, Sutton and Sherman, 1965, Cramer 

and Pai, 1973). In view of the applications of MHD, 

variable viscosity and thermal conductivity, 

Seddeek et al. (2007, 2009) studied hydromagnetic 

flow in the presence of variable viscosity and 

thermal conductivity. El-Aziz (2007) investigated 

temperature dependent viscosity and thermal 

conductivity effects on MHD three dimensional 

flows over a stretching surface. MHD generalized 

Couette flow with variable viscosity and electrical 

conductivity have been studied by Makinde and 

Onyejekwe (2011). Seddeek and Salama (2007) 

presented numerically the effects of variable 

viscosity and thermal conductivity on unsteady 

MHD convective heat in a vertical moving plate. 
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Attia (2008) reported unsteady hydromagnetic 

Couette flow of dusty fluid with temperature 

dependent viscosity and thermal conductivity under 

exponentially decaying pressure gradient. Effects of 

variable viscosity and thermal conductivity on 

MHD flow of non-Newtonian fluid over a 

stretching sheet have been reported by  Salem 

(2007) and Abdel-Rahman (2013). Choudhury and 

Hazarika (2013) reported effects of variable 

viscosity and thermal conductivity on MHD 

oscillatory flow past a vertical plate in slip flow 

regime with variable suction and periodic plate 

temperature. Recently Pal and Mondal (2014) 

examined the effects of temperature dependent 

viscosity and variable thermal conductivity on 

MHD non-Darcy mixed convective diffusion of 

species over a stretching sheet. Ghosh et al. (2014) 

studied temperature dependence of fluid viscosity in 

hydromagnetic flow. Uwanta and Hamza (2014a) 

reported unsteady natural convection flow of 

reactive hydromagnetic fluid in a moving vertical 

channel. 

The purpose of this article is to analyze unsteady as 

well as steady state hydromagnetic natural 

convection and mass transfer flow of viscous 

reactive, incompressible and electrically conducting 

fluid between two infinite vertical parallel walls in 

the presence of thermal diffusion, variable viscosity 

and variable thermal conductivity. In this paper, it is 

assumed that the conducting fluid is subjected to an 

exothermic chemical reaction of Arrhenius kinetics. 

This type of flow found applications in chemical 

engineering, petroleum industries, and lubrication 

engineering in improving the productivity and 

usefulness of the hydromagnetic lubrication used in 

engineering systems. 

2. MATHEMATICAL MODEL  

Consider the unsteady flow of an incompressible, 

electrically conducting, variable viscosity, variable 

thermal conductivity, viscous reactive fluid between 

two vertical walls under the influence of a 

transversely magnetic field of strength 0B as shown 

in fig.1. The fluid has small electrical conductivity 

and electromagnetic force produced is also very 

small. Initially, it is assumed that both the fluid and 

the walls are at rest and at same temperature and 

concentration '
0T  and '

0C  respectively. At time

' 0t  , the temperature and concentration of the 

wall ' 0y   is raised to 'T  and 'C , and that of 

'y H is lowered to  '
0T  and '

0C   respectively such 

that ' '
0T T  and ' '

0C C   which is thereafter 

maintained constant. The Soret effect is taken into 

account. The fluid temperature dependent variable 

viscosity is of type given by Kafoussias and 

Willians (1995)
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, where 0 is 

the initial fluid dynamic viscosity at the 

temperature, '
0T  , and the variable thermal 

conductivity is assumed to be of the form 

(Elbarbary and Elgazery, 2004) 

  * '
0 01 'fk k m T T   , where 0k  is the thermal 

conductivity of the ambient fluid and 
*m is a 

constant depending on the nature of the fluid, where
* 0m  for fluids such as water and air, while 

* 0m  for fluids such as lubrication oils (Elbarbary 

and Elgazery, 2004). We choose Cartesian 

coordinate system with the 'x  axis along the 

upward direction and the 'y  axis normal to it. 

Under these assumptions along with the 

Boussinesq’s approximation, the governing 

equations can be written as 
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The initial and boundary conditions for the present 

problem are 
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Fig. 1. Schematic diagram of the physical model 

and coordinate system 
 

where   is the conductivity of the fluid, 0B  is the 

electromagnetic induction,  is the coefficient of 

thermal expansion, 
* is the coefficient of 

concentration expansion, Q is the heat of reaction, 

A is the rate constant, E is the activation energy, R 

is the universal gas constant,  is the kinematic 

viscosity, *
0C is the initial concentration of the 

reactant species, g is the gravitational force, pC is 

the specific heat at constant pressure, k is the 

thermal conductivity of the fluid,  is the density 
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of the fluid, mD is the coefficient of mass 

diffusivity, mT is the mean fluid temperature, and 

Tk is the thermal diffusion ratio. 

To solve equations (1) to (4), we employ the 

following dimensionless variables and parameters 
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Using (5), the equations (1) to (4) take the 

following form: 
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The initial and boundary conditions in 

dimensionless form are                                   
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where X ,  , M, Gr, Gc, Sc, Sr, Pr,  ,  , a , 

and aC   are variable viscosity parameter, variable 

thermal conductivity parameter, magnetic 

parameter, thermal Grashof number, mass Grashof 

number, Schmidt number, Soret number, Prandtl 

number, Frank-Kamenetskii parameter, activation 

energy parameter, ambient temperature, and 

ambient concentration respectively. The other non-

dimensional quantities are the skin friction ( fC ), 

the heat transfer rate (Nu), and the rate of mass 

transfer (Sh) given as 
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where fC is the skin friction, Nu is the Nusselt 

number and Sh is the Sherwood number.  

3. NUMERICAL SOLUTIONS  

The governing equations (6) to (8) with the 

boundary conditions (9) are solved numerically 

using implicit finite difference scheme given by 

Makinde and Chinyoka (2011). We used forward 

difference formulas for all time derivatives and 

approximate both the second and first derivatives 

with second order central differences. The semi-

implicit finite difference equation corresponding to 

equations (6) to (8) are as follows 
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Where 2
1r t y   , 2

2 (1 )r t y    , 

2
3 4r X t y   , 2

4 4r t y   , 2
5r Sr t y  

1 X   , 1q    and 0 1  . We chose 

1   the detailed reasons to this particular 

selection is documented by Makinde and Chinyoka 

(2011). 

4. RESULTS AND DISCUSSION 

The numerical results are obtained by solving 

equations (10) to (12) using the method described 

in the previous section for various values of 

physical parameters to describe the physics of the 

problem. The non-dimensional parameters that 

govern the flow are the Prandtl number (Pr), which 
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is inversely proportional to the thermal diffusivity 

of the working fluid, the Frank-Kamenetskii 

parameter (  ), the Soret number (Sr), the 

Magnetic parameter (M), the thermal Grashof 

number (Gr), the solutal Grashof number (Gc), the 

non-dimensional time (t), the Schmidt number(Sc), 

which is inversely proportional to the mass 

diffusivity of the working fluid, the variable 

viscosity parameter (X) and the variable thermal 

conductivity. For the purpose of discussion, some 

numerical calculations are carried out for 

dimensionless velocity (U), temperature ( ), 

concentration (C), skin friction, rate of heat 

transfer in terms of Nusselt number, and the rate of 

mass transfer in terms of Sherwood number. 

Unless otherwise stated, the values: 0.1  , 

0.1Gr  , M =1, 0.1Gc  , Sr = 0.1 ,X = 0.1, 

1T  , 1TC  , Pr = 0.71, Sc = 0.62, 0.1t  , 

0.1   and 0.01  are used for the 

investigation. Results obtained are displayed 

graphically for velocity, temperature, 

concentration, skin friction, Nusselt number and 

Sherwood number for various flow parameters 

The influence of the Frank-Kamenetskii parameter 

(  ) and non-dimensional time ( t ) on temperature 

and velocity profiles is displayed in Fig.2a and 2b 

respectively. From Fig.2a it is observed that both 

unsteady and steady-state temperature of the fluid 

increases with increasing values of  . This is 

physically true since an increase in   lead to 

significant increases in the reaction and viscous 

heating source terms and hence considerably 

increases the fluid temperature. The temperature is 

strongly coupled to the velocity through the 

temperature dependent buoyancy terms and hence 

the recorded temperature increases (with 

increasing  ) lead to corresponding increases in 

the magnitude of the fluid velocity as shown in 

Fig.2b.  

 

 
Fig. 2. Variation of unsteady and steady-state 

temperature and velocity with  . 
 

The effect of the variable viscosity (X) and 

magnetic parameter (M) for unsteady as well as 

steady-state case is shown in Fig.3a and 3b 

respectively. 

 
Fig. 3. Variation of unsteady and steady-state 

velocity with X and M. 

In Fig.3a, the graph shows that as X increases, the 

fluid becomes less viscous and hence their 

molecular resistance to motion decreases, and 

thereby increases in fluid flow. It is also seen from 

Fig.3a that velocity of the fluid is maximum in the 

vicinity of the hot wall ( 0y  ) and then 

gradually decreases as it moves towards the cooled 

wall ( 1y  ). From Fig.3b, as expected, an 

increasing value of M leads to decreases in both 

unsteady as well as steady-state fluid velocity. This 

is due to the increased resistance to flow. 

Fig.4a and 4b respectively show the response of the 

fluid temperature and velocity to variation in the 

variable thermal conductivity ( ) and time (t ). In 

Fig.4a and 4b it is observed that temperature and 

velocity of the fluid increases with increasing   

and t  until a steady-state condition is attained. 

This is physically true, since the relation 

 * '

0'm T T   indicate that mounting values 

of   increase the temperature difference between 

outside the plate and outside the boundary layer. As 

a result heat is transferred rapidly from plate to fluid 

within the boundary layer, that is why both 

temperature and velocity profiles enlarge due to 

growing . It means that the velocity and thermal 

boundary layer thickness rise for larger . 

 

The effect of the Soret number (Sr) on velocity and 

concentration profiles is analyzed in Fig.5a and 5b 

respectively. The Soret effect (Sr) represents the 

mass energy flux in the flow. It is clear from Fig.5a 

and 5b that an increase in Sr causes a rise in the 

velocity and concentration of the fluid. Fig.6a and 

6b represent the concentration and velocity 

distribution for different values of the Schmidt 

number (Sc) and time ( t ). The values of Schmidt 

number (Sc) are chosen for hydrogen (Sc = 0.22), 

water vapor (Sc = 0.62) at temperature 250C and 

propylbenze (Sc = 2.62). In both Fig.6a and 6b, it is 

seen that unsteady and steady-state concentration 

and velocity of hydrogen increase the flow while 

concentration and velocity of water vapor reduces 

the flow. 
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Fig. 4. Variation of unsteady and steady-state temperature and velocity with  . 

 

 
Fig. 5. Variation of unsteady and steady-state velocity and concentration with Sr. 

 

 
Fig. 6. Variation of unsteady and steady-state concentration and velocity with Sc. 

 

 
Fig. 7. Variation of unsteady and steady-state temperature and velocity with Pr. 

 
The effect of the Prandtl number (Pr) on the 

temperature and velocity field is illustrated in Fig.7a 

and 7b respectively. The values of Pr are chosen for air 

(Pr = 0.71), electrolyte solution (Pr = 1) and water (Pr 

= 7). It is noticed from Fig.7a and 7b that temperature 

and velocity of air increase the fluid flow while 

temperature and velocity of water decreases both 

unsteady as well as steady-state fluid flow. Fig.8a and 

8b represent the velocity profiles for different values 

of thermal Grashof number (Gr) and mass Grashof 

number (Gc) respectively. These plots Fig.8a and 8b 

indicate that the momentum boundary layer thickness 

increases with increasing values of Gr and Gc. The 

consequence of the increased buoyancy source terms 

due to higher values of Gr and Gc increases both 

unsteady and steady-state velocity of the fluid. 
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Fig. 8. Variation of unsteady and steady-state velocity with Gr and Gc. 

 
The rate of heat transfer (Nusselt number) and skin 

friction dependence of Frank-Kamenetskii 

parameter (  ) for varying values of time ( t ) at the 

plate 1y   is illustrated in fig.9a and 9b 

respectively. 
 

 
Fig. 9. Variation of unsteady and steady-state 

Nusselt number and skin friction at 

1y   with  . 

 

From fig.9a and 9b it can be noticed that Nusselt 

number and skin friction increases with increasing 

both   and t  until a steady-state condition is 

achieved. The wall shear stress dependence on variable 

viscosity (X) and magnetic parameter (M) for varying 

values of time ( t ) at the plate 0y  is displayed in 

fig.10a and 10b respectively. Fig.10a reflected that 

skin friction increases as X and t  increases until a 

steady-state condition is attained. From fig.10b it is 

seen that as t  increases, the frictional force due to the 

motion of the fluid also increases until a steady-state 

condition is reached. It is evident from fig.10b that 

higher values of M reduce the skin friction. 
 

 
Fig. 10. Variation of unsteady and steady-state 

skin friction at 0y   with X and M. 

Fig.11a and 11b respectively represent the Nusselt 

number and skin friction dependence on variable 

thermal conductivity ( ) for varying values of t  

at the plate 1y  . 

 

 
Fig. 11. Variation of unsteady and steady-state 

Nusselt number and skin friction at 

1y   with  . 
 

These plots indicate that as   and t increases, 

Nusselt number and skin friction also increase until 

a steady-state value is achieved. The rate of mass 

transfer (Sherwood number) at the plate 1y   is 

depicted in fig.12a and 12b respectively for varying 

values of Soret number (Sr). It is clearly seen from 

these figures that Sherwood number and skin 

friction increases as Sr and t  increase. 

 

 
Fig. 12. Variation of unsteady and steady-state 

Sherwood number and skin friction at 

1y   with Gr and Gc. 
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Fig.13a and 13b show the wall shear stress 

dependence on Gr and Gc for varying values of t  

at the plate 0y   respectively. From these figures 

it is noticed that as t increase, the skin friction also 

increases until a steady-state value is achieved. 

Fig.13a and 13b reflected that values of Gr and Gc 

increase the skin friction. 

 
Fig. 13. Variation of unsteady and steady-state 

skin friction at 0y   with Gr and Gc. 

5. CONCLUSION 

This paper investigates unsteady as well as steady-

state flow of viscous reactive, incompressible and 

electrically conducting fluid between two infinite 

vertical parallel walls in the presence of transverse 

magnetic field, thermal diffusion, variable viscosity, 

and variable thermal conductivity. The governing 

equations are solved numerically using implicit 

finite difference scheme. The main findings can be 

summarized as follows 

(i) Increasing the variable viscosity, chemical 

reaction, variable thermal conductivity, 

thermal diffusion, Grashof number and 

modified Grashof number accelerate the 

velocity of the fluid, while higher values of 

magnetic parameter, Schmidt number and 

Prandtl number reduce the velocity of the fluid. 

 

(ii) Temperature of the fluid increases with 

increasing values of the reaction strength and 

variable thermal conductivity, while larger 

values of Prandtl number reduces the 

temperature of the fluid. 

 

(iii) Concentration of the fluid increases with 

increasing values of thermal diffusion 

parameter and decreases with increasing values 

of the Schmidt number. 

 

(iv) Frictional force due to the motion of the fluid 

increases with increasing material parameters 

(Sr, X, ,  , Gr and Gc), while decreases with 

increasing values of M. 

 

(v) The rate of heat transfer at the channel walls 

increases with increasing   and   

 

This type of flow can be investigated in different 

geometries, like cylindrical coordinates, Couette 

flow etc. and effects of Navies slip on the flow 

system 
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