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ABSTRACT 

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial 
processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat 
convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced 
convection of a non-homogeneous nanofluid flow (over a flat plate) is investigated, which is classified in 
conjugate heat transfer problems. Two-component four-equation non-homogeneous equilibrium model for 
convective transport in nanofluids (mixture of water with particles<100nm) has been applied that incorporates the 
effects of the nanoparticles migration due to the thermophoresis and Brownian motion forces. Employing 
similarity variables, we have transformed the basic non-dimensional partial differential equations to ordinary 
differential ones and then solved numerically. Moreover, variation of the heat transfer and concentration rates with 
thermal resistance of the plate is studied in detail. Setting the lowest dependency of heat transfer rate to the 
thermal resistance of the plate as a goal, we have shown that for two nanofluids with similar heat transfer 
characteristics, the one with higher Brownian motion (lower nanoparticle diameter) is desired.  

Keywords: Nanofluid; Flat plate; Conjugate heat transfer; Thermophoresis; Brownian motion. 

NOMENCLATURE 

a Constant 
C nanoparticle volume fraction 
Cf skin friction coefficient 
cp specific heat at constant pressure 
DB brownian diffusion coefficient 
DT thermophoresis diffusion coefficient 
Le Lewis number  

p pressure 
Pr Prandtl number 
qw surface heat flux 
Re Reynolds number 
S dimensionless suction/blowing parameter 
Sh Sherwood number 
ρ density 

1. INTRODUCTION

There has been a significant amount of efforts to 
investigate the flow and heat transfer of a viscous 
incompressible fluid over a surface. After Blasius 
(1908) who studied boundary layer over a flat plate by 
employing a similarity transformation to reduce the 
partial differential boundary layer equations to a 
nonlinear third-order ordinary differential ones, a 
large amount of literatures on this issue have been 
conducted that are cited by Kays and Crawford 
(1980). The two well known boundary conditions in 
the mentioned literatures for energy equation named 
are constant wall temperature and constant heat flux. 

In these conditions, Thermal interactions between the 
fluid and the surface are particularly at the upper 
surface of the plate which gets wet by the fluid; 
however, in practical situations, the boundary 
condition at the lower surface are known and must be 
settled. Hence, heat transfer through the plate 
(conduction) must be taken into account in addition to 
the solid-fluid convective heat transfer. Not 
surprisingly, the effects of thermal resistance of the 
plate have to be included in the formulation, i.e. 
mutual thermal effects of fluid-solid have to be 
considered, which are usually referred as conjugated 
heat transfer problems.  
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A seminal study in this field was conducted by 
Perelman (1961) who studied boundary layer flow and 
heat transfer over a flat plate of finite thickness with 
two dimensional thermal conduction in the plate. 
Luikov et al. (1971) employed the Fourier sine 
transformation to solve the problem in terms of 
Fourier variables. Later, Luikov (1974) solved the 
same problem subject to the linear temperature 
distribution boundary condition in the plate. Then, a 
comprehensive survey on this subject conducted by 
Payvar (1977), Karvinen (1978), Pozzi and Lupo 
(1989) and Pop and Ingham (1993). It is worth 
mentioning that conjugated heat transfer has frequent 
industrial applications such as compact heat 
exchangers, solar collectors and coating materials 
particularly in turbine blades. 
 

Along with the technology’s improvement, enhancing 
the performance of conventional heat transfer became 
a main issue owing to low thermal conductivity of the 
most common fluids such as water, oil, and ethylene-
glycol mixture. Since the thermal conductivity of 
solids is often higher than that of liquids, the idea of 
adding particles to a conventional fluid to enhance its 
heat transfer characteristics was emerged. Among all 
the dimensions of particles such as macro, micro, and 
nano, because of some obstacles in the pressure drop 
through the system or the problem of keeping the 
mixture homogeneous, nano-scaled particles have 
attracted more attention. These tiny particles are fairly 
close in size to the molecules of the base fluid and, 
thus, can realize extremely stable suspensions with 
slight gravitational settling over long periods. The 
word “nanofluid” was proposed by Choi (1995) to 
identify engineered colloids composed of 
nanoparticles dispersed in a base fluid. Following the 
seminal study of this concept by Masuda et al. (1993), 
a considerable amount of research in this field has 
risen exponentially. Meanwhile, theoretical studies 
emerged to model the nanofluid behaviors. To date, 
the proposed models are twofold: the homogeneous 
flow models and the dispersion models. Buongiorno 
(2006) indicated that the homogeneous models tend to 
under-predict the nanofluid heat transfer coefficient, 
and because of the nanoparticle size, the dispersion 
effect is completely negligible. Hence, Buongiorno 
developed an alternative model to explain the 
abnormal convective heat transfer enhancement in 
nanofluids and eliminate the shortcomings of the 
homogeneous and dispersion models. He considered 
seven slip mechanisms—the inertia, Brownian 
diffusion, thermophoresis, diffusiophoresis, Magnus, 
fluid drainage, and gravity—and claimed that, of these 
seven, only Brownian diffusion and thermophoresis 
are the important slip mechanisms in nanofluids. 
Moreover, Buongiorno concluded that the turbulence 
is not affected by nanoparticles. With this finding as 
basis, he proposed a two-component four-equation 
non-homogeneous equilibrium model for convective 
transport in nanofluids. Above-mentioned model has 
recently been used by Kuznetsov and Nield (2010) to 
study the influence of nanoparticles on natural 

convection boundary-layer flow past a vertical plate. 
Then, a comprehensive survey of convective transport 
of nanofluids in the boundary layer flow conducted by 
Sheikholeslami et al. (2012; 2013), Rashidi et al. 
(2014a, 2014b, and 2014c), Ganji and Malvandi 
(2014), Malvandi and Ganji (2014a, 2014b), Hassani 
et al. (2011), Malvandi et al. (2012; 2013), Bég et al. 
(2014), Ashorynejad et al. (2013), Soleimani et al. 
(2012) , Hatami et al. (2013), Malvandi (2013) and 
Alinia et al. (2011).  
 
The focal point of this paper is to consider the impacts 
of the thermal resistance of the plate on the flow of a 
non-homogeneous nanofluid over a flat plate. Usual 
boundary layer equations along a flat plate have been 
considered for highlighting the effects of plate’s 
thermal resistance. In contrast to simple heat boundary 
condition on upper surface of plate, the temperature at 
the lower surface is prescribed. Thus, the mutual 
thermal effects of conduction inside and convection 
along a flat plate have been considered. This problem 
is classified as conjugate heat transfer in nanofluid 
and to the best of the authors' knowledge, no 
investigation has been communicated so far. It must 
be declared that this problem can be considered as an 
extension (nanoparticles included) of Bejan 
(2004) and has applications in industries such as flat 
fins, cooling of electronic boards, solar collectors. 

2. PROBLEM FORMULATION AND 
GOVERNING EQUATIONS 

Consider the steady two-dimensional incompressible 
flow of a nanofluid over a semi-infinite flat plate 
which is heated by a highly convective fluid at 
beneath. Thickness of the plate t(x) is non-uniform, 
which may be varied along the plate's length, see Fig. 
1, where for clarity, the variation of the thickness of 
the plate has been exaggerated. 
 

 
Fig. 1. The geometry of physical model and 

coordinate system. 
 
The thickness of the plate is sufficiently smaller than 
its length; so it is reasonable to neglect the 
longitudinal conduction through the boundary layer 
and assume the linear temperature distribution in the 
plate. The nanofluid flows above the surface at a 
constant velocity, temperature and concentration of 

, ,   U T C    respectively. The convective heat transfer 
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coefficient for the beneath fluid is bh  which is great 

enough to maintain the lower surface at a constant 
temperature of bT . Furthermore, the values of 

temperature and concentration at the top surface are 
named  ,  w wT C  respectively. This description can be a 

model for the case of solid coating Bejan (2004)  or 
sedimentation in heat exchangers. Neglecting the 
effects of viscous dissipation on temperature 
gradients, the transport equations for mentioned 
problem including continuity, momentum and energy 
equations in the Cartesian coordinates can be 
expressed as 
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It is apparent from Eq. (3) that heat transfer of a 
nanofluid is combined of conduction (first RHS term), 
convection (LHS term), and nanoparticle-diffusion 
(second RHS term). The LHS term of Eq. (4) 
indicates the slip velocity of nanoparticles relative to 
the base fluid, due to the combination of the Brownian 
motion (first RHS term) and the thermophoresis 
(second RHS term). For ( ) t x L , the longitudinal 

conduction along the wall is negligible compared with 
the transverse conduction across the wall. Hence, 
assuming a linear distribution of temperature at the 
solid part, we can express the temperature gradient as 
follows 
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In addition, the physical properties including 
viscosity, thermal diffusivity, Prandtl number are 
assumed to be constant according to Buongiorno 
(2006), and MacDevette et al. (2014) . Next, Eqs. (1-
4) can be reduced to the simpler ordinary differential 
equations by employing the similarity variables in the 
following form 
Where   is the usual stream function, i.e. /u y    

and /v x   ,   is the kinematic viscosity of the 
fluid. Substituting Eq. (7) into Eqs. (1)–(5), the 
following ordinary differential equation obtained 
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And the transformed boundary condition of Eq. (5) 
reduces to 
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where ' denotes differentiation with respect to η and 
the outcoming non-dimensional parameters are 
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here ,  ,  ,  ,  Pr Le Nb Nt J  represents the Prandtl number, 
the Lewis number, the Brownian motion, the 
thermophoresis and dimensionless plate resistance 
respectively, and the thermophysical properties of 
water/alumina nanoparticle and base fluid (water) are 
also provided as follows 

3 3998.2 ,
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4 9.93 10  Kg/(m s)bf           (12) 

In General, J  is a function of x which can be 
obtained from an energy balance at the surface, see 
Appendix. Existance of ( )J x  makes it impossible to 
obtain the similarity solution; so, in order to remain 
focused on similarity solution, it has been assumed 
that the thickness of the plate varies in the form of 

( )t x x  to keep J  constant. Needless to say, 
variations in thickness of the plate occur in the lower 
surface to avoid the inclination on the surface to keep 
the upper surface being flat. Pivotal quantities of 
interest including the skin friction coefficient, the 
local Nusselt and Sherwood numbers can be defined 
as 
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Where τw is the surface shear stress and, qw and qm are 
heat and mass flux at the surface respectively which 
are defined as follows 
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using the dimensionless variables Eq. (6), the rate of 
skin friction, heat transfer and concentration can be 
written as 
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Here Cfr, Nur, Shr refers to reduced skin friction 
coefficient, the reduced Nusselt number and reduced 
Sherwood number respectively. Also, Rex=uwx/ν is the 
local Reynolds number base sheet's velocity. For 
considering the effects of J  more precisely, the 
Nusselt and Sherwood numbers ratio can be defined 
as 
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3. RESULTS AND DISCUSSIONS 

The system of Eqs. (8-10) with boundary conditions 
of Eq. (11) have been solved numerically via Runge-
Kutta-Fehlberg scheme. A Fortran code has been used 
to find the numerical solution of the present boundary 
value problem (BVP), the accuracy of which was 
shown elsewhere Malvandi et al. (2013) . Moreover, 
For our bulk computaions the far field boundary 

conditions denoted by max   set to max 10    which was 

sufficient to achieve the far field boundary conditions 
asymptotically (shown later). In order to avoid the 
grid dependency, the integration step has been altered 
from 10-5 to 10-6 and there is no dependency was 
observed, as is shown in Table 1.  

 
Table 1 Gird independent test when J=1 

Nt=Nb=0.3, Le=5, Pr=7, and = 0.1. 
dη -θ'(0) -�'(0) 

10-5 0.122822 0.698205 

510-5 0.122834 0.698212 

10-6 0.122843 0.698223 

 
As it is clear, fluid mechanics part of the problem (Eq. 
(8)) is the famous Blasius problem which has been 
solved by many researchers and the results have been 
mentioned in several textbooks. For heat transfer 
term, substituting the 0J Nt Nb Le     in Eq. (9-10) 
the well known heat transfer over a flat plate was 
appeared. Here, the reported data of Kays and 
Crawford W.M. Kays and Crawford (1980)  has been 
used in order to verify the developed code which has 
been shown in Table 2 and Fig. 2.  

 

 
Fig. 2. Velocity boundary layer. 

 
Table 2 Heat transfer rate for regular fluid for 

different values of prandtl number 
Pr 0.01 0.1 1 7 50 

Kays and 

Crawford 
0.05 0.140 0.332 0.645 1.24 

Present 

study 
0.05 0.140 0.332 0.645 1.24 

 
The focal point of this study is the effects of J  on the 
heat transfer characteristic of nanofluid flow over a 
flat plate. Calculations have been performed for the 
selective values: Nt , Nb , Le  and the constant value 
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of Pr 7 .Considering the effective parameters in the 
values of J  such as ,  ,  f wk k , we have considered the 

range of 0.01 to 100 for J , see Bejan (2004) . 
 
The effects of J  on temperature and concentration 
profiles have been shown in Figs. 3a and 3b. These 
profiles essentially have the same form as regular 
fluids. The figures show that the solutions satisfy the 
far field boundary conditions asymptotically and can 
be used for the validity of our presumed 
computational domain. It is evident that an increase in 
J leads to a decrease in temperature and the 

concentration’s profiles; however, the temperature 
profile is reduced more because, a rise in J  increases 
the thermal resistance of the plate and consequently, 
the heat transfer rate decreases. Not surprisingly, the 
temperature at the plate declines as well.  
 

 
(a) 

 

 
(b) 

 
Fig. 3. a) Temperature profile for different values 

of J , 0.1, 10Nt Nb Le   . 
b) Concentration profile for different values of J , 

0.1 , 10Nt Nb Le   . 
 

The heat transfer and concentration rates ratio versus 
J , for different values of Nt , Nb  and Le  have been 

demonstrated in Figs. 4-6. All the curves started from 
unity at 0J   and have a same trend when J  
increases: an increase in J , decreases the ratio of heat 
transfer and concentration rates. The trend dwindles 
down when the value of J  increases, which can be 

explained as follows. When 0J   there is no thermal 
resistance at the plate and the dominated resistance is 
in the convective heat transfer above the plate. An 
increase in the value of J  generates thermal 
resistance, which gradually increases the overall heat 
transfer resistance; not surprisingly, the heat transfer 
rate declines. This trend continues until the thermal 
resistance of the plate gets to the point (J≈100) where 
an increase in J  has almost no effect on the heat 
transfer rate.  
 
Figs. 4a and 4b show how the Lewis number affects 
the trends of the reduced Nusselt and Sherwood 
numbers' ratio versus J . The Lewis number defines 
the ratio of thermal diffusivity to mass diffusivity. It 
characterizes fluid flows where there is simultaneous 
heat and mass transfer by convection. Considering 
Fig. 4, we can state that decreasing the Lewis number 
increases the effects of J  (the decreasing trend) on 
heat transfer and concentration rates. Therefore, it is 
found out that for two nanofluids, the one with a 
higher Lewis number experiences a lower reduction in 
the heat transfer rate. In other words, increasing Lewis 
number reduces the sensitivity of the heat transfer rate 
to the plate’s thermal resistance J.  
 
Studying the nano-sized particles, the effects of the 
Brownian motion have to be considered due to its 
significant effects on heat transfer and concentration 
rates. It should be stated that Brownian motion 
reflects the random drifting of suspended 
nanoparticles; on the other hand, thermophoresis is 
nanoparticle migration due to imposed temperature 
gradient across the fluid. The mentioned mechanisms 
are the two important slip mechanisms which appear 
as a result of nanoparticles’ slip velocity to the base 
fluid. For hot surfaces, due to repelling the sub-micron 
sized particles, the thermophoresis tends to blow the 
nanoparticle volume fraction boundary layer away 
from the surface. Also, owing to the size of particles, 
the Brownian motion has a significant influence on 
the surrounding liquids. The effects of the 
thermophoresis number Nt , have been illustrated in 
Figs. 5a and 5b. 
 
Evidently, increasing Nt  leads to a rise in the heat 
transfer ratio and a fall in the concentration rate ratio. 
This is because as Nt increases, nanoparticle 
migration from the heated walls due to the 
thermophoresis increases. Thus, the value of 
nanoparticle concentration at the heated walls 
decreases which results in a fall in the concentration 
ratio. For 20J  , Nt  has strong effects on the heat 
transfer rate; for example, when 10J  , the reduction 
of the heat transfer rate at 0.5Nt   is approximately 
35% whereas at 0.1Nt   it is about 75%. However, 
the more J  gets, the more suppression on the effects 
of Nt  on the heat transfer rate occurs. Subsequently, 
while 60J  , the difference between the curves 
becomes insignificant. Figs. 6a and 6b signify the 
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effects of the Brownian motion parameter, Nb , for 
the Nusselt and Sherwood numbers ratio. It can be 
observed that as Nb  increases, both the ratio of the 
heat transfer and concentration rates increase. 
 
This means that at higher values of Nb, J has 
insignificant effects on the heat transfer rate of the 
plate. Physically, Nb is higher for lower nanoparticle 
size ( 1 /Nb d p� ). So, reduction in the heat transfer rate 

due to the thernal resistance of the plate (J) is reduced 
for lower nanoparticles. 
 
Thus, using lower nanoparticles enhance the 
performance of the system. Also, as Nb  grows, 
regardless of the value of J , heat transfer rate 
declines. It can be seen that in Fig. 6a, even at the 
highest value of J, 100J  , an increase in Nb  from 0.1 
to 0.5 intensifies heat transfer rate significantly (37%). 
This outcome can be important in any systems which 
mechanisms such as sedimentations or solid-coating 
causes additional thermal resistance to the plate.  
 

 
(a) 

 

 
(b) 

 

Fig. 4. a) Nusselt number ratio versus J  for 
different values of Nt , 10 , 0.1Le Nb  . 

b) Sherwood number ratio versus J  for different 
values of Nt , 10 , 0.1Le Nb  . 

 
(a) 

 

 
(b) 

 

Fig. 5. a) Nusselt number ratio versus J for 
different values of Nb , 0.3, 10Nt Le  . 

b) Sherwood number ratio versus J for different 
values of Nb , 0.3, 10Nt Le  . 

4. CONCLUSIONS 

One knows how consequential is to prevent the heat 
transfer reduction originates from the thermal 
resistance of a system like sedimentations. Reducing 
the sensitivity of heat transfer behavior to thermal 
resistance of the plate as a goal, in this study, a 
pragmatic approach of boundary layer flow and heat 
transfer of nanofluid (mixture of water with 
particles<100nm) has been studied. This is classified 
onset of conjugate heat transfer problems. Employing 
similarity transformation, we have transformed the 
basic partial differential equations to ordinary 
differential ones before solving them numerically. The 
variation of heat and concentration rates with 
dimensionless plate thermal resistance J  which arises 
from plate's thermal thickness is analyzed in details. 
Obtained results indicate that increasing J leads to 
decrease in both heat and concentration rates and 
among all parameters including Lewis number, 
Brownian motion and thermophoresis, it is shown that 
increasing in Brownian motion (lower nanoparticles 
size) may be the most effective way to suppress the 
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effects of thermal resistance of the plate which 
reduces heat transfer rate. On the other hand, Lewis 
number has the least effect. Further, reduction in the 
heat transfer rate due to the thernal resistance of the 
plate (J) is reduced for lower nanoparticles. Also, 
using lower nanoparticles enhance the performance of 
the system. In addition, increasing in thermophoresis 
parameter for lower values of thermal resistance of the 
plate can decline the reduction of heat transfer due to 
sedimentations markedly. 
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Appendix 

With in mind the following similarity variables (Eq. 
(7)) 

 ,  
b

U T T
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x T T
 
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                           (A-1) 

Energy balance equation for any control volume at the 
surface is: 
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w
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Employing chain rule in derivation 
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Applying dimensionless parameter 
b
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with some simplifications 

( ) 1 
y b

w b

k T T T T
t x

k T T

  


 



    
       

        (A-5) 

with substituting the y
U

x



  we may have 
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6) 
So the surface condition can be expressed as 

'1 ( )J x                                            (A-7) 

 


