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ABSTRACT 

The thermal instability of a couple-stress fluid heated from below is investigated. Following the linearized stability 

theory and normal mode analysis, the paper mathematically establishes that the onset of instability at marginal state, 

cannot manifest itself as stationary convection, if the thermal Rayleigh number R and the couple-stress parameter F, 

satisfy the inequality 
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, and when the couple-stress parameter F is 

infinitesimally small, 
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, the result which also clearly mathematically established the stabilizing 

character of the couple-stress. 
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NOMENCLATURE 
a  dimensionless wave number  

F  couple-Stress parameter 

g  
acceleration due to gravity, 2/m s 

 
 

k  wave number, 1 / m    

,k kx y  wave numbers in x and y-directions, 

1 / m    

n  growth rate, 1 / s    

R  Rayleigh number 

T  temperature, K    

 , ,q u v w  components of velocity after 

perturbation 

  
 

  

  coefficient of thermal expansion, 

1 / K    

1

2
  

uniform temperature gradient, 

/K m    

  perturbation in temperature, K    

  thermal diffusivity, 2 /m s 
 

 

  
kinematic viscosity, 2 /m s 

 
 

'  kinematic viscoelasticity, 2 /m s 
 

 

, ,D   Del operator, Curly operator and 

Derivative with respect to z (=d/dz) 

 
 

1. INTRODUCTION 

Right from the conceptualizations of turbulence, 

instability of fluid flows is being regarded at its root. 

The thermal instability of a fluid layer with maintained 

adverse temperature gradient by heating the underside 

plays an important role in Geophysics, interiors of the 

Earth, Oceanography and Atmospheric Physics etc. A 

detailed account of the theoretical and experimental 

study of the onset of Bénard Convection in Newtonian 

fluids, under varying assumptions of hydrodynamics 

and hydromagnetics, has been given by Chandrasekhar 

(1981). The use of Boussinesq approximation has been 

made throughout, which states that the density changes 

are disregarded in all other terms in the equation of 

motion except the external force term. Sharma (1976) 

has considered the effect of suspended particles on the 

onset of Bénard convection in hydromagnetics. The 

fluid has been considered to be Newtonian in all above 

studies. Chandra (1938) observed that in an air layer, 

convection occurred at much lower gradients than 

predicted if the layer depth was less than 7mm and 

called this motion “columnar instability”. However for 
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a layer deeper than 10mm, Bénard–type cellular 

convection was observed. Thus there is a contradiction 

between the theory and experiment. Scanlon and Segel 

(1973) have considered the effect of suspended particles 

on the onset of Bénard convection and found that the 

critical Rayleigh number was reduced solely because 

the heat capacity of the pure fluid was supplemented by 

that of the particles. 

With the growing importance of non-Newtonian fluids 

in modern technology and industries, the investigations 

on such fluids are desirable. Stokes (1966) proposed 

and postulated the theory of couple-stress fluid. One of 

the applications of couple-stress fluid is its use to the 

study of the mechanism of lubrication of synovial 

joints, which has become the object of scientific 

research. A human joint is a dynamically loaded 

bearing which has articular cartilage as the bearing and 

synovial fluid as lubricant. When fluid film is 

generated, squeeze film action is capable of providing 

considerable protection to the cartilage surface. The 

shoulder, knee, hip and ankle joints are the loaded-

bearing synovial joints of human body and these joints 

have low-friction coefficient and negligible wear. 

Normal synovial fluid is clear or yellowish and is a 

viscous, non-Newtonian fluid. According to the theory 

of Stokes (1966), couple-stresses are found to appear in 

noticeable magnitude in fluids very large molecules. 

Since the long chain hylauronic acid molecules are 

found as additives in synovial fluid. Walicki and 

Walicka (1999) modeled synovial fluid as couple-stress 

fluid in human joints. Sharma and Sharma (2001) have 

studied the couple-stress fluid heated from below in 

porous medium. The use of magnetic field is being 

made for the clinical purposes in detection and cure of 

certain diseases with the help of magnetic field devices. 

Sharma and Thakur (2000) have studied the thermal 

convection in couple-stress fluid in porous medium in 

hydromagnetics. 

Sharma and Sharma (2004) have studied the effect of 

suspended particles on couple-stress fluid heated from 

below in the presence of rotation and magnetic field and 

found that rotation has a stabilizing effect while dust 

particles have a destabilizing effect on the system. Sunil 

et al. (2004) have studied the effect of suspended 

particles on couple-stress fluid heated and soluted from 

below in porous medium and found that suspended 

particles have stabilizing effect on the system. Kumar 

and Kumar (2011) have studied the combined effect of 

dust particles, magnetic field and rotation on couple-

stress fluid heated from below and for the case of 

stationary convection, found that dust particles have 

destabilizing effect on the system, where as the rotation 

is found to have stabilizing effect on the system, 

however couple-stress and magnetic field are found to 

have both stabilizing and destabilizing effects under 

certain conditions. Shivakumara et al. (2011) have 

studied the effect of non-uniform temperature gradients 

on the onset of convection in a couple-stress fluid 

saturated porous medium. 

Keeping in mind the importance of non-Newtonian 

fluids, the present paper is an attempt to characterize 

the onset of instability at marginal state as stationary 

convection analytically, in a layer of incompressible 

couple-stress fluid heated from below in the presence of 

suspended particles. 

2. FORMULATION OF THE PROBLEM AND 

PERTURBATION EQUATIONS 

Considered an infinite, horizontal, incompressible 

couple-stress fluid layer, of thickness d, heated from 

below so that, the temperature and density at the bottom 

surface z = 0 are,
0  respectively and at the lower 

surface z = d are dT , d  and that a uniform adverse 

temperature gradient
dT

dz

 
 
 

 is maintained. Let  , p, 

T and  wvuq ,,


 denote respectively the density, 

pressure, temperature and velocity of the fluid 

respectively. Then the momentum balance, mass 

balance equations of the couple-stress fluid (Stokes 

1966, Chandrasekhar 1981 and Scanlon and Segel 

1973) are 

'
2 2
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 (1) 

. 0q


   

(2) 

The equation of state is 

 10 0T T     
 

 
(3) 

Where the suffix zero refer to the values at the 

reference level z = 0. Here  0,0,g g


  is acceleration 

due to gravity and  
_

, ,x x y z . 

Let vc  denote the heat capacity of the fluid at constant 

volume, assuming that the fluid is in thermal 

equilibrium, the equation of heat conduction gives 

2.0c q T q Tv t


  
    
 
 

 

or 

2.
T

q T T
t


 
    
 
 

 

(4) 

The kinematic viscosity , couple-stress viscosity
' , 

thermal diffusivity 0/ vq c  , and coefficient of 

thermal expansion  are all assumed to be constants. 

The initial state of the system is taken to be a quiescent 

layer (no settling). The basic motionless solution is 

given by 

   0 00,0,0 , , 1q T T z z   


      (5) 

Assume small perturbations around the basic solution 

and let  , p ,   and  , ,q u v w denote respectively 
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the perturbations in density, pressure p, temperature T 

and couple-stress fluid velocity (0,0,0). The change in 

density   caused mainly by the perturbation   in 

temperature is given by:  

0     (6) 

Then the linearized perturbation equations of the couple 

stress fluid become 

'1 2 2

0 0

q
p g q

t


  

 


  
        
 
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 (7) 

. 0q


   

(8) 

2w
t


  


  


 

(9) 

3. NORMAL MODE ANALYSIS 

Analyzing the disturbances into normal modes, we 

assume that the Perturbation quantities are of the form 

     , ,w W z z Exp ik x ik y ntx y           (10) 

Where ,k kx y  are the wave numbers along the x and y-

directions respectively  
1

2 2 2k k kx y  , is the 

resultant wave number and n is the growth rate which 

is, in general, a complex constant. 

Using Eq. (10), Eq. (7) and Eq. (9), on using Eq. (8) 

and, in non-dimensional form, become 

     
2

2 2 2 2 2 2

2 2

D a F D a D a W

g d a







 
     

  


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 (11) 
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2 2
1

d
D a p W
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
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where 
2 '

, , ,1 2
0

nd
a kd p F

d

 


   
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d
D

dz
  

and dropping   for convenience. Here ,1p



  is 

the thermal prandtl number and F is the couple-stress 

parameter. 

Substituting W W   and 
2d


    in Eq. (11) 

and Eq. (12) and dropping    for convenience, in 

non-dimensional form becomes 

     
2

2 2 2 2 2 2 2D a F D a D a W Ra
 

        
  

 (13) 

 2 2
1D a p W      (14) 

where
4g d

R



 , is the thermal Rayleigh number. 

Since both the boundaries are maintained at constant 

temperature, the perturbations in the temperature are 

zero at the boundaries. The case of two free boundaries 

is little artificial but it is most appropriate for Stellar 

atmospheres and enables us to find analytical solutions 

and to make some qualitative and quantitative 

conclusions. The appropriate boundary conditions with 

respect to which Eq. (13) and Eq. (14) must be solved 

are 

W = 0,    0  at z = 0 and z = 1 (15) 

and the constitutive equations of the couple-stress fluid 

are  ' 22 2 eij ij     and 
1

2

vv jieij x xj i

 
  
  
 

 

The conditions on a free surface are 
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xz z x
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From the equation of continuity Eq. (8) differentiating 

with respect to z, we conclude that 

2 2 2 2
' 0

2 2 2 2

w

x y z z
 
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 (17) 

which implies that 

2
0

2

w

z





,

4
0

4

w

z





, at z = 0 and z = d (18) 

Using Eq. (10), the boundary conditions Eq. (18) in 

non-dimensional form transform to 

2 4 0D W D W   at z = 0 and z = 1 (19) 

We prove the following theorem. 

Theorem: If R  0 , F  0 and 0   then the necessary 

condition for the existence of non-trivial solution 

 ,W   of Eqs. (13) and (14) together with boundary 

conditions Eqs. (15) and (19) is that 
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further, when the couple-stress parameter F is 

infinitesimally small, then R 
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Proof: When the instability sets in stationary 

convection and the `exchange principle` is valid, the 

neutral or marginal state will be characterized by 

0  and hence the relevant governing Eqs. (13) 

and (14) reduces to 

     
2

2 2 2 2 2 2

2

D a F D a D a W
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 
    

  
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 (20) 

 2 2D a W    (21) 

together with the relevant boundary conditions, 

2 40W D W D W       (22) 

on both the horizontal boundaries at z = 0 and z = 1 

Multiplying Eq. (20) by W  (the complex conjugate of 

W) throughout and integrating the resulting equation 

over the vertical range of z, we get 
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1 13 2
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F W D a Wdz W D a Wdz
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Taking complex conjugate on both sides of Eq. (21), we 

get 

 2 2D a W      (24) 

Substituting for 
W  in the right hand side of Eq. (23), 

we get 
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Integrating the terms on both sides of Eq. (25) for an 

appropriate number of times by making use of the 

appropriate boundary conditions Eq. (22), we get 

 
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(26) 

We first note that since W  and   satisfy 

(0) 0 (1)W W   and (0) 0 (1)    in addition to 

satisfying to governing equations and hence we have 

from the Rayleigh-Ritz (1973) inequality  

1 1
2 22

0 0

DW dz W dz   (27) 

and 

1 1
2 22

0 0

D dz dz     (28) 

Further, for (0) 0 (1)W W  , Banerjee et al. (1992) 

have shown that 

1 12 22 4

0 0

D W dz W dz   (29) 

Further, multiplying Eq. (21) by   (the complex 

conjugate of  ), integrating by parts each term of the 

resulting equation on the right hand side for an 

appropriate number of times and making use of 

boundary condition on   namely (0) 0 (1)   , it 

follows that 

 
1

2 22

0
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1 1
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Utilizing Cauchy Schwartz inequality

D a dz Wdz
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     
      
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(30) 

So that using inequality Eq. (28), we obtained from 

above inequality 

 
1 1

1 12 22 22 2

0 0

a dz W dz
      

      
      

 (31) 

And hence inequality Eqs. (30) and (31), gives  

 
 

1 112 2 22

2 2
0 0

D a dz W dz

a

    


 (32) 

Now, if R   0, utilizing the inequalities Eqs. (27), (29), and 

Eq. (32), the Eq. (26) gives 

   
 

2 12 2 22 2 2 2 2 01 2 2
0

Ra
I a a F a W dz

a

 


 
   

       
   
 

 

(33) 
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Where
1 2 2 23 2 2 421
0

I D W a D W a DW dz
  

    
  

, is 

positive definite. and therefore, we must have 

 
 

3
2 2

21
2

a

R a F
a

 

   
(34) 

and thus we necessarily have 

 

3
2 2 22 1 3 3 1 3 1

2 227 1 1 3

F F F

R

F F

  



  
      

  
 
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 (35) 

Since the minimum value of 
 

 
3

2 2

21
2

a

a F
a

 

 , is 

 

3
2 2 22 1 3 3 1 3 1

2 227 1 1 3

21 1 32for 0
3

F F F

F F

F
a

F

  





  
      

  

 
   
 

  
 

 (36) 

Further, when the couple-stress parameter F is 

infinitesimally small, then in the expansion of right 

hand side of Eq. (36), the higher powers of F can be 

ignored, and then we have 
2

2 0
2

a


  , Eq. (34) gives 

4 227
1

4 2
R F

  
 

  
  

 (37) 

The same result Eq. (37) also follows for very-very 

small values of F and ignoring the higher powers of F 

in the expansion of right hand side of Eq. (35) and this 

completes the proof of the theorem. 

The theorem implies from the physical point of view 

that the onset of instability at marginal state in a couple-

stress fluid heated from below, cannot manifest itself as 

stationary convection, if the thermal Rayleigh number 

R and the couple-stress parameter F, satisfy the 

inequality 
4 227

1
4 2

R F
  

 
  

  

, when couple-stress 

parameter is infinitesimally small and the boundaries 

are dynamically free. 

4. CONCLUSIONS 

In this paper, the onset of instability as stationary 

convection of couple-stress fluid heated from below is 

considered and the immediate analytic conclusions of 

the theorem proved above, are as follows: 

(a) The necessary condition for the onset of instability 

as stationary convection at marginal state for  

configuration under consideration, is that the inequality 

(35) is satisfied. Thus the sufficient condition for the 

non-existence of stationary convection at marginal state 

is that

 
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 

, 

for the configuration under consideration.  

(b) When the couple-stress parameter F is 

infinitesimally small, then the necessary condition for 

the onset of instability as stationary convection at 

marginal state for configuration under consideration  is 

that the inequality (37) is satisfied. Thus the sufficient 

condition for the non-existence of stationary convection 

at marginal state is that 
4 227

1
4 2

R F
   

  
  

, for the 

configuration under consideration.  

(c) In the inequalities (35) and (37), the thermal 

Rayleigh number R  0, is directly proportional to the 

couple-stress parameter F  0, which clearly 

mathematically established the stabilizing character of 

the couple-stress, for the configuration under 

consideration as derived by Sharma and Sharma (2004). 
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