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ABSTRACT 

The log-wake law with biquadratic boundary correction for the vertical velocity distribution which was changed from 

cubic boundary correction by Guo for the pipe data is applied to turbulent flow in open-channels. The biquadratic-

log-wake law is tested with experimental data from Coleman, Lyn, Wang and Qian and Kironoto and Graf. It shows 

that the biquadratic-log-wake law matches well with flume data. A new mathematical model for vertical 

concentration distribution using the biquadratic-log-wake law is proposed and tested with the existing laboratory data. 

This study reflect the fact that sediment suspension has significant effects on both von Karman constant and Coles’ 

wake strength. 

 

Keywords: Open-channel, Velocity distribution, Boundary correction, Sediment suspension, von Karman constant, 

Coles’ wake strength. 

NOMENCLATURE 

A relative density 

B         additive constant in log law 

C         instantaneous volumetric sediment                 

            concentration 

Cavg      local time average volumetric sediment                 

            concentration 

Cξa volumetric sediment concentration  

            at distance ξ = ξa 

C0 bed concentration  

C1 sediment concentration at ξ = 1 

Cm mean concentration 

d sediment particle diameter 

d* dimensionless sediment particle diameter 

g gravitational force 

h flow depth 

umax maximum velocity at y = δ 

u time average velocity at a distance y 

u* shear velocity 

 

Ri    Richardson number 

S    channel slope 

    y    vertical distance from bed 

γ    proportionality constant 

    δ         maximum velocity distance from bed 

   εs    sediment diffusion coefficient 

   εm         momentum diffusion coefficient 

κ    von Karman constant of mixture 

κ0    von Karman constant for clear water 

μf    dynamic viscosity of water 

ν    kinematic viscosity of sediment water      

           mixture 

ξ    (= y/δ) normalized distance  

ξa    normalized reference level 

П    Coles’ wake parameter 

ρ    density of water sediment mixture 

ρf    density of clear water 

ω0    sediment particle settling velocity 

 

1. INTRODUCTION 

Studies of velocity and concentration profile in a steady 

uniform sediment-laden open-channel flow are 

important subjects in sediment transport. They have 

fundamental importance in river mechanics. Numerous 

investigations related to sediment-laden turbulent flow 

in rectangular open-channels have been undertaken to 

examine the vertical distribution of velocity and 

concentration. In hydraulic open-channel flow over a 

smooth bed surface without sediment, the vertical 

distribution of mean velocity profile is usually 

described by log law throughout the depth. The log law 

in terms of inner variables is usually expressed as 

1 *
ln

*

yuu
B

u  
   (1) 

where u is time-averaged velocity in main flow 

direction, u* is the shear velocity, κ is the von Karman 

constant, y is vertical distance from channel bed, ν is 
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the kinematic viscosity and B is the additive constant in 

the log law. Later on, Vanoni (1946), Einstein and 

Chien (1955), Elata and Ippen (1961), Wang and Qian 

(1989) and many researchers showed that log law 

remains valid in sediment-laden flows. They concluded 

that the von Karman constant decreases with sediment 

suspension. Barenblatt (1996) applied the log law in 

sediment-laden flows and pointed out that the 

application of the log law in sediment-laden flow is 

limited to the overlap zone i.e. the log law may not be 

valid in the wake layer and near the water surface. 

Several researchers Coles (1956) and Nezu and Rodi 

(1986) suggested that the deviated velocity profile from 

the standard log-law cannot be fitted only by adjusting 

the von Karman constant κ and additive constant B in 

wake layer. 

Coles (1956) first introduced the wake function W(ξ), 

and combined the logarithmic law with the wake 

function and produced the log-wake law 

1 *ln

*

yuu
B W

u


 

 
       
 

 (2) 

in which the terms in the parentheses are the 

logarithmic law. W(ξ) is the wake function which 

determines the deviation of the logarithmic law away 

from the wall, ξ(= y/δ) is the relative distance from the 

wall where δ is the distance of maximum velocity from 

the bed. Hinze (1975) gives an expression for the wake 

function which satisfies Coles’ data i.e.  

2 2
sin

2
W







    (3) 

in which П is the Coles’ wake strength. Finally, using 

Hinze's Eq. (3) the log-wake law i.e. Eq. (2) can be 

written as 

21 2*ln sin
2

*

yuu
B

u



 

  
     
 

 (4) 

Coleman (1981) applied the log-wake law to the open-

channels. He analysed the effect of sediment suspension 

on the von Karman constant κ and the wake strength П 

and concluded that the von Karman constant κ remains 

the same as clear water; on the other hand Coles’ wake 

strength П increases with the Richardson Number. 

According to Guo and Julien (2001) the Richardson 

number is defined as 

0 1
2 1 [( )/ ]
*

f

f f f m

C Cg
R

i Cu

 

   

 
 

   (5) 

where g is the gravitational force, δ is the maximum 

velocity distance from bed, ρ is the density of water 

sediment mixture, ρf is the density of clear water, C0 is 

the bed concentration, C1 is the sediment concentration 

at ξ = 1, Cm is the mean concentration. It reflects the 

density gradient intensity. The Richardson number 

becomes strong with the high density gradient. 

Coleman (1981) further pointed out that by incorrect 

extension of the log law to the wake layer, one obtained 

the wrong result that κ decreases with the sediment 

suspension; though von Karman constant may decrease 

with sediment suspension in the log-wake model (Lyn 

1986). For open-channel flows, many researchers gave 

different values of П. Coleman (1981) obtained an 

average value 0.19, Nezu and Rodi (1986) suggested a 

range from 0 to 0.2 and Kirkgoez (1989) got value 0.1. 

Also for smooth bed П = - 0.077 was reported by 

Cardoso et al. (1989). So the value of П is not universal 

for clear water and sediment-laden flow and the value 

may be positive or negative. 

Although log law and log-wake law can predict the 

velocity profile in clear water and sediment-laden flow, 

both of them cannot satisfy the boundary condition at 

the boundary surface (Guo and Julien 2001). Guo and 

Julien (2001) proposed a clear water velocity profile 

satisfying the derivative boundary condition as 

max 1 12
ln cos

2
*

u u

u

 


 

 
       (6) 

where umax is the maximum velocity at distance y = δ  

or ξ = 1, Ω is the wake strength. He further pointed out 

that modified log-wake law i.e., Eq. (6) is also valid in 

sediment-laden flow and showed how the model 

parameters κ and Ω vary with sediment-suspension. 

Guo and Julien (2003) developed a modified log-wake 

law for turbulent flow in smooth pipes. Later on, Guo et 

al. (2005) applied the modified log-wake law in zero-

pressure-gradient (ZPG) turbulent boundary layer with 

proper modification. The modified log-wake law 

(MLWL) for ZPGBL reads as 

max
31 2 12

ln cos
2 3

*

u u

u

 


  

  
      (7) 

where П is the Coles' wake strength. Here the last term 

denotes the cubic boundary correction. Guo and Julien 

(2008) applied this Eq. (7) to clear water flows in open-

channels. 

Guo (2006) studied the Zagarola and Smith (1997) data 

and argued that if the cubic boundary correction term is 

changed to biquadratic term the data fits more 

accurately with experimental data. This paper calls the 

log-wake law with the biquadratic boundary correction 

as biquadratic-log-wake law. Extension of the 

biquadratic-log-wake law to the sediment-laden open 

channels is a part of this paper. 

Rouse (1937) derived the formula for vertical 

concentration distribution using the classical log law. 

Suspension-sediment concentration distribution 

phenomenon can be described by using many theories, 

such as: diffusion theory, energy theory, mixture 

theory, similarity theory and stochastic theory. The only 

difference, if any, is in the expression for the sediment 
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diffusion coefficient εs (Ni and Wang 1991). For all of 

the aforementioned theories, one can find that they 

agree with some experimental data, but not all. There 

are limitations for the applicability of each of the 

theories. There is no general expression of sediment 

exchange coefficient which satisfies all experimental 

data set. The logarithmic law is not appropriate for 

narrow sediment-laden open-channels. Therefore, 

considering the biquadratic-log-wake law a new 

mathematical model for vertical concentration 

distribution is developed. 

The main objectives of this paper are: (1) to show that 

the biquadratic-log-wake law is valid in both clear 

water and sediment-laden open channel flow; (2) to 

study the effect of sediment suspension on model 

parameters; (3) to test the developed analytical model 

for the vertical distribution of concentration with the 

existing laboratory data. 

2. VELOCITY DEFECT FORM OF 

BIQUADRATIC LOG -WAKE LAW  

(BLWL) 

The log-wake law with the biquadratic boundary 

correction according to Guo (2006) reads as 

421 2*ln sin
2 4

*

yuu
B

u

 

  

  
      
 

 (8) 

The terms in the parentheses are the logarithm law of 

the wall; the sine square term is the law of the wake 

(Coles 1956) and the biquadratic function satisfies the 

maximum velocity condition. To eliminate the additive 

constant B one can assume the maximum velocity u = 

umax at ξ = 1 to the log wake law with new boundary 

correction. From Eq. (8) one obtains 

max 2 11 *ln
4

*

uu
B

u



  

  
      
 

 (9) 

Subtracting Eq. (8) from Eq. (9) gives the velocity 

defect form of the log wake law with new boundary 

correction 

max
41 2 12

ln cos
2 4

*

u u

u

 


  

  
      (10) 

3. VERTICAL CONCENTRATION 

DISTRIBUTION MODEL USING BLWL 

In steady, uniform and fully developed open channel 

flow, carrying suspended load, the volume fraction of 

sediment concentration C is described by the advection-

diffusion equation. Taking the x-axis along the bed in 

the main direction of flow and the y-axis vertically 

upwards, the steady-state equation can be expressed as 

follows (Graf 1971) 

0

( )
( ) ( ) 0s

dC y
C y y

dy
     (11) 

where ω0 is the settling velocity of sediment particle, 

C(y) is the sediment concentration at y and εs is the 

sediment diffusion coefficient. This equation is in fact a 

sediment mass conservation equation, where the mass 

flux εs(dC/dy) in y-direction is balanced by sediment 

settling flux -ω0C(y). Equation (11) shows that different 

mathematical models of the distribution of sediment 

concentration may be derived by using different models 

of sediment diffusion coefficient. 

According to the Reynolds analogy, the sediment 

diffusion coefficient εs is assumed to be proportional to 

the momentum diffusion coefficient εm as 

 s m   (12) 

where γ is the proportionality constant. In this equation, 

γ describes the difference between diffusivity of 

momentum (diffusivity of a fluid particle) and 

diffusivity of sediment particles. The momentum 

diffusion coefficient εm in fluid sediment mixture is 

given by Einstein and Chien (1955) as 

(1 )
m

f

t
du

AC
dy





 


 (13) 

where ρf is the density of water and A(=ρs /ρf -1) is a 

constant. This equation reduces to Boussinesq's formula 

τt = ρf εm(du/dy) for clear water flow. For two-

dimensional open channel flow, turbulent shear stress τt 

can be expressed as 

0

1
t y

h




   (14) 

Combining Eq. (12), Eq. (13) and Eq. (14) one can 

express the sediment diffusion coefficient in the 

following form as 

2 (1 )
*

(1 )
s

u

du
AC

dy

 






 (15) 

where u*(=√(τ0/ρf) is the shear velocity, ξ(= y/h) is the 

dimensionless distance from channel bed with respect 

to the flow depth h and C is the volumetric 

concentration at distance y. Substitution of  Eq. (15) 

into the Eq. (11) gives 

2(1 ) 1
*

du

dydC
dy

C AC u






 

   (16) 

For the flow in narrow channel, maximum velocity 

occurs below the free surface, which is called velocity 

dip position. One can use the velocity dip position δ to 

normalize the distance y from the bed. By substituting ξ 

= y/δ into Eq. (16) and rewriting, this equation becomes 
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ξ

2(1 ) 1
*

du

ddC
d

C AC u







  

   (17) 

The velocity gradient can be expressed from Eq. (10) 

using the polynomial approximation of the sine square 

function sin2(πξ/2) ≈ 3ξ2-2ξ3 (White 1991) as 

3
2

12
* * *

( )
u u udu

dy


 

  


     (18) 

Substituting Eq. (18) into Eq. (17) and integrating 

between ξa and ξ one can get the equation of sediment 

concentration distribution as 

33
0

22

(1 )
ln ln

(1 ) 3 3*

(12 1) (  )
2 2

a

a

a

a

a
a

C AC

uC AC





  

 


 

    
      

      

 
      

    

 
(19) 

where Cξa is the reference concentration of sediment at 

the reference level ξa. Suspended sediment 

concentration distribution equation can be expressed 

explicitly and more precisely from Eq. (19) as 

*

1

1 (1 ) exp ( ) 1
a

a u

C

C
AC F

 

 



   
    
    

 (20) 

where F(ξ) is a function of ξ which is given by 

33

22

( ) ln
3 3

(12 1) ( )
2 2

a

a

a
a

F
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



 

  
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   
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    

 
(21) 

The concentration distribution throughout the water 

depth can be calculated analytically from this equation 

if the reference level ξa and reference concentration Cξa 

are known. Rouse equation can be obtained from Eq. 

(20) if one considers that velocity distribution follows 

the log-law and A ≈ 0. 

4. COMPARISON OF THE BLWL FOR 

CLEAR WATER AND SEDIMENT- LADEN 

FLOW 

The experimental data obtained by Coleman (1986), 

Lyn (1986), Wang and Qian (1989) and Kironoto and 

Graf (1994) (clear water only) are used to test the 

validity of biquadratic-log-wake law in clear water and 

sediment-laden flow. In all data sets biquadratic-log-

wake law matches well with existing flume data. The 

aspect ratio (ratio of channel width to flow depth) in all 

the data set are less than 5. So the maximum velocity 

occurs below the water surface in case of clear water 

and sediment-laden open channels. Figures (1)-(4) show 

the result in clear water. Figure 1(a) is in rectangular 

coordinates and Fig. 1(b) is in semi-log plot and 

similarly the others. Figures (5)-(7) show the result in 

sediment-water mixture. 

To estimate the model parameters κ and П, a least 

square method is used (Guo 1998). From the obtained 

values of κ and П by the least square method one can 

see that the computed result matches well with the 

measured data of researchers. 

Coleman’s (1981, 1986) data are useful to test any 

mathematical model of velocity and concentration 

distribution in sediment-laden flows. To test the model 

Eq. (10) in clear water and sediment-laden open 

channels, Coleman's (1986) data are used. The bottom 

and side walls were assumed to be smooth. The flow 

conditions i.e. h ≈ 1.69 mm, b = 356 mm, S = 0.002, u* 

= 0.041 m/s were same for all runs. Figure (1) shows a 

comparison between Coleman's (1986) data and 

computed velocity from biquadratic-log-wake law for 

clear water runs 1, 21 and 32. The comparison of 

computed and observed velocity profiles for runs 3, 7, 

11, 16, 24 and 31 are shown in Fig. (5). From both 

figures one can conclude that BLWL is valid in clear 

water and sediment-laden open channels. 

Similarly Lyn's (1986) data are used to test the validity 

of the biquadratic-log-wake law in smooth open-

channels. The values of the flow parameters are given 

in Table 2. To test the biquadratic-log-wake law in clear 

water, four clear water data C-1, C-2, C-3 and C-4 are 

used. For all these runs the value of the von Karman 

constant κ is kept to be 0.41. From Table 2 one can see 

that the value of Coles' wake strength can be negative. 

The results for the clear water are plotted in Fig. (2) and 

for the sediment-water mixture are plotted in Fig. (6). 

From both the figures it is clear that the biquadratic-log-

wake law holds good in both clear water and sediment-

water mixture flows. 

Wang and Qian's (1989) clear water (CW) and clear 

water + plastic particle experiments (SF, SM and SC) 

are used to test the validity of the biquadratic-log-wake 

law in smooth narrow open-channels. The boundaries 

are smooth for all runs. Other flow conditions i.e., total 

flow depth h = 8, 9, 10 cm, channel width b = 30 cm, 

and bed slope S = 0.01 are kept same for all runs. The 

shear velocity u* is assumed to be  ≈ 0.07 m/s for fine 

plastic particles and 0.0916 m/s for medium and coarse 

plastic particles. Calculated values of the flow 

parameters for all runs (except SF5) are shown in Table 

3. Computed and observed values of velocity profile for 

clear water runs CW1, CW2, CW3 and CW4 are 

presented in Fig. (3). Figure (7) shows the result in 

sediment-laden flows. From the figures one can see that 

the biquadratic-log-wake law describes the velocity 

profile well for both clear water and sediment-laden 

open-channel flows. 
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In a similar way, four data sets of Kironoto and Graf 

(1994) are used to test the biquadratic-log-wake law in 

clear water flows. The values of the parameters are 

given in Table 4. Comparison of four runs UGA3, 

UGA5, UGB3 and UGB5 with the computed values are 

presented in Fig. (4) which shows that biquadratic-log-

wake law is applicable in clear water flows. 

4.1 Effect of density gradient on model 

parameters 

To test the effect of density gradient (Ri) on the main 

model parameters κ and П for velocity distribution, 

Coleman's (1981) data are used. Coleman's (1981) 

experiment can be treated as density sediment-laden 

flow with dilute concentration where maximum 

volumetric sediment concentration is 2.3%. The 

calculated values of κ, П and Ri are given in Table 1. 

Figure (8) shows that variation of κ and П with 

Richardson number Ri. From the figure one can see that 

both κ and П initially decreases with the increase of 

Richardson number and then gradually increases. So the 

density gradient has significant effect on both von 

Karman constant and Coles wake strength. A cubic 

relation between κ and Ri by fitting the data (except run 

22) as 

7 3 4 2
6.1 10 1.9 10 0.15 1R R R

i i i





 



        (22) 

where κ0 = 0.41 is the von Karman constant for clear 

water. Similarly a quadratic relation between П and Ri 

by fitting data as in Fig. 8(b) gives 

5 2 3
6 10 7 10 0.4R R

i i
 

        (23) 

One can predict von Karman coefficient κ and Coles’ 

wake parameter П from the above proposed formulae 

for density sediment-laden flows. 

4.2 Effect of average concentration on model 

parameters 

Wang and Qian's (1989) clear water (CW) and clear 

water + plastic particle experiments (SF, SM and SC) 

are used to test the effect of average concentration on 

von Karman constant and Coles’ wake strength. The 

specific gravity of plastic particles is 1.05. So mixture 

of clear water and plastic particle flows can be assumed 

as quasi-neutral sediment-laden flows (Guo 1998). 

Therefore the effect of density gradient can be 

neglected. Figure 9(a) shows how the von Karman 

constant κ varies with average concentration Cavg. A 

linear relation between κ and Cavg by fitting the data 

gives as 

1 1.098 avgC



   (24) 

where κ0 = 0.41 is the value of the von Karman constant 

for clear water which is compatible with the previous 

result of other researchers. The von Karman constant κ 

decreases with the average sediment concentration Cavg. 

Similarly the variation of Coles’ wake strength П with 

the variation of average concentration Cavg is plotted in 

Fig. 9(b). It shows that Coles’ wake strength П 

increases with the average value of the sediment 

concentration Cavg. From Wang and Qian's (1989) data 

one can obtain a linear relation between П and Cavg by 

fitting the data as 

0.081 0.66 avgC    (25) 

One can use above equations to predict von Karman 

coefficient κ and Coles' wake parameter П for neutral or 

quasi-neutral sediment-laden flows where the effect of 

density gradient is negligible. 

4.3 Combined effect of density gradient and 

average concentration on model 

parameters 

A composite expression for the effects of average 

concentration Cavg and Richardson number Ri on the 

von Karman constant may be expressed as 

7 3 4 2
6.1 10 1.9 10 0.15

1 1.098 avg

R R R
i i i

C





 



      

  
 (26) 

A similar expression can be found in Guo's (1998) 

paper. On the other hand, a single composite expression 

for the Coles' wake parameter for the effects of average 

concentration and Richardson number is not possible. 

The Coles' wake parameter reflects the effect of side 

wall on velocity distribution which also depends on the 

aspect ratio of open channels. For wide open channels, 

the effect of Coles' wake parameter may be neglected 

i.e. П ≈ 0 and for narrow open channels (where aspect 

ratio is less than or equal to five) value of П linearly 

decreases to zero when aspect ratio increases to five 

(Guo 1998). 

5. COMPARISON OF THE CONCENTRATION 

MODEL WITH EXPERIMENTAL DATA 

Data of Coleman (1986), Lyn (1986) and Wang and 

Qian (1989) are used to validate the present model. The 

calculated values of sediment concentration are 

obtained from Eq. (20). The main parameters for the 

concentration distribution model are the sediment 

particle settling velocity ω0 and the proportionality 

constant γ. In this paper, the sediment concentration is 

normalized by the value Cξa at ξ = ξa. Here the 

reference level ξa is taken as the lowest normalized 

distance from the bed from the available data. Then Cξa 

is the volumetric concentration at ξ = ξa from the 

available data. Values of another two parameters 

namely κ and П are same as they are in the velocity 

model. 

Settling velocity of sediment particles is calculated 

from the formula proposed by Zhiyao et al. (2008) as 

7/8
3 12/7

0 38.1 0.93* *
d d

d





   
   (27) 



S. Kundu and K. Ghoshal  / JAFM, Vol. 6, No. 3, pp. 339-350, 2013.  

 

344 

 

where d* is the dimensionless sediment particle 

diameter, d is the sediment particle diameter and ν is the 

kinematic viscosity for the sediment-water mixture 

which is given as 

2 3(1 2.5 6.25 15.62 )

(1 )

f avg avg avg

f avg

C C C

AC






  


  (28) 

where μf is the dynamic viscosity of water, Cavg is the 

local time average volumetric sediment concentration 

and ρf is the density of clear water. For all the data sets 

γ is taken as fitting parameter. 

Coleman’s (1986) experiments were performed in 

smooth rectangular open-channel. The concentration 

was measured at 12 points over the entire flow depth. 

Three types of sands with diameter d = 0.105, 0.210 

and 0.420 mm were used in the experiment. Computed 

value of the sediment settling velocity ω0 for all runs 

are given in Table 1. From the table one can observe 

that sediment particle settling velocity decreases with 

the increase of sediment concentration. The calculated 

concentration distribution with the observed data of 

Coleman (1986) for runs 3, 7, 11, 13, 16, 20, 24 and 31 

are plotted in Fig. (10). From the figure one can see that 

the present model matches well with the observed data. 

From the figure it is also clear that the value of γ 

decreases with the increase of sediment concentration. 

Lyn (1986) performed experiments in sediment-laden, 

uniform open-channel turbulent flow over flat beds. For 

equilibrium bed conditions Lyn used three different 

grain sizes: for bed 1565EQ, d = 0.15 mm; for 1965EQ, 

d = 0.105 mm and for 2565EQ, d = 0.24 mm. In this 

data set also the reference level is chosen at the lowest 

available height of observed concentration data set for 

experiment 1565EQ, 1965EQ and 2565EQ. The 

calculated value of settling velocity of sediment particle 

is given in Table 2. A comparison between the 

proposed model and the flume data of Lyn (1986) is 

presented in Fig. (11). From the figure it is clear that the 

model matches well with the data. 

Similarly, Wang and Qian’s (1989) data are used to test 

the concentration model. In this paper, three types of 

runs are used: SF (clear water + fine plastic particle), 

SM (clear water + medium plastic particle) and SC 

(clear water + coarse plastic particle). The diameters of 

the plastic particles are d = 0.268 mm (fine), 0.96 mm 

(medium) and 1.42 mm (coarse). The settling velocity 

of plastic particles is presented in Table 3. Calculated 

results of sediment distribution with the Wang and 

Qian's (1989) data are plotted in Fig. (12) for runs SF3, 

SF4, SM2, SM3, SC3 and SC4. From the figure it is 

clear that for all fine, medium and coarse plastic 

particles the computed value of concentration matches 

well with the experimental data. 

                        
Fig. 1. Comparison of the BLWL with Coleman’s (1986) clear water data (Run 1, 21 and 32) 

 

 

                                
Fig. 2. Comparison of the BLWL with Lyn’s (1986) clear water data (Run C1, C2, C3 and C4) 
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Fig. 3. Comparison of the BLWL with Wang and Qian’s (1989) clear water data (Run CW1, CW2, CW3 and CW4) 

 

                      
Fig. 4. Comparison of the BLWL with Kironoto and Graf’s (1994) clear water data (Run UGA3, UGA5, UGB5 and 

UGB5) 

 

 

                       
Fig. 5. Comparison of the BLWL with Coleman’s (1986) sediment water mixture data (Run 3, 7, 11, 16, 24 and 31) 

 

 

                     
Fig. 6. Comparison of the BLWL with Lyn’s (1986) sediment water mixture data (Run 1565EQ, 1965EQ and 

2565EQ) 
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Fig. 7. Comparison of the BLWL with Wang and Qian’s (1989) sediment water mixture data (Run SF1, SF2, SM2, 

SM3, SC3 and SC 

 

 

                   
Fig. 8. Effect of density gradient on (a) von Karman constant and (b) Coles’ wake parameter 

 

 

         
Fig. 9. Effect of average concentration on (a) von Karman constant and (b) Coles’ wake parameter 
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Fig. 10. Calculated and measured sediment concentration profiles for runs 3, 7, 11, 13, 16, 20, 24 and 31 of Coleman 

(1986) 

 

 
Fig. 11. Calculated and measured sediment concentration profiles for runs 1565EQ, 1965EQ and 2565EQ of Lyn 

(1986) 

 
 

 
 

 
Fig. 12. Calculated and measured sediment concentration profiles for runs SF3, SF4, SM2, SM3, SC3 and SC4 of 

Wang and Qian (1989) 
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Table 1 Values of parameters of Coleman’s (1981, 1986) experimental data 

RUN h 

(mm) 

umax 

(m=s) 

δ 

(mm) 

C0 

 (×10-3) 

C1 

 (×10-4) 

Cm 

 (×10-3) 

Ri κ Π ω0 

(m/s) 

1 172 1.05 132 0.000 0.000 0.000 0.0000 0.4100 0.2558 0.0066 

2 171 1.05 120 1.390 0.920 0.305 1.4991 0.3943 0.3067 0.0065 

3 172 1.05 119 3.200 1.580 0.580 3.4824 0.3707 0.3440 0.0063 

4 171 1.05 128 4.900 1.880 0.870 5.7993 0.3493 0.2424 0.0060 

5 171 1.04 122 7.800 2.800 1.120 8.8178 0.3366 0.2318 0.0057 

6 170 1.05 119 10.000 3.720 1.450 11.0060 0.3521 0.3860 0.0054 

7 171 1.06 120 13.500 4.400 1.680 15.0490 0.3283 0.3520 0.0050 

8 173 1.04 130 13.500 4.100 1.860 16.3357 0.3184 0.2311 0.0046 

9 172 1.04 136 15.500 3.750 2.500 19.7257 0.2837 0.0868 0.0043 

10 171 1.06 134 21.000 3.800 2.790 26.4840 0.2831 0.1485 0.0038 

11 169 1.08 122 25.000 6.000 3.080 28.5189 0.2813 0.2483 0.0036 

12 173 1.06 134 29.000 6.400 3.400 36.3887 0.2735 0.1749 0.0034 

13 171 1.07 122 33.000 8.200 3.580 37.5814 0.2771 0.2629 0.0031 

14 171 1.06 122 33.000 7.800 4.020 37.6010 0.2591 0.1372 0.0028 

15 171 1.07 119 42.000 8.800 4.150 46.7974 0.2548 0.1736 0.0027 

16 171 1.08 122 39.000 8.000 4.400 40.9002 0.2525 0.1950 0.0025 

17 171 1.07 131 39.000 5.950 4.700 48.0717 0.2395 0.0634 0.0025 

18 172 1.05 131 44.000 6.250 4.820 54.2820 0.2557 0.0783 0.0024 

19 170 1.07 131 75.000 5.900 4.800 93.1240 0.2398 0.0866 0.0023 

20 170 1.07 126 68.000 6.600 5.030 81.0288 0.2340 0.0835 0.0021 

21 169 1.05 128 0.000 0.000 0.000 0.0000 0.4100 0.2458 0.0216 

22 170 1.03 122 2.130 0.650 0.245 2.4249 0.5511 0.6480 0.0212 

23 170 1.05 119 5.700 1.170 0.560 6.3914 0.4737 0.5940 0.0207 

24 169 1.06 122 15.800 1.590 0.815 18.3496 0.3799 0.4017 0.0201 

25 167 1.06 124 17.500 2.980 1.210 18.0625 0.3017 0.1529 0.0193 

26 171 1.04 130 17.800 3.000 1.430 21.8546 0.3409 0.2518 0.0186 

27 168 1.07 122 19.000 2.850 1.890 21.9171 0.3439 0.4002 0.0177 

28 170 1.06 122 27.800 3.320 2.000 32.1619 0.3261 0.3273 0.0168 

29 168 1.08 130 57.000 2.980 1.790 74.3522 0.2924 0.2424 0.0160 

30 168 1.09 137 71.000 2.730 2.490 92.9203 0.2915 0.1869 0.0151 

31 172 1.07 119 71.000 4.400 2.680 80.4960 0.3002 0.3940 0.0146 

32 173 1.02 131 0.000 0.000 0.000 0.0000 0.4100 0.2858 0.0549 

33 174 1.04 128 0.695 0.175 0.065 0.8349 0.4070 0.3817 0.0547 

34 172 1.05 131 1.630 0.241 0.103 2.0254 0.4562 0.5761 0.0546 

35 172 1.06 122 3.000 0.415 0.177 3.4745 0.4026 0.5142 0.0545 

36 171 1.09 122 9.200 0.620 0.267 10.7301 0.3744 0.4891 0.0541 

37 167 1.08 119 11.800 0.800 0.365 13.4214 0.3383 0.3810 0.0540 

38 167 1.12 114 16.100 1.060 0.455 15.9497 0.3270 0.3891 0.0537 

39 171 1.12 114 62.000 1.120 0.510 58.9378 0.3594 0.5611 0.0535 

40 171 1.11 125 100.000 1.150 0.545 99.7121 0.3671 0.4760 0.0535 

 

 

 
Table 2 Values of parameters of Lyn’s (1986) experimental data 

RUN  h  

(cm)  

umax  

(m/s)  
u∗  

(cm/s)  

δ  

(cm)  

κ  Π  ω0  

(m/s)  

C-1  6.54  0.7530  3.11  5.66  0.4100  0.2780  0.0000  

C-2  6.53  0.8750  3.73  5.22  0.4100  0.2480  0.0000  

C-3  5.75  0.8570  3.61  5.46  0.4100  0.2580  0.0000  

C-4  5.69  1.0190  4.33  4.88  0.4100  0.3250  0.0000  

1565EQ  6.45  0.7562  3.58  5.66  0.2808  0.0464  0.0123  

1965EQ  6.51  0.7767  3.75  5.74  0.2878  0.0216  0.0184  

2565EQ  6.54  0.8585  4.25  4.85  0.2427  -0.0740  0.0262  
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Table 3 Values of parameters of Wang and Qian’s (1989) experimental data 

RUN  h 

(cm)  

umax 

(m/s)  

δ 

 (cm)  

Cavg  

(%)  

κ  Π  ω0  

(m/s)  

CW1  10  2.111  6.362  0.0000  0.4100  -0.0900  0.00000  

CW2  10  2.098  6.254  0.0000  0.4100  -0.0300  0.00000  

CW3  10  2.115  6.712  0.0000  0.4100  -0.0700  0.00000  

CW4  8  2.003  7.000  0.0000  0.4100  -0.0100  0.00000  

SF1  10  2.120  6.660  0.4650  0.3750  0.1027  0.01430  

SF2  10  2.090  6.600  1.1483  0.3575  0.0195  0.00380  

SF3  10  2.070  6.570  2.5100  0.3997  0.1560  0.00080  

SF4  10  2.080  7.440  5.0233  0.3813  0.1468  0.00020  

SF6  9  2.160  9.010  14.2125  0.3335  0.2827  0.00001  

SM1  10  2.110  7.060  0.4483  0.4516  0.0464  0.09060  

SM2  10  2.150  6.550  1.6275  0.4365  0.0911  0.02260  

SM3  10  2.160  7.070  3.1450  0.4331  0.1883  0.00670  

SM4  10  2.190  7.190  5.1433  0.3850  0.1196  0.00250  

SM5  10  2.200  8.330  7.9050  0.4050  0.1381  0.00110  

SM6  10  2.210  9.400  9.4117  0.3469  0.0121  0.00070  

SM7  10  2.230  8.680  15.9842  0.3680  0.1881  0.00030  

SC1  10  2.120  6.430  0.5917  0.4199  0.0858  0.11810  

SC2  10  2.100  6.790  1.1725  0.4057  0.0192  0.06920  

SC3  10  2.110  6.640  2.6167  0.4039  0.1244  0.02000  

SC4  10  2.130  7.190  4.4783  0.3926  0.1028  0.00720  

SC5  10  2.150  7.350  7.9758  0.3795  0.1783  0.00230  

SC6  10  2.170  7.540  11.4883  0.3680  0.1856  0.00110  

SC7  10  2.160  7.730  14.8292  0.3328  0.0750  0.00070  

 

Table 4 Values of parameters of Kironoto and Graf’s (1994) experimental data 

RUN  h  

(cm)  

umax  

(m/s)  
u∗  

(cm/s)  

δ  

(cm)  

κ  Π  

UGA3  28.50  0.572  3.70  22.40  0.41  0.105  

UGA5  28.50  0.570  4.00  21.40  0.41  0.106  

UGB3  29.00  0.465  3.20  22.91  0.41  0.104  

UGB5  29.00  0.463  3.40  22.91  0.41  0.115  

  

6. CONCLUSION  

The following conclusions can be drawn from the 
above discussion: 

1. The biquadratic-log-wake law (BLWL) originally 
developed by Guo (2006) can be applied to describe 
the velocity profile in clear water as well as 
sediment-laden open-channel flows. It can also 
describe the dip phenomenon. 

2. The concentration distribution model developed in 
this work using the biquadratic-log-wake law can 
describe the vertical concentration distribution 
throughout the depth. For higher concentration it 
deviates from the observed data. This deviation 
occurs as we start with the Rouse diffusion equation 
which is applicable only for low concentrated 
flows.  

3. The Richardson number Ri and average 
concentration Cavg have significant effect on von 
Karman constant κ and Coles’ wake strength П. 
Both κ and П initially decrease with the increase of 
Richardson number then gradually increase. On the 
other hand, κ decreases with the increase of Cavg 
and П increases with the increase of Cavg. 

4. The proportionality constant γ between sediment 
diffusion coefficient εs and momentum diffusion 

coefficient εm gradually decreases with the increase 
of sediment suspension. 
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