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ABSTRACT 

An unsteady hydromagnetic flow of a viscous incompressible electrically conducting fluid past an accelerated 

porous flat plate in the presence of a uniform transverse magnetic field in a rotating system taking the Hall 

effects into account have been presented. An analytical solution describing the flow at large and small times 

after the start is obtained by the use of Laplace transform technique. The influences of the physical parameters 

acting on the flow are discussed in detail with the help of several graphs. It is found that interplay of Coriolis 

force and hydromagnetic force in the presence of Hall currents plays an important role in characterizing the 

flow behavior. 
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NOMENCLATURE 

0B  strength of applied magnetic field 0, ,u v w  velocity components along coordinates axes 

B  magnetic field vector 1 1,u v  dimensionless velocity components 

E  electric field vector  , ,x y z  Cartesian co-ordinates 

, ,x y zE E E  components of electric field  

F  complex fluid velocity ,   defined by (24) 

1i    complex quantity   non-dimensional variable 

j  current density vector   electric conductivity 

, ,x y zj j j  components of current density   defined by  (22) 

k  unity vector e  magnetic permeability 
2K  rotation parameter   kinematic viscosity 
2M  magnetic parameter   fluid density 

m  Hall parameter   non-dimensional time 

0p  fluid pressure ,x y   shear stresses at the plate 0   

p  Laplace transform variable e  collision time of electron 

q  fluid velocity vector e  cyclotron frequency 

S  suction parameter   angular velocity 

t  time   

 

1. INTRODUCTION 

In recent years, considerable interest has been given 

to the theory of rotating fluids due to its application 

in cosmic and geophysical sciences. The rotating 

flow of an electrically conducting fluid in the 

presence of a magnetic field is encountered in 

cosmical and geophysical fluid dynamics. It is also 

important in the solar physics involved in the 

sunspot development, the solar cycle and the 

structure of rotating magnetic stars. It is well 

known that a number of astronomical bodies posses 

fluid interiors and magnetic fields. Changes in the 

rotation rate of such objects suggest the possible 

importance of hydromagnetic spin-up. The 

hydromagnetic flow of a viscous incompressible 
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electrically conducting fluid induced by a porous 

plate in the presence of rotating system is of 

considerable interest in the technical field due to its 

frequent occurrence in industrial and technological 

applications. The mechanism of conduction in 

ionized gases in the presence of strong magnetic 

field is different from that in metallic substance. 

The electric current in ionized gases is generally 

carried by electrons, which undergo successive 

collisions with other charged or neutral particles. In 

the ionized gases the current is not proportional to 

the applied potential except when the field is very 

weak in an ionized gas where the density is low and 

the magnetic field is very strong, the conductivity 

normal to the magnetic field is reduced due to the 

free spiraling of electrons and ions about the 

magnetic lines of force before suffering collisions 

and a current is induced in a direction normal to 

both electric and magnetic fields. This 

phenomenon, well known in the literature, is called 

the Hall effects. Hall effects are commonly used in 

distributors for ignition timing (and in some types 

of crank and camshaft position sensors for injection 

pulse timing, speed sensing, etc.). Hall effects are 

used as a direct replacement for the mechanical 

breaker points used in earlier automotive 

applications in Automotive ignition and fuel 

injection. Hall effects devices when appropriately 

packaged are immune to dust, dirt, mud and water. 

These characteristics make Hall effects devices 

better for position sensing than alternative means 

such as optical and electromechanical sensing. Hall 

effects sensors may be used in various sensors such 

as rotating speed sensors (bicycle wheels, gear-

teeth, automotive speedometers, electronic ignition 

systems), fluid flow sensors, current sensors, and 

pressure sensors. Common applications are often 

found where a robust and contactless switch or 

potentiometer is required. These include: electric 

airsoft guns, triggers of electropneumatic paintball 

guns, gocart speed controls, smart phones and some 

global positioning systems. 

The study of hydromagnetic viscous flows with 

Hall currents has important engineering 

applications in problems of magnetohydrodynamic 

generators and of Hall accelerators as well as in 

flight magnetohydrodynamics. The unsteady 

hydromagnetic flow of an incompressible 

electrically conducting viscous fluid induced by a 

porous plate is of considerable interest in the 

technical field due to its frequent occurrence in 

industrial and technological applications. It is well 

known that a number of astronomical bodies posses 

fluid interiors and magnetic fields. It is also 

important in the solar physics involved in the 

sunspot development, the solar cycle and the 

structure of magnetic stars. The hydromagnetic 

flow near an accelerated plate in the presence of a 

magnetic field was examined Soundalgekar (1965). 

Katagiri (1969) discussed the effect of Hall currents 

on the boundary layer flow past a semi-infinite flat 

plate. Hall effects on hydromagnetic flow near a 

porous plate was studied by Pop (1971). Pop and 

Soundalgekar  (1974) investigated the effects of 

Hall currents on hydromagnetic flow near a porous 

plate. Gupta (1975)  investigated the effect of Hall 

currents on the steady magnetohydrodynamic flow 

of an electrically conducting fluid past an infinite 

porous flat plate. The oscillatory 

magnetohydrodynamic flow past a flat plate with 

Hall effects was described by Datta and Jana 

(1976). Debnath et al. (1979) examined the effects 

of Hall current on unsteady hydromagnetic flow 

past a porous plate in a rotating fluid system. Raptis 

and Ram (1984) presented the effects of Hall 

current and rotation. The effect of Hall currents on 

hydromagnetic free convection flow near an 

accelerated porous plate was investigated by 

Hossain and Mohammad  (1988). Pop and 

Watanabe (1994)  studied the Hall effects on 

magnetohydrodynamic free convection about a 

semi-infinite vertical flat plate. Takhar (2002) 

discussed the MHD flow over a moving plate in a 

rotating fluid with magnetic field, Hall currents and 

free stream velocity. Hayat and Abbas (2004) 

studied the fluctuating rotating flow of second 

grade fluid past a porous heated plate with variable 

suction and Hall current. Hayat and Abbas (2007) 

analyzed the effects of Hall Current and heat 

transfer on the flow in a porous medium with slip 

condition. Deka (2008)  studied the Hall effects on 

MHD flow past an accelerated plate. The Hall 

effects on hydromagnetic flow on an oscillatory 

porous plate was described by Maji et al. (2009). 

Gupta et al. (2011) examined the Hall effects on 

MHD shear flow past an infinite porous flat plate 

with suction and blowing at the plate. Resently, 

Deka and Das (2013)  have presented the Hall 

effects on radiating MHD flow past an accelerated 

plate in a rotating fluid. Sandeep and Sugunamma 

(2014) have examined the radiation and inclined 

magnetic field effects on unsteady hydromagnetic 

free convection flow past an impulsively moving 

vertical plate in a porous medium. 

In a recent paper, Deka (2008) has made an exact 

solution of the Hall effects on an MHD flow past an 

accelerated plate in a rotating system. On a keen 

perusal into Deka's work, we have observed that his 

solution is incorrect due to wrongly written the 

equations of motion (1) and (2). He has shown that 

for a given value of Hall parameter m , the 

transverse velocity 1v  vanishes when 

2 2= /(1 )mM m  , which does not actually 

happen where   is the rotation parameter, S  the 

magnetic parameter and m  the Hall parameter. He 

got this result due to error in Eqs. (1) and (2). In 

this paper, we have examined the effects of Hall 

currents and rotation on a hydromagnetic flow of a 

viscous incompressible electrically conducting fluid 

past an accelerated porous flat plate in the presence 

of a uniform transverse magnetic field. It is 

assumed that the magnetic Reynolds number is 

small enough to neglect induced hydromagnetic 

effects. Effects of governing parameters on the fluid 

velocity components, and the shear stresses at the 

plate are presented graphically and tabulated. 
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2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 

Consider the unsteady hydromagnetic flow of a 

viscous incompressible electrically conducting fluid 

past an accelerated porous flat plate in the presence 

of a uniform transverse magnetic field in a rotating 

system. Choose a Cartesian co-ordinates system 

with x - axis along the plate in the direction of the 

flow, the z -axis is normal to the plate and the y -

axis perpendicular to xy -plane (see in Fig. 1). 

Initially, at time 0t  , both the plate and the fluid 

are assumed to be at rest. At time > 0t , the plate at 

= 0z  starts to move in its own plane with the 

velocity at , where t  is the time and a  being a 

constant. A uniform magnetic field of strength 0B  

is imposed perpendicular to the plate.  The plate is 

electrically non-conducting. The effects of Hall 

currents and rotation give rise to a force in y -

direction, which induces a cross flow in that 

direction. Since plate is of infinite extent in x  and 

y - directions and is electrically non-conducting, all 

physical quantities depend on z  and t  only. Also 

no applied or polarized voltages exist so the effect 

of polarization of fluid is negligible. This 

corresponds to the case where no energy is added or 

extracted from the fluid by electrical means 

(Cowling 1957). It is assumed that the induced 

magnetic field generated by fluid motion is 

negligible in comparison to the applied one. This 

assumption is justified because magnetic Reynolds 

number is very small for liquid metals and partially 

ionized fluids which are commonly used in 

industrial applications. The equation of continuity 

0q    gives 0w w   where 0( , , )q u v w  , u , 

v  and 0w  being the velocity components along the 

coordinates axes.  

 

Fig. 1. Geometry of the problem 

The equation of momentum in a rotating frame of 

reference is  

( ) 2
q

q q k
t


   


 

2
0

1 1
( ),p q j B

 
                                   (1) 

where 0p  is fluid pressure including centrifugal 

force. 

The initial and boundary conditions are  

0 : 0 for all 0,t u v z     

> 0 : , 0 at 0,t u at v z                                (2) 

> 0 : 0, 0 as ,t u v z    

 where a  is a constant. 

The generalized Ohm's law, on taking Hall currents 

into account and neglecting ion-slip and thermo-

electric effect, is (see Cowling 1957)  

   
0

,e e
ej j B E q B

B

 
                          (3) 

Where j  is the current density vector, B  the 

magnetic field vector, E  the electric field vector, 

e  the cyclotron frequency,   the electrical 

conductivity of the fluid and e  the collision time 

of electron and e  the magnetic permeability. 

The solenoidal relation 0B    for the magnetic 

field gives 0zB B   constant everywhere in the 

fluid where 0(0,0, )B B . Further, if ( , , )x y zj j j  

be the components of the current density j , then 

the equation of conservation of the charge = 0j   

gives = constantzj . This constant is zero since 

= 0zj  at the plate which is electrically non-

conducting. Thus = 0zj  everywhere in the flow. 

Since the induced magnetic field is neglected, the 

Maxwell's equation =
B

E
t


 


 becomes 

= 0E  which gives = 0xE

z




and = 0

yE

z




. 

This implies that = constantxE  and =yE  

constant everywhere in the flow. 

In view of the above assumption, Eq. (3) gives  

0= ( ),x y xj mj E vB                                        (4) 

0= ( ),y x yj mj E uB                                        (5) 

where = e em    is the Hall parameter. For positive 

values of m , 0B  is upwards and the electrons of 

the conducting fluid gyrate in the same sense as the 

rotating system. For negative values of m , 0B  is 

downwards and the electrons gyrate in an opposite 

sense to the rotating system. 

At infinity, the magnetic field is uniform so that 

there is no current and hence, we have  

0, 0 as .x yj j z                                    (6) 

On the use of (6), Eqs. (4) and (5) yield  

= 0, = 0,x yE E                                                    (7) 

everywhere in the flow.  

Substituting the above values of xE  and yE  in 
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Eqs. (4) and (5) and solving for xj  and yj , we get  

0
2

= ( ),
1

x

B
j v mu

m





                                           (8) 

0
2

= ( ).
1

y

B
j mv u

m





                                           (9) 

Using Eqs. (8) and (9), equations of momentum (1) 

along x - and y -directions are  

22
0

0 2 2
2 = ( ),

(1 )

Bu u u
w v u mv

t z z m






  
    

   
(10) 

22
0

0 2 2
2 = ( ),

(1 )

Bv v v
w u v mu

t z z m






  
    

   
(11) 

where   is the fluid density and   the kinematic 

viscosity, 0w  is the normal velocity of suction or 

injection at the plate according as 0 0w  or 

0 0w  , respectively and 0 0w  represents the case 

of non-permeable plate. 

Introducing non-dimensional variables  

 

11
2 33

1 1 1

3

( , )
( , ) = , = , = ,

u v a a
u v z t

a

 
 



  
       

 

Equations (10) and (11) become  

2 2
21 1 1

1 1 12 2
2 = ( )

1

u u u M
S K v u mv

m  

  
   

   
(12) 

2 2
21 1 1

1 1 12 2
2 = ( ),

1

v v v M
S K u v mu

m  

  
   

   
(13) 

where  
12

2 20 3= /
B

M a





 is the magnetic 

parameter and 

1

32

2
=K

a

 
 
 

 the rotation 

parameter and  
1

30= /S w a  the suction 

parameter. 

The initial and boundary conditions (2) become  

1 10 : = = 0 for all 0,u v    

1 1> 0 : = , = 0 at = 0,u v    

1 1> 0 : 0, 0 as .u v                         (14) 

Combining Eqs. (12) and (13), we get  

2 2
2

2 2

(1 )
= 2 ,

1

F F F M im
S iK F

m  

    
   

     

   (15) 

where  

1 1= and = 1.F u iv i                                   (16) 

The initial and boundary conditions for ( , )F    are  

( ,0) = 0, (0, ) = , ( , ) = 0,F F F                   (17) 

Taking the Laplace transform of Eq. (15) and on the 

use of initial condition, we have  

2
2

2

(1 )
2 = 0,

1

F F M im
S p iK F

m 

   
    

    

  (18) 

where  

0

( , ) = ( , ) .pF p F p e d  





                                (19) 

and p  is the Laplace parameter and 0p  .  

The corresponding boundary conditions for F  are  

2

1
(0, ) = , ( , ) = 0.F p F p

p
                                (20) 

The solution of Eq. (18) subject to the boundary 

conditions (20) is  

2
2

1
( , ) = exp( ),

S

F p e p
p


  


                  (21) 

where  

2 2
2

2

(1 )
= 2 .

41

M im S
iK

m


 
  

  

                        (22) 

On the use of the inverse Laplace transform, Eq. 

(18) becomes  

 
{( ) }

2
1

, =
2 2( )

S
i

F e
i

  
  

 

  
  
  

 

erfc ( )
2

i


  


 
   

 

{( ) }
2

2( )

S
i

e
i

  


 

   
  

 
 

erfc ( )
2

i


  


 
   

 
                              (23) 

where  

1
2 2 22 2 2

2

2 2

1
, = 2

42 1 1

M S M
K

m m
 


                       


1

2 2 2

2 41

M S

m

 
   
   

                                            (24) 

Equation (23) does not coincident with the Eq. (15) 

of Deka (2008) when = 0S  due to the 

mathematical error in Eqs.(1) and (2) of his paper 

(as discussed in the introduction). 
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3. SMALL TIME SOLUTION 

To get some physical insight into the flow pattern, 

we shall examine the solution (23) for small and 

large times  . For small times  , the method given 

by Carslaw and Jaeger (1959) is very useful where 

small time corresponds to large p . For small times, 

Eq. (21) can be rewritten as  

2
2

=0

( , ) = ( 1) .

S
p

n

n

n

e
F p e n

p

 

 

     
 


        (25) 

where   is given by Eq.  (22). 

Taking the inverse Laplace transform of Eq. (21), 

we have  

 
 

2

2,

S
i

F e
   

 

 
   
   

    
2 1 2 2

0

1 4 erfc
2

n n n

n

n i j


  



 



 
    

 
   (26) 

On the use of Eq. (16), Eq. (26) yields  

2 2( )
2

1( , ) =

S

u e
   

 

 
   
 

 2 2 2
2 4cos2 (4 ) 2( )(4 )T T       


 

  6

322

4

2 ))(4(12)(442sin TT  (27) 

2 2( )
2

1( , ) =

S

v e
   

 

 
   
 

 2 2 2 3
4 6cos2 4 (4 ) 12 ( )(4 )T T         



 2 2 2
2 4sin 2 (4 ) 2( )(4 ) ,T T        


(28) 

where   and   is given by (24) and  

2 2
2 2 = erfc ,

2

n
nT j








 
 
 

 

1 0erfc( ) = erfc( ), erfc( ) = erfc( ).n nj j j   

(29) 

Eqs. (27) and (28) show that the Hall effects 

become important only when terms of order   is 

taken into account. 

For large times, Eq. (23) can be written in the 

following form  

( )2
1 1 = 2

2 4( )

S

iu iv e e
i


   

 


   

  
 

 

( )

2 4( )

ie
i

   

 

 
  

 
 

erfc ( )
2

i


  


 
   

 
 

( )

2 4( )

ie
i

   

 

  
  

 
 

erfc ( )
2

i


  


 
   

 
 
                                (30) 

For 2   and 1 , Eq. (30) approximates to  

2
1( , ) = cos

S

u e
 

   

 
  
   

2 2( )
2

2 2

S

e
   



  

 
   
 




 

cos2 sinh cos     

sin 2 cosh sin    

cos 2 cosh sin     

sin 2 sinh cos                                   (31) 

2
1( , ) = sin

S

v e
 

   

 
  
   

2 2( )
2

2 2

S

e
   



  

 
   
 




cos2 cosh sin   

sin 2 sinh cos  

cos2 sinh cos    

sin 2 cosh sin                                   (32) 

4. RESULT AND DISCUSSION 

We have presented the non-dimensional velocity 

components for several values of magnetic 

parameter 
2M , Hall parameter m , rotation 

parameter 
2K , suction parameter S  and time   in 

Figs. 2 to 6. It is seen from Fig. 2 that both the 

primary velocity 1u  and the magnitude of the 

secondary velocity 1v  decrease with an increase in 

magnetic parameter 
2M . The imposition of the 

transverse magnetic field tends to retard the fluid 

flow. This phenomenon has an excellent agreement 

with the physical fact that the Lorentz force 

generated in present flow model due to interaction 

of the transverse magnetic field and the fluid 

velocity acts as a resistive force to the fluid flow 

which serves to decelerate the flow. The reduction 

of the boundary layer velocity due to the imposition 

of the transverse magnetic field causes the pressure 

gradient to drop and as a consequence the boundary 

layer separation is prevented to some extent. It also 

resists the transition from laminar to turbulent flow 

which causes the viscous drag to increase and as a 

result the flow is stabilized. As such the magnetic 

field is an effective regulatory mechanism for the 
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flow regime. Hall currents tend to accelerate 

secondary fluid velocity which is consistent with 

the fact that Hall currents induce secondary flow in 

the flow field. This is a new phenomenon, which 

appears as a result of including the Hall term. The 

case 0m  corresponds to the neglect of the Hall 

effects. It is found from Fig. 4 that the primary 

velocity 1u  decreases while the magnitude of the 

secondary velocity 1v  increases with an increase in 

rotation parameter 2K . This implies that rotation 

tends to retard primary fluid velocity. Although 

rotation induces the secondary fluid velocity in the 

flow field by suppressing the primary fluid velocity, 

its accelerating effect is prevalent only in the region 

near to the plate. This is due to the reason that 

Coriolis force is dominant in the region near to the 

axis of rotation. An increase in suction parameter 

S  leads to decrease both the primary velocity 1u  

and the magnitude of the secondary velocity 1v  as 

shown in Fig. 5 It is observed that the 

suction/blowing exerts a strong influence on the 

velocity profiles. It is observed from Fig. 6 that 

both the primary velocity 1u  and the magnitude of 

the secondary velocity 1v  increase with an increase 

in time  . This implies that primary and secondary 

fluid velocities are getting accelerated with the 

progress of time.  

 

Fig. 2. Velocity profiles for 
2

M  when 
2

= 3K , 

S = 0.5 , m = 0.2  and τ = 0.2  

 Fig. 3. Velocity profiles for m  when 
2

M = 5 , 

2
= 3K , S = 0.5  and τ = 0.2  

 Fig. 4. Velocity profiles for 
2

K  when 
2

M = 5 , 

S = 0.5 , m = 0.2  and τ = 0.2 . 

Fig. 5. Velocity profiles for S  when 
2

M = 5 , 

2
= 3K , m = 0.2  and τ = 0.2 . 

 

Fig. 6. Velocity profiles for   when 
2

M = 5 , 

S = 0.5 , m = 0.2  and 
2

= 3K  

For small values of time, we have drawn the 

primary velocity 1u  and the secondary velocity 1v  

on using the exact solution given by the Eq. (23) 

and the series solution given by Eqs. (27) and (28) 

in Figs.7 and 8 respectively. It is seen from Figs.7 

and 8 that the series solution given by Eqs. (27) and 

(28) converges more quickly than the exact solution 

given by Eq. (23) for small times. Hence, we 
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conclude that for small times, the numerical values 

of the velocity components 1u  and 1v  can be 

computed from Eqs. (27) and (28) instead of Eq. 

(23).  

Fig. 7. 1u  for general and small time solutions 

when 
2

M = 5 , 
2

= 3K , m = 0.2  and S = 0.5 . 

 Fig. 8. 1v  for general and small time solutions 

when 
2

M = 5 , 
2

= 3K , m = 0.2  and S = 0.5 . 

The non-dimensional shear stresses x  and y  due 

to the primary and secondary flows at the plate 

= 0  repectively obtained from Eq. (23) are  

 

1
=

2 2
x y

S
i

i


 

 
  


 

   21 2( ) erf ( )i i        

 2
,

i
e

  



 
                                                (33) 

 where   and   are given by Eq. (24). 

The numerical results of the non-dimensional shear 

stresses x  and y  at the plate = 0  for several 

values of rotation parameter 
2K , magnetic 

parameter 
2M , suction parameter S  and time   

against the Hall parameter m  are presented in Figs. 

9 to 12. Fig. 9 shows that the absolute values of the 

shear stresses x  and y  increase with an increase 

in rotation parameter 2K . Rotation tends to 

enhance both the shear stresses at the plate. On the 

other hand, the absolute value of the shear stress x  

decreases whereas the absolute value of the shear 

stress y  increases with an increase in Hall 

parameter m . This implies that, the Hall currents 

have tendency to reduce the shear stress due to the 

primary flow whereas these physical quantities 

have reverse effect on the shear stress due to 

secondary flow. It is seen from Fig. 10 that the 

absolute value of the shear stress x  increases 

while the absolute value of the shear stress y  

decreases for 0.2m   and it increases for > 0.2m  

for increasing magnetic parameter 2M . Fig.11 

displays that the absolute value of the shear stresses 

x  increases whereas the absolute value of the 

shear stress y  decreases with an increase in 

suction parameter S . It is found from Fig.12 that 

the absolute values of the shear stresses x  and y  

increase with an increase in time  . As time 

progresses, shear stresses are getting enhanced.  

Fig. 9. Shear stresses xτ  and yτ  for 
2

K  when 

2
M = 5 , S = 0.5  and τ = 0.2   

Fig. 10. Shear stresses xτ  and yτ  for 
2

M  when 

τ = 0.2 , S = 0.5  and 
2

= 3K  
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Fig. 11. Shear stresses xτ  and yτ  for S  when 

2
= 3K , 2

M = 5  and τ = 0.2  

Fig. 12. Shear stresses xτ  and yτ  for   when 

2
M = 5 , 2

= 3K  and S = 0.5 . 

For small time, the non-dimensional shear stresses 

x  due to the primary flow and y  due to the 

secondary flow at the plate = 0  are given by  

2 2( )
1 2

1
= (0, ) (0, ) ,

2 2
x

S
e A A    



  
  

 
  (34) 

2 2( )
1 2

1
= (0, ) (0, ) ,

2 2
y

S
e B B    



  
  

 
  (35) 

where  

1( , ) = cos 2A    2 2 2
2 4(4 ) 2( )(4 )T T       

 
 

2
4sin 2 4 (4 ) T  


2 2 3

612 ( )(4 ) T      


 

 

2
1 4( , ) = cos2 4 (4 )B T     


 

2 2 3
612 ( )(4 ) T      


 

 2 2 2
2 4sin 2 (4 ) 2( )(4 )T T         

 

2 ( , ) = cos 2A     2 2 2
1 3(4 ) 2( )(4 )Y Y       

 
 

2
3sin 2 4 (4 ) Y  


2 2 3

512 ( )(4 ) Y      


 

 

2 ( , ) = cos 2B      

2 2 2 3
3 54 (4 ) 12 ( )(4 )Y Y         

 
  

 2 2 2
1 3sin 2 (4 ) 2( )(4 )Y Y         

 

 2 1
2 1 = erfc /2 ,n

nY j  
  

 
21 2

erfc /2 = .zj e 


                                (36) 

The numerical results of the non-dimensional shear 

stresses x  due to the primary flow and the shear 

stress y  due to the secondary flow at the plate 

= 0  for the general solution and the solution for 

small time calculated from Eqs. (33), (34) and (35) 

respectively are given in Tables 1 and 2 for several 

values of Hall parameter m  and time  . It is 

observed from Tables 1 and 2 that for small time 

solution, the shear stresses calculated from Eqs. 

(34) and (35) give better result than that calculated 

from Eq. (33).

Table 1 Shear stress xτ  at the plate η = 0  when 
2

M = 5 , 
2

= 3K  and S = 0.5  

   10 x (For  general  solution)  10 x (Solution for small  times)  

\m    0.001  0.002 0.003 0.001 0.002 0.003 

 0.2  

0.4  

0.6  

0.8  

 0.35991 

 0.35985 

 0.35977 

 0.35970 

 0.51127 

 0.51111 

 0.51089 

 0.51068 

0.62856  

0.62825  

0.62786  

0.62748  

 0.35992 

 0.35986 

 0.35979 

 0.35972 

 0.51131 

 0.51117 

 0.51098 

 0.51078 

 0.62867 

 0.62844  

 0.62811  

 0.62776  

  

Table 2 Shear stress yτ  at the plate η = 0  when 
2

M = 5 , 
2

= 3K  and S = 0.5  

  310 y (For  general  solution)   
310 y (Solution for small  times) 

\m    0.001 0.002 0.003 0.001 0.002 0.003 

 0.2  

0.4  

0.6  

0.8  

0.08258 

0.09165 

0.09737 

0.10015 

0.23365 

0.25929 

0.27553 

0.28342 

0.42893 

0.47606 

0.50594 

0.52051 

 0.08272 

 0.09178 

 0.09752 

 0.10030 

0.23367 

0.25930 

0.27553 

0.28343 

0.42869  

0.47572  

0.50554  

0.52008  
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5. CONCLUSION 

An investigation of the effects of Hall currents and 

rotation on unsteady hydromagnetic flow of a 

viscous incompressible electrically conducting fluid 

past an accelerated vertical porous plate in a 

rotating system has been carried out. Hall current 

tends to accelerate the primary and secondary fluid 

velocities. Rotation has tendency to retard primary 

fluid velocity and tends to accelerate secondary 

fluid velocity. The primary and secondary fluid 

velocities are getting accelerated with the progress 

of time. Hall currents have tendency to reduce the 

shear stress due to the primary flow whereas these 

physical quantities have reverse effect on the shear 

stress due to the secondary flow. Rotation tends to 

enhance both the shear stresses at the plate. It is 

interesting to note that for small times, the series 

solution converges more rapidly than the exact 

solution. This study of Hall currents in rotating 

environment will be useful in dealing with real 

engineering problems. 

REFERENCES 

Carslaw, H. S. and J. C. Jaeger (1959). Conduction 

of heat in solids, Oxford Univ. Press, Oxford. 

 

Cowling, T. G. (1957). Magnetohydrodynamics, 

Interscience Publisher, Inc, New York. 

 

Cramer, K. R. and S. I. Pai. (1973). Magnetofluid 

dynamics for engineers and applied physicists. 

McGraw Hill Book Company, NY. 

 

Datta, N. and R. N. Jana (1976). Oscillatory 

magnetohydrodynanic flow past a flat plate 

with Hall effects. J. Phys. Soc. Jpn. 40, 1469-

1474. 

 

Debnath, L., S. C. Ray, and A. K. Chatterjee, 

(1979). Effects of Hall current on unsteady 

hydromagnetic flow past a porous plate in a 

rotating fluid system. Z. Angew. Math. Mech. 

59, 469-471. 

 

Deka, R. K. (2008). Hall effects on MHD flow past 

an accelerated plate.  Theoret. Appl. Mech., 

35(4), 333-346. 

 

Deka, R. K. and S. K. Das (2013). Hall effects on 

radiating MHD flow past an accelerated plate 

in a rotating fluid. Fluids and Heat Transfer 7, 

2641-2647. 

 

Gupta, A. S., M. Guria, and R. N. Jana (2011). Hall 

effects on the magnetohydrodynamic shear 

flow past an infinite porous flat plate subjected 

to uniform suction or blowing. Int. J. Non-

Linear Mechanics 46, 1057-1064. 

 

Gupta, A. S. (1975). Hydromagnetic flow past a 

porous flat plate with Hall effects. Acta 

Mechanica 22, 281-267. 

 

Hayat, T. and Z. Abbas (2007). Effects of Hall 

current and heat transfer on the flow in a 

porous medium with slip condition. J. Porous 

Medium 10, 35-50. 

 

Hayat, T., Y. Wang, and K. Hutter (2004). Hall 

effects on the unsteady hydromagnetic 

oscillatory flow of a second-grade fluid. Int. J. 

Non-linera Mechanics 39, 1027-1037. 

 

Hossain, M. A. and K. Mohammad, (1988). Effect 

of Hall currents on hydromagnetic free 

convection flow near an accelerated porous 

plate. Jpn. J. Appl. Phys. 27(8), 1531- 1535. 

 

Katagiri, T. (1969). The effect of Hall currents on 

the magnetohydrodynamic boundary layer 

flow past a semi-infinite flat plate. J. Phys. 

Soc. Jpn. 27, 1051-1059. 

 

Maji, S.L., A. K. Kanch, M. Guria, and R. N. Jana 

(2009). Hall effects on hydromagnetic flow on 

an oscillating porous plate. Appl. Math. Mech. 

30(4), 503-512. 

 

Pop, I. (1971). The efect of Hall currents on 

hydromagnetic flow near an accelerated plate. 

J. Math. Phys. Sci. 5, 375-379. 

 

Pop, I. and V. M. Soundalgekar (1974). Effects of 

Hall currents on hydromagnetic flow near a 

porous plate. Acta Mechanica 20, 316-318. 

 

Pop, I. and T. Watanabe, (1994). Hall effects on 

magnetohydrodynamic free convection about a 

semi-infinite vertical flat plate. Int. J. Engg. 

Sci. 32, 1903-1911. 

 

Raptis, A. and P. C. Ram, (1984). Effects of Hall 

current and rotation. Astrophys. Space Sci. 

106, 257-264. 

 

Sandeep, N. and V. Sugunamma (2014). Radiation 

and inclined magnetic field effects on unsteady 

hydromagnetic free convection flow past an 

impulsively moving vertical plate in a porous 

medium. J. Appl. Fluid Mech. 7(2), 275 -286. 

 

Soundalgekar, V. M. (1965). Hydromagnetic flow 

near an accelerated plate in the presence of a 

magnetic field. Appl.Sci. Res. 12(1), 151-156. 

 

Takhar, H. S., A. J. Chamkha, and G. Nath (2002). 

MHD flow over a moving plate in a rotating 

fluid with magnetic field, Hall currents and 

free stream velocity. Int. J. Eng. Sci. 40, 1511-

1527. 

 


