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ABSTRACT 

In this study, a version of thermal immersed boundary-Lattice Boltzmann method (TIB-LBM) is used to simulate 

thermal flow problems within complex geometries. The present approach is a combination of the immersed boundary 

method (IBM) and the thermal lattice Boltzmann method (TLBM) under the double population approach. The 

method combines two different grid systems, an Eulerian grid for the flow domain and a Lagrangian grid for the 

boundary points immersed in the flow. In the present method, an unknown velocity correction is considered on the 

boundary points to impose the no-slip boundary condition. As a similar approach, an unknown internal energy 

correction on the boundary points is applied to satisfy the constant temperature boundary condition. The advantages 

of this approach are its second-order accuracy and straightforward calculation of the Nusselt number. The natural 

convection in an annulus with various outer cylinder shapes for different Rayleigh numbers have been simulated to 

demonstrate the capability and the accuracy of present approach. In terms of accuracy, the predicted results show an 

excellent agreement with those predicted by other experimental and numerical approaches. 

 

Keywords: Immersed boundary approach; Thermal lattice Boltzmann method; Fluid flow; Heat transfer; Complex 

geometry. 

 

 

1. INTRODUCTION 

The recent developments of computer sciences have led 

to an increase in the utilization of numerical simulations 

to analyze convoluted phenomena without costly 

utilization and difficult experimental measurements. In 

this regard, many different methods have been 

employed to simulate flows within complex geometries. 

The conventional approaches use the body-fitted grids 

for simulation of problems involving complex 

geometries but the grid generation for such complex 

geometries is difficult and its quality affects the 

numerical accuracy severely. The utilization of 

unstructured grids for complex geometries, resolves 

partly the grid generation problem of complex 

geometries but these approaches have in general, a 

slower convergence rate. On the other hand, to simulate 

the phenomena involving moving boundaries re-

gridding is necessary, which in turn increases the 

computational cost and difficulty of the method. 

 

So far, many studies have been conducted to alleviate 

the difficulties associated with the use of body-fitted 

grid generation methods. The immersed boundary 

method (IBM) has emerged as a different method from 

conventional body-fitted approaches especially in the 

simulation of phenomena involving complex 

geometries with stationary or moving boundaries. This 

offers a good flexibility in handling complex 

geometries but also preserves most of the advantages of 

structured grid properties. In this method, a simple 

Cartesian grid is used instead of the body-fitted grid, 

which eliminates the body-fitted grid generation 

difficulties and therefore decreases the simulation costs.  

 

The IBM was originally proposed by Peskin (1972) 

for simulation of the fluid flexible structure 

interaction problems (the blood flow in the heart). In 

this approach, a fixed Eulerian grid and a set of 

Lagrangian points has been used to represent the 

fluid field and the physical boundaries, respectively. 

Also, many other methods based on the Peskin work 

have been emerged to modify or refine the IBM. A 

review of these methods can be found in Mittal and 

Iaccarino (2005); Margnat and Morinière (2009). 

However, much attention has recently been made 

towards combining IBM with other numerical 

approaches, e.g. the finite element method and the 

lattice Boltzmann method (LBM). The lattice 

Boltzmann method (LBM) (Qian et al. 1992; Chen 

and Doolen 1998) has been presented in recent years 

as a viable alternative to conventional computational 

fluid dynamics (CFD). Unlike standard numerical 
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methods, which are based on the discretization of 

macroscopic governing equations, the LBM is based 

on mesoscopic kinetic equations, which represents 

characteristics of flow due to the evolution of a 

single particle velocity distribution. The LBM is 

easy to implement, numerically stable, 

computationally efficient, highly accurate and 

straight forward for parallelization. 

In the last years, many methods have been proposed to 

impose hydrodynamic boundary condition for the LBM. 

The bounce-back approach (Cornubert et al. 1991), 

half-way bounce-back approach (Ziegle 1993), 

hydrodynamic method (Noble et al. 1995), non-

equilibrium bounce-back method (Zou and He 1997), 

and the extrapolation scheme (Chen et al. 1996) are 

among the popular choices.  

On the other hand, several thermal lattice Boltzmann 

methods (TLBM) have been proposed to 

satisfactorily simulate heat transfer problems. In 

general, current lattice Boltzmann methods for 

thermal flows can be classified into three categories: 

the multispeed model (Namara and Alder 1993; 

Alexander et al. 1993), the passive scalar model 

(Bartoloni et al. 1993; Shan 1997) and the double 

population model. The multispeed models suffer 

from intense numerical instability, and can be used 

for a narrow temperature range. In the multispeed 

approach, only the density distribution function has 

been used, but the internal energy equation has been 

obtained by further discrete velocities. In the 

passive-scalar model, an independent internal energy 

distribution function has been used to obtain the 

temperature field. This model has a better numerical 

stability compared with the multi-speed model but 

the viscous dissipation and compression work done 

by the pressure have been neglected. The double 

population model introduced by He et al. (1998), 

similar to passive-scalar models, contains an 

independent internal energy distribution function but 

has a better numerical stability. Besides, in this 

model, the viscous dissipation term and the 

compression work done by pressure have been taken 

into account. However, due to contribution of a 

complicated gradient operator term in the thermal 

lattice Boltzmann equation (TLBE) the 

implementation of this technique is not easy. 

Consequently, several simplified models have been 

proposed in which the effects of pressure work 

and/or viscous dissipation in the energy equation 

have been neglected (Peng et al. 2003; Shi, Zhao and 

Guo 2004; Li et al. 2008). In order to enhance 

stability of these models some researchers proposed 

Multi-Relaxation-Time TLBM (Teixeira et al. 2000; 

Rahmati et al .2014) 

 

Recently, Fu et al. (2012) developed a finite difference 

approach based on a linearized-Boltzmann-type-

equation for thermal incompressible flows with external 

body force effect. To ensure incompressibility, the 

pressure field is obtained by a pressure-correction 

approach in this method.  

So far, several approaches have been proposed to 

satisfactorily impose thermal boundary conditions for the 

TLBE (Tang et al. 2005; D’Orazio et al. 2004; Liu et al. 

2010). However, due to some limitations in the standard 

LBM (e.g. the requirement of using uniform orthogonal 

lattices and a constant time step), it is not so easy to 

implement boundary conditions for complex geometries. 

To alleviate such difficulties, several attempts have been 

conducted (Kao and Yang 2008). One of these attempts 

proposes a combination of the LBM and the IBM which 

results in the development of the hybrid immersed 

boundary lattice Boltzmann method (IBLBM). 

Originally, Feng and Michaelides (Feng and Michaelides 

2004; Feng and Michaelides 2005) successfully used the 

IBLBM to simulate particulate flows. Niu et al. (2006) 

proposed the momentum-exchange-based immersed 

boundary lattice Boltzmann method by using a multi-

relaxation collision model in which the forcing term was 

calculated through the implementation of the momentum 

exchange role on boundary nodes. Peng et al. (2006) 

developed the multi-block IBLBM to simulate flows 

around a circular cylinder and an airfoil. Wu and Shu 

(2009) proposed an implicit velocity correction-based 

IBLBM which implicitly satisfies the no-slip boundary 

condition by considering an unknown velocity correction 

vector at each boundary point. Kang and Hassan (2010) 

compared various IBLBMs with single and multiple step 

forcing methodologies and proposed a second order sharp 

interface scheme to handle the complex geometries via 

the LBM. Recently, Fu et al. (2013a,b) developed a finite 

difference LBM with an immersed boundary method to 

simulate blood flow in constricted pipes. 

 

To the best of the author’s knowledge, there are only a 

few proposed IB-LBM models in the open literature for 

handling both fluid flow and heat transfer phenomena. 

The work of Jeong et al. (2010) may be considered as 

the first research work in this respect. They used 

feedback forcing scheme to impose the curve boundary 

condition for both energy and momentum fields and 

simulated thermal flows around bluff bodies. However, 

this approach suffers from defects such as instability 

and arbitrariness in selecting the related parameters (He 

et al. 1998; Kang and Hassan 2011). Furthermore, the 

implementation of this technique has been complicated 

using the complex double-population model (He et al. 

1998). Afterwards, Kang and Hassan (2011) utilize the 

coupling between the IBM and the TLBM to simulate 

thermal flows. They adopted the sharp interface scheme 

based on second-order bilinear and linear interpolations 

and used two thermal LB models: a double-population 

model with a simplified thermal lattice Boltzmann 

equation and a hybrid model with an advection-

diffusion equation for temperature. Khazaeli et al. 

(2013) proposed a curved boundary treatment based on 

the combination of a ghost fluid approach and the 

bounce-back method to simulate thermal problems with 

complex geometries. Seta (2013) applied the implicit-

correction approach to the immersed-boundary thermal 

lattice Boltzmann method to simulate natural 

convection between two concentric horizontal 

cylinders. He also founded that IB-TLBM requires a 

small relaxation time to avoid distortion of temperature 

around the solid boundary. 

In the present study, however, we have adopted the 

scheme presented by Wu and Shu (2009) and Kang 

and Hassan (2011) to enhance the ability of thermal 

lattice Boltzmann method in dealing with curved 
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boundary condition. In this paper, we use the IB-

LBM proposed by Wu and Shu (2009) to satisfy the 

no-slip boundary condition at curved boundary and 

then the method is extended to a simplified internal 

energy LBE with an energy source term (Wang, 

Wang and Li 2007; Kang and Hassan 2011). Similar 

to the implementation of velocity correction in IB-

LBM (Wu and Shu 2009), the thermal boundary 

condition can be satisfied implicitly using an internal 

energy correction on the boundary surface. Our 

strategy is based on the utilization of the forcing 

concept, and benefits from advantages such as 

second-order accuracy and easy calculation of the 

Nusselt number. The validity of the method is finally 

verified through simulating two natural convection 

heat transfer problems. The rest of the paper is 

organized as follows. Section 2.1 reviews the 

implicit velocity correction-based IBM for the 

isothermal LBM proposed by Wu and Shu (2009). In 

Section 2.2, this IB method is extended to a 

simplified thermal LBE with an energy source term 

(Wang et al. 2007; Kang and Hassan 2011). Detailed 

numerical simulations are performed within Section 

3 and the results obtained by the present method are 

compared with experimental and computational 

results. Finally, Section 4 summarizes the content of 

the paper and presents the conclusions. 

2. NUMERICAL METHODS 

2. 1. Implicit Velocity Correction-Based Immersed 

Boundary for the Isothermal lattice Boltzmann 

Equation 

Here, the approach proposed by Wu and Shu (2009) is 

used to impose the curved boundary conditions. In this 

method, the single-relaxation-time LBE proposed by 

Guo et al. (2002) is adopted, which can be expressed as: 

( , ) ( , )

1
( ( , ) ( , ))

i i i

eq
i i i

f t t t f t

f t f t F t

 




   
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x e x

x x
 (1) 

2 4

1
(1 ) ( )

2

i i
i i i

s s

F w
c c

 
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e u e u
e f  (2) 

1

2
i i

i

f t  u e f  (3) 

where, 
i

f is the density distribution function, 
eq

i
f is the 

equilibrium density distribution function,  is the 

dimensionless relaxation time, 
i

F is the external force in 

the direction of the lattice velocity, f is the force 

density  and 
i

w is weighting coefficient which depends 

on the discrete velocity set. Here we have used the 

popular D2Q9 lattice velocity model where we have: 

    

    

0

cos ( -1) / 2 ,sin ( -1) / 2

2 cos ( - 5) / 2 / 4 ,sin ( - 5) / 2 / 4

(4)

                                                               

e i i        

i i
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 
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



 

For this model, the density equilibrium distribution 

function, 
eq

i
f , in Eq. (1) is given by:  

   
2

2 4

2

2

3 4.5
1 e u e u

(x, )
1.5

i i
eq

i i

c c
f t w

u
c



   





 
 
 
 
 
 

 (5) 

Here, 0 4 9w  , 1 9, 1, 2,3, 4iw  (i )  and 

1 36, 5,6,7,8iw  (i )  . c x t   is the lattice speed  

and x  and t  are the lattice size and the time step, 

respectively. The kinematic viscosity, , is determined 

by: 
 

21

2
sc t 

 
   
 

 (6) 

where sc  is the speed of sound and is related to the 

lattice speed, c , by / 3
s

c c . As can be seen from 

Eq. (3), the fluid velocity is composed of two parts. The 

first part is due to the density distribution function and 

the second part is related to the force density, f. Then 

we can rewrite Eq. (3) as follow: 

*  u u u  (7) 

* 1
i i

i

f


 u e  (8) 

1

2
t 


u f  (9) 

Here, *
u  is the intermediate velocity and u  is the 

velocity correction. With a closer look at imposing 

boundary condition in the direct forcing methods, it is 

clearly seen that there is no guarantee to satisfy the no-

slip boundary condition by the interpolated velocities at 

the boundary points (Wu and Shu 2009). 

 

Fig. 1. Schematic diagram of configuration of 

boundary points and their surrounding fluid 

points. 

To resolve this problem, an unknown force term at the 

boundary point can be considered (Wu and Shu 2009), 

such that the interpolated velocity at the boundary point  

satisfies the no-slip boundary condition. According to 

the idea of IBM, the boundary surface of body is 

indicated by a set of Lagrangian points XB(sl,t), l =1,2,  
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.., m. So, by setting an unknown velocity correction 

vector Bu  at every boundary point (with position of 

B
X ), we can define the velocity correction component 

 at every Eulerian point using the interpolation by the 

smooth delta function as shown in Fig. 1. Hence, the 

velocity correction component at Eulerian points can be 

defined as: 

u(x, ) u (X , ) (x X ( ))B B Bt t s,t ds  



   
(10) 

where, (x X ( ))B s,t  is approximated as: 

(x X ( )) (x X )

( ) ( )

l

B ij ij B

l l

ij B ij B

s,t D

x X y Y



 

   

 

 (11) 

Here, in order to increase accuracy of method we used a 

discrete delta function proposed by Yang et al. (2009) 

instead of Peskin’s function (Peskin 1972): 
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


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 (12) 

in which h is the boundary surrounding the Eulerian mesh 

spacing. Using Eqs. (10) and (11), the velocity correction 

values at the boundary points are determined by: 

1

u(x , ) u (X , ) (x X )

m
l l l

ij B B ij ij B l

l

t t D s 



    (13) 

where, 
l

s is the arc length of the boundary element. 

According to Eq. (7), the velocity of fluid at the 

Lagrangian points can be evaluated as: 

*
(x , ) (x , ) (x , )ij ij ijt t t u u u  (14) 

where, *
u is the intermediate velocity of fluid, which is 

obtained from Eq. (8). To impose the no-slip boundary 

condition, the fluid velocities at the Lagrangian points 

obtained through the interpolation, must be equal to the 

desired boundary velocities (X , )
l l
B BU t at the same 

Lagrangian points. 

,

(X , ) u(x , ) (x X )
l l l
B B ij ij ij B

i j

U t t D x y     
(15) 

Substituting Eq. (14) and Eq. (13) into Eq. (15) gives: 

*

,

,

(X , ) u (x , ) (x X )

u (X , ) (x X ) (x X )

l l l

B B ij ij ij B

i j

l l l l

B B ij ij B l ij ij B
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t D s D x y

    
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


 (16) 

The matrix form of Eq.  (16) can be expressed as: 

AX = B  (17) 

where, in this relation 

 1 2 m
B B BX = u , u ,.., u    (18) 
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 (20) 

Here, m is the number of Lagrangian points and n is the 

number of Eulerian points, which has been used in the 

interpolation by the smooth delta function. By solving 

this system of equations using a direct approach or 

iterative technique, the unknown velocity correction 

components at the boundary points, 
l

B
 u , can be 

determined. Then, the velocity correction values at the 

Eulerian points and the fluid corrected velocity values 

can be defined using Eqs. (13) and (14), respectively. 

Also, the force at the boundary points can be 

determined easily as follows: 

f 2 u/ t   (21) 

The density and the pressure in LBM, is evaluated as: 

2
.sf ,    P C    (22) 

2.2. Implicit internal energy correction-based 

immersed boundary treatment for the thermal 

lattice Boltzmann equation 

The Simplified thermal lattice Boltzmann model 

proposed by Peng et al. (2003) with an energy source 

term is used as the thermal model in this study.  
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Here, 
g

  denotes the lattice relaxation time for the 

temperature field,
i

g is the internal energy density 

distribution function and 
eq

i
g is the equilibrium internal 

energy density distribution function, which can be 

written as follows: 
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Here, 03c RT is the lattice speed, with R and T0 

being the gas constant and a reference temperature, 

respectively, and e  is the internal energy defined as 

/ 2e DRT , where, D represents the dimension of the 

problem and T is the reference temperature. In this 

paper, 2D problems are only considered. The discrete 

energy source function 
i

Q  is defined as: 

1
1

2
i i

g

Q w Q


 
 
  
 

 (25) 

where, Q is the energy source density term. The 

macroscopic internal energy is determined by: 

2
i

i

t
e g Q


   (26) 

The thermal diffusivity  is then related to the 

relaxation time by: 

21

2
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 
 
 

 (27) 

As seen, in this model, the internal energy comprises 

two parts. The first part is due to the the internal energy 

density distribution function and the second part is 

related to the energy source term. 
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Here, e is the internal energy correction and 
*e  is the 

intermediate internal energy. Now, similar to the 

velocity correction implementation, by setting an 

unknown internal energy correction at every 

Lagrangian point, the internal energy correction values 

at the Eulerian points can be obtained using the 

interpolation by the smooth delta function. 
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    
       

 (35) 

 

By solving this system of equations, the unknown 

correction of internal energy values at the Lagrangian 

points can be determined and then the correction of 

internal energy values at the Eulerian points are 

obtained using Eq. (30). The value of internal energy 

source density term in Eqs. (25) and (26) can be 

evaluated as: 

2Q e t    (36) 

Note here that, at all boundaries, the bounce-back 

scheme is used for both of the hydrodynamic and 

thermal boundary conditions (Kang and Hassan 2011). 

For all the simulations in the present study the 

following convergence criteria are used. 

       

  

2 2 2 2
1 1 9

1 9

max 10

max 10

n n n n

n n

u v u v

T T

  

 

   

 

 
 
 

 
  

 

(37) 

Here, n and n + 1 demonstate the old and the new 

time levels, respectively. Also, the following 

criterion based on the relative L2-norm error, E , is 

adopted to estimate the overall accuracy of the 

method. 

exact

avg avg
E Nu Nu 

 
(38) 

where, the superscript exact refers to the exact 

solution of problem under consideration.  

3. RESULTS AND dISCUSSIONS 

3.1. Natural Convection in a Square Cavity 

In order to demonstrate the validity of the present 

thermal LBM code, the natural convection problem 

in a square cavity is investigated. The configuration 

of the natural convection in a square cavity is shown 

in Fig. 2, which consists of a 2-D square cavity of 

length  L with a hot wall on the left side (with the 

temperature Th) and a cold wall on the right side 

(with the temperature Tc), while the other side walls 

are adiabatic. The temperature difference between 

the left and right walls causes a temperature gradient 

in the flow domain which, in turn, sets the fluid in 

motion. Here, the fluid properties are assumed 

constant, except for the density in the buoyancy 

term, which follows the Boussinesq approximation. 

However, the mean density value is constant. The 

external force term F in Eq. (3), corresponding to 

buoyancy force in this special case, is given 

by  0F gT T   , where  0 2h cT T T 
 

is the 

average temperature, β represents the thermal 

expansion coefficient at
0

T , and g  is the 

gravitational acceleration acting in the negative 

vertical direction.  
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Fig. 2. Schematic diagram of configuration and 

boundary conditions for natural convection 

phenomenon in a cavity 

 

The major control parameters for this problem are the 

Rayleigh number, Ra, and the Prandtl number, Pr , 

defined as: 

3

,
g TL

Ra    Pr
 

 


   (39) 

Note here that, air was considered to be the working 

fluid and the Prandtl number was set to 0.71. In this 

study, the characteristic velocity is taken as
  

c
V g TL  . Therefore, the viscosity, thermal 

diffusivity and the relaxation times f and 
g , can be 

written as: 

1
3

2
c f c

Pr Pr
= V L;      V L

Ra Ra
   

 
(40) 

3 1

22

c c
g

V L V L
= ;      

RaPr RaPr
     (41) 

We set 0 1 
c

V c . to ensure that the compressibility 

error remains small. Therefore, we have chosen 

0.01
c

V  c for
3

10Ra  and 0.02
c

V  c for
4

10Ra  , 

whereas 0.1
c

V  c  for 
5

10Ra  and
6

10Ra  . A 100×100 

uniform grid was used for
3

10Ra   and a 150×150 

uniform grid was used for
4

10Ra  , whereas a 

200×200 uniform grid was used for 
5

10Ra  and 
6

10Ra  . A careful grid study is carried out to insure 

the independency of the numerical results of the 

employed mesh. The grid-dependence study for the 

special value of 
4

10Ra   is presented via Table 1. 

The data in the table includes the numerical results 

 

for the maximum horizontal velocity on the vertical 

mid-plane of the cavity, w , and its location max
y , 

the maximum vertical velocity on the horizontal 

mid-plane of the cavity, maxv , and its location 

0 4 9w  , and the surface-averaged Nusselt number 

at the hot wall of the cavity, Nu
avg , was calculated 

through: 

where, Nu  is the local Nusselt number, h c
T T T   , 

and n  is the normal direction to the hot wall. The 

grid size has been selected as N×N, where N is the 

number of grid in each direction. As is clear, with 

further increasing the number of grids (N) from 

150N   to 200N   , no noticeable improvement is 

observed in the calculated results. Accordingly, we 

can state that for the special value of
4

10Ra  , the 

grid size of 150 150  is fine enough to obtain accurate 

results. Performing similar  

 

 

Table 1 Grid dependence study for natural 

convection in a square cavity at Ra=104. 

Mesh 100×100 150×150 200×200 
Davis 

(1983) 

umax 16.155 16.179 16.178 16.178 

ymax 0.825 0.823 0.823 0.823 

vmax 19.557 19.601 19.612 19.617 

xmax 0.116 0.118 0.118 0.119 

Nuavg 2.241 2.245 2.243 2.243 

 

tests to that described for
4

10Ra  , a 100 100  uniform 

grid is used for the flow with
3

10Ra  , whereas a mesh 

size of 200 200  is employed for the cases with 
5

10Ra   

and 6
10 .  

 

Table 2 aims to compare our simulation results for 

xmax, ymax, umax, vmax and Nuav with the results of 

Davis (1983) and Hortmann et al. (1990), which 

were obtained by a stream function-vorticity 

formulation and a finite volume multigrid procedure 

respectively. One may confirm that in terms of 

accuracy, the achievements of this study exhibit 

good agreement with those of the other researchers. 

From the provided data, it can be inferred that the 

values of maxu , maxv , and 
avg

Nu  all increase with an 

increase in the Rayleigh number.  Note here that, the 

reference velocity value of L has been used to 

normalize the velocities presented in the Table 2.  

 
 

 

 

 

 

 

 

 

0

1 L L T
Nu Nu ds with  Nu

L T n


  

 
 

(42) 
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Table 2 Comparison of velocities and Nusselt numbers for natural convection 

phenomenon in the cavity 

  Ra = 103 Ra = 104 Ra = 105 Ra = 106 

umax Present 3.647 16.169 34.842 64.701 

Davis (1983) 3.649 16.178 34.730 64.630 

Hortmann et al. (1990) - 16.176 34.738 64.834 

ymax Present 0.813 0.823 0.857 0.850 

Davis 1983 0.813 0.823 0.855 0.850 

Hortmann et al. (1990) - 0.825 0.855 0.850 

vmax Present 3.698 19.614 68.561 220.452 

Davis (1983) 3.697 19.617 68.590 219.360 

Hortmann et al. (1990) - 19.624 68.636 220.473 

xmax Present 0.178 0.118 0.067 0.038 

Davis (1983) 0.178 0.119 0.066 0.038 

Hortmann et al. (1990) - 0.120 0.066 0.039 

Nuavg Present 1.118 2.249 4.537 8.839 

Davis (1983) 1.118 2.243 4.519 8.800 

Hortmann et al. (1990) - 2.245 4.521 8.825 

 

 

(a) (b) 

Fig. 3. Schematic diagram of configuration and boundary conditions for natural convection phenomenon in 

annuluses with different outer shapes (a) square shape (b) circular shape. 

 

3.2. Natural convection in an annulus with 

various outer cylinder shapes 

3.2.1. Natural convection in a concentric annulus with 

outer square cylinder  

In order to validate the present model, we consider the 

natural convection of fluid in an annulus with outer 

square cylinder. As can be seen from Fig. 3(a), the 

geometry involves a two-dimensional square cavity of 

length L with a concentric circular cylinder of 

radius ls . The cavity walls are fixed at the cold 

temperature CT whereas the cylinder wall is fixed at the 

hot temperature HT . Note here that, both cavity and 

circular cylinder walls are considered to be fixed and 

without motion. The aspect ratio between the square 

cylinder and circular cylinder is defined as 2 cL r  and 

set to 2.5  . Here, the Prandtl number was set to 0.71  

 

 

and the Rayleigh number varies in the range of 

3 6
10 10Ra  . We set  0.01cV  c  for Rayleigh number 

3
10  and 0.02cV  c  for Rayleigh number 4

10 , whereas 

0.1cV  c  for Rayleigh number 5
10  and

6
10 . 

 

Similar to previous problem, uniform rectangular grids 

of sizes 100 100  and 150 150  are used for Rayleigh 

number 
3

10  and
4

10 , respectively. For Rayleigh 

numbers 
5

10 and 
6

10 , however, a 200 200  grid is 

employed. In Fig. 4, the isotherms and streamlines 

obtained by present method for 
3 4 5

10 ,10 ,10Ra  and 

6
10  and 0.71Pr   have been compared with results 

given by Kim et al. (2008). Note here that, the 

isotherms contain 11 contour lines whose levels vary 
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Table 3 Comparison of  Nuavg  for natural convection in the annulus with square outer shape at 

different values of  Ra 

Ra  Nuavg 

  Present OpenFOAM 
Shu and Zhu 

(2002) 

Duy et al. 

( 2008) 

Moukalled and 

Acharya (1996) 

Kim et al. 

(2008) 

104  3.255 3.225 3.240 3.224 3.331 3.414 

105  4.933 4.906 4.860 4.901 5.080 5.138 

106  8.957 8.893 8.900 8.726 9.374 9.39 

 

linearly from the minimum to maximum values. A 

detailed physical interpretation of the flow and heat 

transfer phenomena related to this case study is 

discussed by Kim et al. (2008). As expected, the 

contours are in very good agreement with those from 

Kim et al. (2008). The Nusselt number is an important 

parameter, which is used to estimate the rate of heat 

transfer in thermal phenomenon. The local Nusselt 

number on the surface of the circular cylinder is 

calculated as: 

chL
Nu

k
  (43) 

where,
c

L  is the characteristic length, k is the thermal 

conductivity coefficient and h is the local convective 

heat transfer coefficient and can be calculated by: 

Q
h

T



 (44) 

where, Q  is the local convective heat transfer and 

T is the characteristic temperature difference. So the 

local Nusselt number can be rewritten as: 

QD
Nu

k T



 (45) 

We can rewrite Eq. (45) by dividing the denominator 

and the numerator by pc as: 

p c c

p

Q c L qL
Nu

k c T T



 
 

 
 (46) 

Here, k is thermal conductivity coefficient, pc is the 

specific heat coefficient and q is the local energy-

forcing term [34] and can be calculated as: 

*
( )

d
pq Q c T T t     (47) 

where, 
d

T is the desired temperature on the cylinder 

surface and 
*

T is the intermediate temperature on the 

Lagrangian points.  On the other hand, the local internal 

energy source term BQ is defined at the Lagrangian 

points as:  

2

0

2 2
3

B B
B B B

e c T
Q

t T t

 
 

 
   (48) 

where, the relation between the local energy-forcing 

term q and the local internal energy source term 

B
Q can be evaluated as: 

0

2

3

2
B

B

T
q

c
Q


  (49) 

Substituting Eq. (49) into Eq. (46) gives: 

0

2

3

2

cB

B

T L
Nu

c T

Q

 



 (50) 

Equation (50) can be rewritten using Eq. (36) as: 

0

2

3
l
B cT e L

Nu
c T







 (51) 

By integrating over the surface of the body, the surface 

averaged Nusselt number 
avg

Nu can be calculated as: 

0

2

3
1

2 2

l
c B l

l
avg

c c

T L e s

Nu Nuds
r r c T t



   




 




  (52) 

For this case study,  h cT T T   and the characteristic 

length 
c

L is chosen as 2S
 
according to the work of 

Moukalled and Acharya (1996), where S is the 

surrounding of inner cylinder So, the surface averaged 

Nusselt number 
avg

Nu can be calculated as: 

 

0

2

3

2

l
B l

l
avg

h c

T e s

Nu
c T T t



 







 (53) 

Table 3 compares our simulation results for
avg

Nu , at 

various values of the aspect ratio and for a wide range 

of the Rayleigh number, with the various numerical 

approaches (a combination of immersed boundary 

method and finite volume method, Kim et al. (2008), a 

boundary-fitted coordinate system using a control 

volume-based numerical procedure, Moukalled and 

Acharya (1996), a Cartesian grid technique founded on 

one-dimensional integrated radial basis function 

networks, Duy et al.( 2008), a differential quadrature 

(DQ) method, Shu and Zhu (2002)), and also the results 

obtained by the CFD software package OpenFOAM 

(OpenSource Field Operation and Manipulation, 

version 2.1.0, developed by the OpenFOAM Team at 

SGI Corp).  

 

As seen, the achievements of the present study are in 

good quantitative agreement with their equivalents in 

literature. It is also found that both the aspect ratio and 

the Rayleigh number play critical roles in transport 

characteristics of the problem. The convergence rates of 

the relative 
2

L  error for the averaged Nusselt number 

avg
Nu  are plotted logarithmically against the grid spacing 

x in Fig. 5 to test spatial accuracy of the treatment. 

http://en.wikipedia.org/wiki/Convective
http://en.wikipedia.org/wiki/Heat_transfer_coefficient
http://en.wikipedia.org/wiki/Convective
http://www.openfoam.com/about
http://www.openfoam.org/version2.1.0
http://www.openfoam.org/version2.1.0
http://www.openfoam.com/about
http://www.sgi.com/
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3

10Ra   

  
4

10Ra   

  
5

10Ra   

  
(a) (b) 

6
10Ra   (a) (b) 

Fig. 4. Comparison of (a) isothermals and (b) streamlines at four different Rayleigh numbers for natural 

convection phenomenon within an annulus comprised of a circular cylinder in a square enclosure, left: 

present study; right: Kim et al. (2008). 

 

 

Fig. 5. Relative 
2

L  norm for the radial velocity and 

temperature distributions versus the lattice spacing 

x in a log-log scale. 

The study is carried out for 
5

10Ra  and the number of 

grids ( )N varies from 100N   to 300N  . Due to the 

analytical solution does not exist, the average Nusselt 

number obtained by 400N  has been considered as an 

exact solution. As can be inferred from this figure, the 

slope of the least-squares fit line is 1.98, which 

confirms the second order accuracy of the overall 

numerical approach. 

3.2.2. Natural convection in a concentric 

annulus with outer circular cylinder  

In order to further validate the presented thermal 

boundary condition, natural convection in a horizontal 

concentric annulus at different values of the Rayleigh 

number is tested. A schematic of this problem is 

sketched in Fig. 3 (b). As can be seen, the configuration 

consist of two concentric circular cylinder with inner 

radius of ir  and outer radius of 
o

r . The outer cylinder 
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3

10Ra   

  
3

6 10Ra    

  
4

5 10Ra    

(a) (b)  (a) (b) 

Fig. 6. Comparison of (a) isothermals and (b) streamlines at four different Rayleigh numbers for natural 

convection phenomenon within an annulus comprised of two concentric circular cylinder, left: present study; 

right: Duy et al. (2008). 

 

  

Fig. 7. Comparison of radial temperature distribution 

for natural convection phenomenon within an annulus 

comprised of two concentric circular cylinders at 
4

Ra 4.7 10 , Pr = 0.706 
 

Fig. 8. Comparison of local equivalent heat 

conductivity for natural convection phenomenon 

within an annulus comprised of two concentric 

circular cylinders at 
4

4.7 10 , Pr 0.706Ra      
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Table 4 Comparison of eqk for the natural convection in concentric annulus with circular outer cylinder 

Ra 

eqk  

Inner Outer 

Present work Kuehn and Goldstein. (1976) Present work Kuehn and Goldstein. (1976) 

103 1.091 1.081 1.101 1.084 

3×103 1.399 1.404 1.411 1.402 

6×103 1.721 1.736 1.740 1.735 

104 1.994 2.01 1.998 2.005 

3×104 2.668 2.661 2.671 2.643 

5×104 3.018 3.024 3.042 2.973 

7×104 3.289 3.308 3.262 3.226 

 

wall is kept at a constant low temperature of CT , while 

the inner cylinder wall has a higher constant 

temperature, say HT . The aspect ratio between the 

outer circular cylinder and the inner one is defined as
 

2 iL r 
 
and is set to be 0.8  , where, L is the gap 

between inner and outer cylinder. Moreover, the 

Boussinesq approximation is adopted here again, and 

the Rayleigh number varies in the range of 
3 4

10 7 10Ra   . Note that, both of the cylinders do 

not have any movement. We set 30ir   for the 

range 3 4
10 10Ra  and 40ir  for the range of 

4 5
10 10Ra  . Also a uniform rectangular grid of sizes 

2.5
o

r is used for all cases. Figure 6 represents the 

isotherms and streamlines pertained to the case  

 

of 0.8  and for 0.706Pr  and
3 3

10 ,6 10 ,Ra  
4

5 10 . 

The results given by Duy et al. (2008) are also included 

for comparison. All the contours contain 21 contour lines 

whose levels vary linearly from the minimum to 

maximum values. A detailed physical interpretation of 

the flow and heat transfer phenomena related to this case 

study is discussed by Kuehn and Goldstein. (1976). As 

can be observed, the contours are in very good agreement 

with those from Duy et al. (2008). Comparison between 

our results and the experimental data taken from Kuehn 

and Goldstein (1976) and also the numerical results taken 

from Zhao and Zhang (2001) for dimensionless radial 

temperature distribution are presented in Fig. 7. 

One may confirm that in terms of accuracy, the 

achievements of this study exhibit good agreement with 

those of other researchers. Here, the local equivalent 

heat conductivity number 
eq

k can be expressed as: 

ln( )eq o i

con

Nu
k r r Nu

Nu
   (54) 

Substituting Eq. (51) into Eq. (54) gives: 

0

2

3

ln( )

l
c B l

l
eq o i

T L e s

k r r
c T t



 







 (55) 

02

2
0

3
1

ln( )
2 2

l
B l

l
eq eq o i

T e s

k k  d r r
c T t





   



 




  (56) 

By setting cL as the radius of cylinder ir , the averaged 

equivalent heat conductivity number eqk can be 

evaluated as: Note here that,  wT T T   . Figure 8 

compares our results with those reported in the 

literature for local equivalent heat conductivity 

at 4
4.7 10Ra   . 

As can be seen from Fig. 8, for inner cylinder, the 

maximum of local heat flux occurs at the bottom while 

that minimum value occurs at the top, whereas, for 

outer cylinder, this trend is reversed. As seen, the 

achievements of the present study are in good 

quantitative agreement with their equivalents in Kuehn 

and Goldstein. (1976). 3 

In Table 4, the averaged equivalent heat conductivities 

at various values of the Rayleigh number are presented 

to compare with numerical results published by Kuehn 

and Goldstein. (1976). As expected, the values are in 

very good agreement with those from Kuehn and 

Goldstein. (1976). It is also found that the averaged 

equivalent heat conductivity increases with the 

Rayleigh number.  

4. Conclusion 

This paper introduces a thermal immersed boundary 

lattice Boltzmann method based on the work of Wu and 

Shu (2009), which takes main advantage of the 

common IBLBM such as simplicity of algorithm and 

low computational costs. The method is combination of 

a direct forcing scheme with a double population 

thermal lattice Boltzmann method. The research is 

motivated by the desire to increase the ability of LBM 

in dealing with complex geometries to simulate flows 

with heat transfer. In this method, an unknown internal 

energy source term on the boundary points is 

considered to properly satisfy the constant temperature 

boundary condition on the curved wall. The presented 

approach benefits from features such second-order 

accuracy and easy computation of the Nusselt number. 

The verification of the presented method was done 
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using simulation of natural convection heat transfer 

problems. Excellent accordance between the presented 

results and those of other experimental and numerical 

results is observed. It shows the capability of present 

method as a robust numerical approach to treat heat 

transfer phenomena within complex geometries. 
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