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ABSTRACT 

An investigation of unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically 

conducting and heat absorbing fluid past an impulsively moving vertical plate with Newtonian heating 

embedded in a porous medium in a rotating system is carried out. The governing partial differential equations 

are first subjected to Laplace transformation and then inverted numerically using INVLAP routine of Matlab. 

The governing partial differential equations are also solved numerically by Crank-Nicolson implicit finite 

difference scheme and a comparison has been provided between the two solutions. The numerical solution for 

fluid velocity and fluid temperature are depicted graphically whereas the numerical values of skin friction and 

Nusselt number are presented in tabular form for various values of pertinent flow parameters. Present solution 

in special case is compared with previously obtained solution and is found to be in excellent agreement. 

 

Keywords: Unsteady hydromagnetic natural convection; Coriolis force; Newtonian heating; Heat absorption; 

Porous medium. 

NOMECLATURE 

0 :uniform magnetic field,B  uniform mahnetic field :primary fluid velocity,u  primary fluid velocity 

: specific heat at constant pressure,pc  specific heat at constant pressure  :secondary fluid velocity.w  Secondary fluid velocity 

: thermal Grashof number,rG  thermal Grashof number
  

: accleration due to gravity,g  acceleration due to gravity  : ,coefficient of thermal expansion  coefficient of thermal expansion 

: heat transfer coefficient,sh  heat trancfer coefficient : kinematic coefficient of viscosity,  kinematic coefficient of velocity 

1 : permeability parameter,K  permeability parameter : fluid density,  fluid density 

2: rotation parameter,K  rotation parameter :primary skin friction,
x

  primary skin friction 

1 : thermal conductivity,k  thermal conductivity :secondary skin friction,
z

  secondary skin friction 

2 : magneticparameter,M  Magnetic parameter : electricalconductivity,  electrical conductivity 

: Prandtl number,
r

P  Prandtl number : heat absorption parameter.  heat absorption parameter 

0
: heat absorption coefficient,Q  heat absorption coefficient : ,uniform angular velocity  uniform angular velocity 

: fluid temperature,T   fluid temperature  

 

1. INTRODUCTION 

Theoretical/experimental investigation of natural 

convection flow past bodies with different 

geometries embedded in a fluid saturated porous 

medium has received considerable attention during 

the past several decades due to its varied and wide 

industrial applications. Significant applications 

include chemical catalytic reactors, porous 

insulation, nuclear waste disposal, use of porous 

conical bearings in lubrication technology, fibrous 

and granular insulation systems, grain storage, food 

processing, energy efficient drying processes, 

enhanced recovery of oil and gas, coal combustors, 

underground energy transport etc. The basic 

problem of natural convection in porous medium is 
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boundary layer flow along a heated vertical flat 

plate embedded in a fluid-saturated porous medium, 

which was investigated by Cheng and Minkowycz 

(1977). They obtained similarity solutions for the 

case when wall temperature varies as a power 

function of the distance from the leading edge. 

Nakayama and Koyama (1987) analyzed combined 

free and forced convection flow in Darcian and non-

Darcian porous medium. Lai and Kulacki (1991) 

studied non-Darcy mixed convection flow along a 

vertical wall in a fluid saturated porous medium. 

Hsieh et al. (1993) obtained non-similar solution for 

free and forced convection flow from a vertical 

surface in a porous medium. Rees (1999) analyzed 

free convection boundary layer flow from an 

isothermal vertical flat plate embedded in a fluid 

saturated layered porous medium. Jana et al. (2012) 

studied natural convection boundary layer flow 

from an inclined flat plate with finite dimensions 

embedded in a porous medium in a rotating 

environment. Khan and Pop (2013) investigated the 

Cheng and Minkowycz problem for triple diffusive 

natural convection boundary layer flow past a 

vertical plate in a porous medium. Reddy et al. 

(2013) studied unsteady hydromagnetic natural 

convection flow past a moving vertical plate in a 

porous medium in the presence of radiation and 

chemical reaction. Comprehensive reviews of 

convective flow in porous media are candidly 

presented in the form of books and monographs by 

Ingham and Pop (2002), Ingham et al. (2004), Vafai 

(2005) and Nield and Bejan (2006). 

It is well known that the characteristics of heat 

transfer are dependent on the thermal boundary 

conditions. Here a conjugate convective type flow 

or Newtonian heating is considered. Newtonian 

heating is a kind of wall-to-ambient heating process 

where the rate of heat transfer from the bounding 

surface with a finite heat capacity is proportional to 

the local surface temperature. This type of situation 

occurs in many important engineering devices such 

as in heat exchangers, gas turbines and also in 

seasonal thermal energy storage systems. Therefore, 

the interaction of conduction-convection coupled 

effects is of much significance from practical point 

of view and it must be considered when evaluating 

the conjugate heat transfer processes in many 

engineering applications. Merkin (1994) initiated 

the study of free convection boundary layer flow 

over a vertical surface with Newtonian heating 

while Lesnic et al. (1999, 2000) analyzed free 

convection boundary layer flow past vertical and 

horizontal surfaces in a porous medium generated 

by Newtonian heating. Chaudhary and Jain (2006) 

investigated unsteady free convection flow past an 

impulsively started vertical plate with Newtonian 

heating. Salleh et al. (2009) discussed forced 

convection boundary layer flow at a forward 

stagnation point with Newtonian heating. Narahari 

and Ishak (2011) investigated the effects of thermal 

radiation on unsteady free convection flow of an 

optically thick fluid past a moving vertical plate 

with Newtonian heating. They considered three 

cases of interest, namely, (i) impulsive movement 

of the plate; (ii) uniformly accelerated movement of 

the plate and (iii) exponentially accelerated 

movement of the plate. Olanrewaju and Makinde 

(2013) investigated boundary layer stagnation point 

flow of a nanofluid over a permeable flat surface 

with Newtonian Heating. Recently, Das et al. 

(2014a) studied unsteady mixed convection flow 

past a vertical plate with Newtonian heating. 

However, in all these investigations, the effects of 

magnetic field are ignored. The interaction between 

electrically conducting fluid and a magnetic field 

has profound applications in various technical 

systems employing liquid metal and plasma flows 

(Liron and Wilhelm, 1974). Therefore, the study of 

unsteady hydromagnetic convective boundary layer 

flow of electrically conducting fluids in porous and 

non-porous media has become a subject of great 

interest and is widely investigated due to its 

significant applications in boundary layer flow 

control, plasma studies, geothermal energy 

extraction, solar energy collection, cooling of an 

infinite metallic plate in a cooling bath, 

magnetohydrodynamic (MHD) stirring of molten 

metal, magnetic levitation and casting, MHD 

marine propulsion and on the performance of many 

engineering devices, namely, MHD power 

generators, MHD pumps, MHD accelerators, MHD 

flow-meters, controlled thermonuclear reactors etc. 

Keeping in view the importance of such study, 

Raptis (1986) investigated unsteady two-

dimensional natural convection flow of an 

electrically conducting, viscous and incompressible 

fluid along an infinite vertical plate embedded in a 

porous medium in the presence of magnetic field. 

Jha (1991) considered unsteady hydromagnetic free 

convection and mass transfer flow past a uniformly 

accelerated moving vertical plate through a porous 

medium when magnetic field is fixed with the 

moving plate. Chamkha (1997) analyzed unsteady 

MHD free convection flow through a porous 

medium supported by a surface. Kim (2000) studied 

unsteady MHD free convection flow past a moving 

semi-infinite vertical porous plate embedded in a 

porous medium with variable suction. Hayat et al. 

(2008) investigated the effects of magnetic field and 

porous medium on some unidirectional flows of a 

second grade fluid. In their study MHD flows are 

induced by the application of periodic pressure 

gradient or by the impulsive motion of one or two 

boundaries or by an oscillating plate. Ogulu and 

Makinde (2008) considered unsteady 

hydromagnetic free convection flow of a dissipative 

and radiative fluid past a vertical plate with constant 

heat flux. Recently, Seth and Sarkar (2014) 

investigated unsteady hydromagnetic free 

convection flow of a viscous, incompressible and 

electrically conducting fluid past an impulsively 

moving vertical plate with Newtonian surface 

heating, embedded in a uniform porous medium. 

It is noticed that there may be significant 

temperature difference between ambient fluid and 

surface of the solid in a number of fluid flow 

problems of physical interest. Therefore, it is 

appropriate to consider temperature dependent heat 

source and/or sink which may have strong influence 

on heat transfer characteristics. Sparrow and Cess 

(1961) were one of the initial investigators to study 
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temperature dependent heat absorption on steady 

stagnation point flow and heat transfer. Several 

physical problems exist for possible application in 

industry where heat generation and absorption take 

place, namely, fire and combustion modeling, fluids 

undergoing exothermic and/or endothermic 

chemical reaction, development of metal waste 

from spent nuclear fuel, nuclear thermal power 

generation etc. Keeping in view the importance of 

such study, Moalem (1976) considered steady state 

heat transfer in a porous medium with temperature-

dependent heat generation. Ramadan and Chamkha 

(2000) investigated hydromagnetic natural 

convection of a particulate suspension from an 

inclined plate with heat absorption. Kamel (2001) 

considered unsteady hydromagnetic natural 

convection flow due to heat and mass transfer 

through a porous medium bounded by an infinite 

vertical porous plate with temperature-dependent 

heat sources/sinks. Chamkha (2004) analyzed 

unsteady hydromagnetic natural convection heat 

and mass transfer flow past a semi-infinite vertical 

moving plate with heat absorption. Singh and 

Makinde (2012) investigated steady hydromagnetic 

natural convection flow along an inclined plate with 

Newtonian heating in the presence of volumetric 

heat generation. Prasad et al. (2013) considered the 

effects of heat generation/absorption, thermal 

radiation, magnetic field, and temperature-

dependent thermal conductivity on the flow and 

heat transfer characteristics of a non-Newtonian 

Maxwell fluid over a stretching sheet. Kumar 

(2013) studied MHD free convection flow over a 

stretching porous sheet in the presence of heat 

source and radiation. Das et al. (2014b) investigated 

unsteady hydromagnetic flow of a heat absorbing 

dusty fluid past a permeable vertical plate with 

ramped temperature. 

Investigation of hydromagnetic natural convection 

flow in a rotating medium is of considerable 

importance due to its application in various areas of 

geophysics, astrophysics and fluid engineering viz. 

maintenance and secular variations of Earth’s 

magnetic field due to motion of Earth’s liquid core, 

internal rotation rate of the Sun, structure of the 

magnetic stars, solar and planetary dynamo 

problems, turbo machines, rotating MHD 

generators, rotating drum type separators for liquid 

metal MHD applications etc. It may be noted that 

Coriolis and magnetic forces are comparable in 

magnitude and Coriolis force induces secondary 

flow in the flow-field. Taking into consideration the 

importance of such study, unsteady hydromagnetic 

natural convection flow past an infinite moving 

plate in a rotating medium has been studied by a 

number of researchers. Mention may be made of 

research studies of Singh (1984), Raptis and Singh 

(1985), Kythe and Puri (1987), Singh et al. (2010) 

and Seth et al. (2011). Seth et al. (2013) considered 

effects of rotation on unsteady hydromagnetic 

natural convection flow of a viscous, 

incompressible, electrically conducting and heat 

radiating fluid past an impulsively moving vertical 

plate with ramped temperature in a porous medium. 

Recently, Seth et al. (2015) investigated effects of 

Hall current and rotation on hydromagnetic natural 

convection flow with heat and mass transfer of a 

heat absorbing fluid past an impulsively moving 

vertical plate with ramped temperature. To the best 

of our knowledge no researcher has yet considered 

the effects of rotation and heat absorption on 

unsteady hydromagnetic natural convection flow 

past a flat plate embedded in a porous medium 

when natural convection is induced due to 

Newtonian heating of the plate. 

Objective of the present investigation is to study 

unsteady hydromagnetic natural convection flow of 

a viscous, incompressible, electrically conducting 

and heat absorbing fluid past an impulsively 

moving infinite vertical plate embedded in a 

uniform porous medium in a rotating system when 

the natural convection is induced due to Newtonian 

heating of the plate. According to the best of 

authors’ knowledge this problem has not yet 

received attention of researchers although being 

significantly important in science and engineering. 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 

Consider unsteady natural convection flow of a 

viscous, incompressible, electrically conducting and 

heat absorbing fluid past an infinite vertical plate 

embedded in a uniform porous medium with 

Newtonian heating at the surface of the plate. 

Coordinate system is chosen in such a way that x - 

axis is taken along the plate in the upward direction, 

y - axis is taken normal to the plane of plate in the 

fluid and z - axis is taken normal to the x y  plane.  

Fluid is permeated by a uniform transverse 

magnetic field 0B  which is applied in a direction 

parallel to y - axis. The fluid and plate rotate in 

unison with uniform angular velocity   about y - 

axis. Initially, i.e. at time 0t  , both the fluid and 

plate are at rest and at a uniform temperature T
 . 

At time 0,t   the plate is given an impulsive 

motion in x - direction against the gravitational 

field such that it attains a uniform velocity 0U . It is 

assumed that natural convection is generated by 

Newtonian heating i.e. rate of heat transfer from the 

plate is proportional to the local surface 

temperature. The geometry of the problem is 

presented in Fig. 1. Since plate is of infinite extent 

in x  and z  directions and is electrically non-

conducting, all physical quantities depend on y  

and t  only. Also no applied or polarized voltages 

exist so the effect of polarization of fluid is 

negligible. This corresponds to the case where no 

energy is added or extracted from the fluid by 

electrical means (Cramer and Pai, 1973). It is 

assumed that the induced magnetic field generated 

by fluid motion is negligible in comparison to the 

applied one. This assumption is valid because 

magnetic Reynolds number is very small for liquid 

metals and partially ionized fluids which are 

commonly used in industrial applications (Cramer 

and Pai, 1973).  
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Fig. 1. Geometry of the Problem 

Taking into consideration the assumptions made 

above, the governing equations for unsteady 

hydromagnetic natural convection flow of a 

viscous, incompressible, electrically conducting and 

heat absorbing fluid through a uniform porous 

medium in a rotating frame of reference, under 

Boussinesq approximation, are given by 
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where 1 1, , , , , , , , , , pu w K g T k c        and 0Q  

are, respectively, fluid velocity in x - direction, 

fluid velocity in z - direction, kinematic coefficient 

of viscosity, electrical conductivity, fluid density, 

permeability of porous medium, acceleration due to 

gravity, coefficient of thermal expansion, fluid 

temperature, thermal conductivity, specific heat at 

constant pressure and heat absorption coefficient. 

The initial and boundary conditions for the problem 

are specified as 

0 : 0, 0, for all 0,t u w T T y
             (4a) 

0

1

0 : , 0, at 0,shT
t u U w T y

y k


         


     (4b) 

0, 0, asu w T T y
        .            (4c) 

where sh is heat transfer coefficient and 
0

1

sh
U

k


 .  

Eqs. (1) to (3), in non-dimensional form, assume the 

following form 

2
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where  

2
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  3

0, ,rT T T T G g T U   
        1r pP c k  

and 
2

0 0pQ c U   . 

2 2

1, , , , andr rM K K G P   are, respectively, magnetic 

parameter, rotation parameter, permeability 

parameter,  Grashof number, Prandtl number and 

heat absorption parameter. 

The initial and boundary conditions (4), in non-

dimensional form, become 

0 : 0, 0, 0 for all ,t u w T y                  (8a) 

 0 : 1, 0, 1  at 0,
T

t u w T y
y


      


      (8b) 

0, 0, 0 asu w T y    .                  (8c) 

Eqs. (5) and (6) are presented, in compact form, as 

2

2
,r

F F
F G T

t y


 
  

 
                                (9) 

where 2 2

1and 1 / 2F u iw M K iK     . 

Initial and boundary conditions (8a) to (8c), in 

compact form, become 

0, 0    for 0 and 0F T y t    ,            (10a) 

 1, 1        at 0 for 0
T

F T y t
y


     


, (10b) 

0,   0 as for 0F T y t    .              (10c) 

Eqs. (7) and (9), after taking Laplace transform and 

using initial conditions (10a), reduce to 

 
2

2
0,r

d T
P s T

dy
                                          (11) 

 
2

2
0r

d F
s F G T

dy
    ,                               (12) 

where    
0

, , ,stT y s T y t e dt



    

   
0

, , stF y s F y t e dt



   and 0s   (s being 

Laplace transform parameter). 

Boundary conditions (10b) and (10c), after taking 

Laplace transform, become 
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1
1 ,   at 0,

dT
F s T y

dy s

 
     

 
                (13a) 

0,   0, as  .F T y                                 (13b) 

Solution of Eqs. (11) and (12) subject to the 

boundary conditions (13a) and (13b) are given by 
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where  1 1r rG G P   and  3 1 rP   . 

An exact inverse Laplace transform of Eq. (14) can 

be obtained when 0   i.e. in the absence of heat 

absorption (Chaudhary and Jain, 2006). Moreover, 

inverse Laplace transform of the second term in Eq. 

(15) can be obtained only when 0  and 0   

i.e. in the absence of magnetic field, porous 

medium, rotation and heat absorption (Chaudhary 

and Jain, 2006). Therefore, the presence of either 

magnetic field or Coriolis force or permeability of 

medium or heat absorption in Eq. (15) and the 

presence of heat absorption in Eq. (14) causes the 

task to obtain analytical solution of the governing 

equations impossible and no researcher has yet 

obtained a closed form analytical solution taking 

into account any of the above entities to the best of 

our knowledge. Thus, the Laplace transform 

inversion of Eqs. (14) and (15) is obtained 

numerically using INVLAP routine in Matlab. 

Exact inversion of Eq. (14) can be obtained in the 

absence of heat absorption i.e. when 0  which 

agrees with that of Chaudhary and Jain (2006) and 

is given by 

 /
( , ) , 16

2 2
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3. NUMERICAL SOLUTION 

Eqs. (5) to (7) subject to the initial and boundary 

conditions (8) cannot be solved analytically due to 

the reasons mentioned in the previous section and 

hence we resorted to INVLAP routine of Matlab. 

However, Eqs. (5) to (7) under the initial and 

boundary conditions (8) can be solved numerically 

using Crank-Nicolson implicit finite difference 

scheme. Therefore, we have also obtained 

numerical solution of this problem using Crank-

Nicolson implicit finite difference scheme. 

For this purpose, the region under consideration is 

restricted to a rectangle of finite dimensions with 

ymax=6 (corresponding to y  ) and tmax=2. 

Assumption of max 6y   was finalized when 

boundary condition (10c) was satisfied within 

tolerance limit of 410 . Computational domain is 

divided into 241801 grid points and the grid 

refinement check is performed by comparing results 

in this case (with mesh size y t    where 

1 / 40y   and 1/ 400t  ) with the results 

obtained when mesh size is reduced to 50% of the 

present case and it is noticed that the difference 

between these two results is less than half a unity in 

the fourth decimal place. The finite difference 

equations for each time step constitute a tridiagonal 

system of equations which are solved by Thomas 

algorithm as given in Carnahan et al. (1969). 

Numerical solution for fluid temperature and fluid 

velocity is obtained corresponding to desired degree 

of accuracy for required time by performing 

computations for a number of time steps. It was 

found that the absolute difference between the 

numerical values of fluid temperature and fluid 

velocity obtained for two consecutive time steps is 

less than 410 .

 Hence the scheme designed is stable. 

Moreover, Crank-Nicolson scheme has local 

truncation error of     2 2
O y t    which tends 

to zero as andy t  tends to zero which justifies 

consistency (Antia, 1991, pp. 643-644). Stability 

and consistency together ensure convergence of the 

scheme.  

Skin friction  and Nusselt number uN
 are given 

by  

0

,

y

u

y








                (17) 

0

.u

y

T
N

y






                                              (18) 

The numerical values of skin friction and Nusselt 

number are obtained using computed values of fluid 

velocity and fluid temperature respectively. It may 

be noted that the derivatives involved in Eqs. (17) 

and (18) are evaluated using five point forward 

difference formula for the first order derivative 

(Antia 1991, page 161). 

 

3.1 Validation of Numerical Solution 

In order to validate our numerical scheme we have 

presented in Fig. 2 a comparison between the exact 

values of fluid temperature computed from exact 

solution (16) with the numerical values of fluid 

temperature obtained by Crank-Nicolson implicit 

finite difference scheme and by INVLAP routine of 

Matlab for the case when 0   (absence of heat 

absorption). It is seen that there is an excellent 
agreement between these solutions. 

Expression for Nusselt number uN  when 0   is 

obtained using solution (16) which is given by  

/Pr .t

u

r

t
N e erfc

P

 
   

 

               (19) 
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Fig.2. Temperature profiles whenTemperature profiles when 0 and 0.71rP  Fig 2 :  and 

Temperature profiles when 0 and 0.71rP  Fig 2 :  

We have presented in Table 1 a comparison 

between the numerical values of Nusselt number 

obtained using the INVLAP routine of Matlab and 

finite difference scheme mentioned above with the 

exact value obtained from expression (19). It is 

evident from Table 1 that the numerical values of 

Nusselt number obtained through finite difference 

scheme are in good agreement with the values of 

Nusselt number obtained by INVLAP routine of 

Matlab. Moreover, it is also noticed from Table 1 

that numerical values for Nusselt number obtained 

by INVLAP routine of Matlab are in excellent 

agreement with the exact values of Nusselt number 

obtained from (19). This justifies the correctness of 

the results presented in the manuscript. 

Table 1 Nusselt number –Nu when 0   

rP →

t ↓ 

Result by Finite Difference Result by INVLAP routine Exact Result 

0.3 0.5 0.71 0.3 0.5 0.71 0.3 0.5 0.71 

0.3 5.0084 3.1459 2.5052 5.009 3.1462 2.5055 5.009 3.1462 2.5055 

0.5 10.2251 5.0084 3.5683 10.2295 5.0090 3.5687 10.2295 5.0089 3.5686 

0.7 20.268 7.7264 4.9304 20.3074 7.7281 4.9310 20.3074 7.7281 4.9310 

 

4. RESULTS AND DISCUSSION 

In order to analyze the effects of magnetic field, 

rotation, permeability of the medium, thermal 

buoyancy force, heat absorption, thermal diffusion 

and time on the flow-field,  the numerical solution 

of primary fluid velocity u and secondary fluid 

velocity w  is depicted graphically versus boundary 

layer coordinate y in Figs. 3 to 9 for various values 

of magnetic parameter 
2M , rotation parameter 

2K

, permeability parameter K1, Grashof number rG , 

heat absorption parameter  , Prandtl number rP

and time t. It is revealed from the Figs. 3 to 9 that, 

secondary fluid velocity attains maximum value 

near surface of the plate and then decrease properly 

on increasing boundary layer coordinate y  to 

approach free stream value. This is due to the fact 

that Coriolis force is dominant in the region near the 

axis of rotation. 

Figure 3 illustrates the influence of magnetic field 

on the primary fluid velocity u and secondary fluid 

velocity w. It is revealed from Fig. 3 that both u and 

w decrease on increasing 
2M . Since 

2M  signifies 

the relative strength of magnetic force to viscous 

force, 
2M  increases on increasing the strength of 

magnetic force. This implies that, magnetic field 

has a tendency to retard fluid flow in both the 

primary and secondary flow directions throughout 

the boundary layer region. This phenomenon is 

attributed to the Lorentz force, induced due to the 

movement of an electrically conducting fluid in the 

presence of magnetic field, which has a tendency to 

resist fluid motion. 

 

Fig. 3. Primary and Secondary velocity profiles 

when 
2

1

. Primaryand Secondary velocityprofiles when

5, 0.4, 4, 2, P 0.71and 0.5r rK K G t     

Fig 3 :
 

 
Fig. 4. Primary and Secondary velocity profiles 

when
2

1

. PrimaryandSecondary velocityprofiles when

6, 0.4, 4, 2, P 0.71 and 0.5r rM K G t     

Fig 4 :
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Figure 4 demonstrates the effects of rotation on the 

primary and secondary fluid velocities. It is 

perceived from Fig. 4 that u decreases on increasing 
2K  throughout the boundary layer region whereas 

w increases on increasing 
2K  in the region near the 

plate and it decreases on increasing 
2K  in the 

region away from the plate. This implies that, 

rotation tends to retard fluid flow in the primary 

flow direction throughout the boundary layer region 

whereas it has a reverse effect on fluid flow in the 

secondary flow direction in the region near the 

plate. Although rotation is known to induce 

secondary flow in the flow-field by suppressing 

primary flow, its accelerating effect on the fluid 

flow in secondary flow direction is prevalent only 

in the region near the plate.  

 

 
Fig. 5. Primary and Secondary velocity profiles 

when 
2 2

. PrimaryandSecondary velocityprofiles when

6, 5, 4, 2, P 0.71 and 0.5r rM K G t     

Fig 5 :
 

Figure 5 presents the influence of permeability of 

the medium on the primary and secondary fluid 

velocities. It is evident from Fig. 5 that both u and w 

increase on increasing 1K . It may be noted that an 

increase in K1 implies that there is a decrease in the 

resistance of the porous medium. Due to this reason 

permeability of the medium tends to accelerate fluid 

flow in both the primary and secondary flow 

directions throughout the boundary layer region. 

Figure 6 depicts the effects of thermal buoyancy 

force on the primary and secondary fluid velocities.  

It is noticed from Fig. 6 that both u and w increase 

on increasing rG . Since rG  presents the relative 

strength of thermal buoyancy force to viscous force, 

rG  increases on increasing the strength of thermal 

buoyancy force. This implies that, thermal 

buoyancy force tends to accelerate fluid flow in 

both the primary and secondary flow directions 

throughout the boundary layer region. 

Figure 7 illustrates the influence of heat absorption 

on the primary and secondary fluid velocities. It is 

perceived from Fig. 7 that both u and w decrease on 

increasing  . This implies that, heat absorption 

tends to retard fluid flow in both the primary and 

secondary flow directions throughout the boundary 

layer region.  

Figures 8 and 9 depict the effects of thermal 

diffusion and time on the primary and secondary 

fluid velocities. It is noticed from Figs. 8 and 9 that 

both u and w decrease on increasing rP  whereas 

both u and w increase on increasing t. Since rP  is a 

measure of relative strength of viscosity to thermal 

diffusivity of the fluid, rP decreases on increasing 

thermal diffusivity. This implies that, thermal 

diffusion tends to accelerate fluid flow in both the 

primary and secondary flow directions throughout 

the boundary layer region. As time progresses, fluid 

flow is getting accelerated in both the primary and 

secondary flow directions throughout the boundary 

layer region. 

 

 
Fig. 6. Primary and Secondary velocity profiles 

when
2 2

1

. PrimaryandSecondary velocity profiles when

6, 5, 0.4, 2, P 0.71 and 0.5rM K K t     

Fig 6 :
 

 

 
Fig. 7. Primary and Secondary velocity profiles 

when 
2 2

1

. PrimaryandSecondary velocityprofiles when

6, 5, 0.4, 4, 0.71 and 0.5r rM K K G P t     

Fig 7 :
 

 

 
Fig. 8. Primary and Secondary velocity profiles 

when 
2 2

1

. PrimaryandSecondary velocityprofiles when

6, 5, 0.4, 4, 2 and 0.5rM K K G t     

Fig 8 :
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Fig. 9. Primary and Secondary velocity profiles 

when 
2 2

1

. PrimaryandSecondary velocityprofiles when

6, 5, 0.4, 4, 0.71 and 2r rM K K G P      

Fig 9 :
 

 
Fig. 10. Temperature profiles when 

. Temperature profiles when 0.71 and 0.5rP t Fig 10 :  

 
Fig. 11. Temperature profiles when

. Temperature profileswhen 2 and 0.5t  Fig 11:  

 

The numerical solution of fluid temperature T is 

depicted graphically versus boundary layer 

coordinate y  in Figs. 2, 10 and 11 for various 

values of rP ,  and t. Figures 2, 10 and 11 reveal 

that fluid temperature T decreases on increasing 

andrP   whereas it increases on increasing t. This 

implies that, throughout the boundary layer region, 

thermal diffusion tends to enhance fluid temperature 

whereas heat absorption has a reverse effect on it. 

Fluid temperature is getting enhanced with the 

progress of time. 

The numerical values of primary skin friction x

and secondary skin friction z  are presented in 

tabular form in Tables 2 to 4 for various values of 

2 2

1, , , , andrM K G K t  taking 0.71rP  (ionized air). 

It is perceived from Table 2 that both x and z  

increase on increasing 2K . This implies that 

rotation tends to enhance both the primary and 

secondary skin frictions. It is noticed from Tables 2 

to 4 that 
x  increases on increasing 2 andM 

 
whereas it decreases on increasing 

1, andrG K t . 
z  

decreases on increasing 2 andM   whereas it 

increases on increasing 
1, andrG K t . This implies 

that magnetic field and heat absorption tend to 

enhance primary skin friction whereas these 

agencies have reverse effect on secondary skin 

friction. Thermal buoyancy force and permeability 

of the medium tend to reduce primary skin friction 

whereas these agencies have reverse effect on 

secondary skin friction. As time progresses, primary 

skin friction is getting reduced whereas secondary 

skin friction is getting enhanced. 

 

Table 2 Primary and Secondary Skin Frictions 

when 4rG  , 
1 0.4K  , 2   and 0.5t   

2K
→ 

2M
↓ 

x  z  

5 7 9 5 7 9 

6 2.1031 2.4341 2.7605 1.8333 2.3551 2.7905 

9 2.5266 2.7891 3.0642 1.6198 2.1294 2.5673 

12 2.9278 3.1382 3.3696 1.4556 1.9440 2.3756 

 

 

Table 3 Primary and Secondary Skin Frictions 

when 
2 6M  , 2 5K  , 2   and 0.5t   

1K

→ 

rG ↓ 

x  z  

0.2 0.4 0.8 0.2 0.4 0.8 

2 3.0256 2.6954 2.5268 1.5179 1.6745 1.7672 

4 2.4574 2.1031 1.9219 1.6515 1.8333 1.9414 

6 1.8892 1.5107 1.3170 1.7850 1.9921 2.1157 

 

 

Table 4 Primary and Secondary Skin Frictions 

when 
2 6M  , 2 5K  , 4rG   and 1 0.4K   

t

→ 

 ↓ 

x  z  

0.3 0.5 0.7 0.3 0.5 0.7 

2 2.4968 2.1031 1.7600 1.6930 1.8333 1.9586 

4 2.6602 2.4789 2.3713 1.6589 1.7335 1.7785 

6 2.7773 2.6958 2.6619 1.6335 1.6732 1.6894 
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5. CONCLUSIONS 

An investigation of unsteady hydromagnetic natural 

convection flow of a viscous, incompressible, 

electrically conducting and heat absorbing fluid past 

an impulsively moving infinite vertical plate 

embedded in a uniform porous medium in a rotating 

system when the natural convection is induced due 

to Newtonian heating of the plate is carried out. 

Significant findings are as follows: 

(i) Magnetic field has a tendency to retard fluid 

flow in both the primary and secondary flow 

directions throughout the boundary layer region. 

Rotation tends to retard fluid flow in the primary 

flow direction throughout the boundary layer region 

whereas it has a reverse effect on fluid flow in the 

secondary flow direction in the region near the 

plate. Permeability of the medium, thermal 

buoyancy force and thermal diffusion tend to 

accelerate fluid flow in both the primary and 

secondary flow directions throughout the boundary 

layer region whereas heat absorption has a reverse 

effect on it. As time progresses, fluid flow is getting 

accelerated in both the primary and secondary flow 

directions throughout the boundary layer region.  

(ii) Thermal diffusion tends to enhance fluid 

temperature whereas heat absorption has a reverse 

effect on it. 

(iii) Rotation tends to enhance both the primary and 

secondary skin frictions. Magnetic field and heat 

absorption tend to enhance primary skin friction 

whereas these agencies have reverse effect on 

secondary skin friction. Thermal buoyancy force 

and permeability of the medium tend to reduce 

primary skin friction whereas these agencies have 

reverse effect on secondary skin friction. As time 

progresses, primary skin friction is getting reduced 

whereas secondary skin friction is getting enhanced. 
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