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ABSTRACT 

The problem of steady, laminar flow and heat transfer of an electrically conducting fluid through vertical channel in 
the presence of uniform transverse magnetic field is formulated using a two-fluid continuum model.  Combined free 
and forced convection inside the channel is considered.  The effects of viscous and ohmic dissipations are included in 
the energy equation.  Both walls are kept either at the same or different temperatures such as isoflux-isothermal and 
isothermal-isoflux conditions.  Governing equations in cartesian co-ordinates are solved analytically using regular 
perturbation technique to develop the expression for velocity and temperature.   Velocity, temperature and Nusselt 
number are presented graphically.  Effects of pertinent parameters, such as Hartmann number, electric field load 
parameter, viscosity ratio, width ratio and conductivity ratio are determined. 
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NOMENCLATURE 
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iu  average   velocity 
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1K      thermal conductivity of the fluid in region-I 

2K      thermal conductivity of the fluid in region-II 
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  u        velocity   
Greek symbols 
         coefficient of thermal expansion 
          kinematic viscosity 
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          thermal diffusivity 

e         electrical conductivity 

         viscosity 

         density of the fluid 
 

      dimensionless parameter defined in Eq.(42)  

T       difference in temperature  2 1T T  

i          nondimensional temperature 
 0iT T

T




 

 
 

1. INTRODUCTION 

Mixed convection is defined as heat transfer situations 
where both natural convection and forced convection 
heat transfer mechanisms interact.  In a vertical 
passage, the internal main flow can be either upward or 
downward.  The upward forced flow is termed 
‘assisted’ flow because the natural convection created 
by buoyancy is in the same direction as the bulk flow.  
In contrast, the downward flow is called ‘opposed’ flow 
based on its direction opposite to the natural 
convection.  In the past twenty years, mixed convection 
in a vertical heated channel has received considerable 
attention due to its extensive practical applications, 
including turbine rotor blade internal cooling systems, 
cooling of nuclear reactors and electronic components.  
Tao (1960) analyzed laminar fully developed mixed 
convection flow in a vertical parallel-plate channel with 
uniform wall temperatures.  Aung and Worku (1986a, 
1986b) discussed the theory of combined free and 
forced convection in a vertical channel with flow 
reversal conditions for both developing and fully 
developed flows.  Aung and Worku (1986b) assumed 
that the walls of the channel were having asymmetric 
temperatures.  The case of developing mixed 
convection flow in ducts with asymmetric wall heat 
fluxes was analyzed by the same authors  (Aung and 
Worku, 1987).  A comprehensive review of the 
literature dealing with mixed convection in internal 
flow was reported by Aung (1987).  Cheng et al. 
(1990), Hamadah and Wirtz (1991)  and Ingham et al. 
(1988) also reported on, flow reversal situation in 
mixed convection in  a vertical channel for different 
wall heating conditions. 
 
The problem concerning the flow of immiscible fluids 
has a definite role in chemical engineering and in 
medicine.  In view of this, Bird et al. (1960) obtained an 
exact solution for the laminar flow of two immiscible 
fluids between two parallel plates.     Mitra (1982) 
analyzed the unsteady flow of two electrically 
conducting fluids between two rigid parallel plates. 
 
Since the last three decades research in nuclear power 
safety has motivated the study of the buoyancy-driven 
convection in fluids with volumetric heat generation.  
Recently, the problem of convective heat transfer in a 
layered system attracted attention due to possible core 
melt stratification in a postulated severe accident 
scenario in a light water reactor (Sehgal, 2001).  
Besides the reactor safety research, thermal convection 
in a double-layer system is of interest in chemical 
engineering and geophysics.  Much research effort has 
been directed at the problem of natural convection in a 
uniform pool with internal heat generation (Dhir, 1997).  
However, only a few studies have focused on the 
subject of thermal convection in volumetrically heated 
stratified layers.  Fieg (1976) investigated the natural 
convection characteristics of two stratified immiscible 
liquid layers with internally heated lower layer.  The 

temperature was maintained equal at the top and bottom 
boundaries.  Heptane and water were used as lighter 
and heavier liquids, respectively.  The important 
conclusion was that the two layers behaved as if 
separated by a rigid highly conductive wall.  Schramm 
and Reineke (1978) studied experimentally and 
numerically the natural convection in a rectangular 
channel filled with two immiscible fluids of different 
physical properties.  Kulacki and Nguen (1981) studied 
hydrodynamic instability and thermal convection in a 
horizontal layer of two immiscible fluids with internal 
heat generation in the lower layer. 
 
There has been some theoretical and experimental work 
on the stratified laminar flow of two immiscible liquids 
in a horizontal pipe (see, Charles and Lilleleht, 1965, 
Bentwich, 1964, and Pacham and Shail, 1971).  The 
interest in this configuration stems from the possibility 
of reducing the power required to pump oil in a pipeline 
by the suitable addition of water.  Shail (1973) 
investigated theoretically the possibility of using a two-
phase system to obtain increased flow rates in an 
electromagnetic pump.  Hartmann flow of a conducting 
fluid and non-conducting fluid layer contained in a 
channel has been studied by Shail (1973). His results 
predicted that an increase of the order  30%  can be 
achieved in the flow rate for suitable ratios heights and 
viscosities of the fluids.  Malashetty and Leela (1991, 
1992) reported closed-form solutions for the two-phase  
flow and heat transfer situation in a horizontal channel 
for which both phases are electrically conducting.  
Malashetty and Umavathi (1997) studied two-phase 
MHD flow and heat transfer in an inclined channel in 
the presence of buoyancy effects for the situation where 
only one of the phases is electrically conducting.  
Malashetty et al. (2000, 2001) analyzed the problem of 
fully developed two fluid magnetohydrodynamic flows 
with and without applied electric field in an inclined 
channel.  Recently, Malashetty et al. (2006) studied the 
magneto convection in a vertical channel. 
 
Much work is not found in the literature in the presence 
of electromagnetic field.  Keeping in view numerous 
applications of two-immiscible fluids, it is the objective 
of the paper to investigate theoretically, mixed 
convection of electrically conducting and electrically 
non-conducting immiscible fluids in a vertical channel. 

2. MATHEMATICAL FORMULATION 

The geometry under consideration illustrated in Fig. 1 
consists of two infinite parallel plates maintained at 
different or equal constant temperatures extending in 

the X and Z directions.  The region 1 0
2

h
Y   is 

occupied by a viscous, electrically conducting fluid of 
density 1 , viscosity 1 , thermal conductivity 1K , 

thermal expansion coefficient 1  and electrical 

conductivity e .   
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Fig. 1. Physical  configuration. 

The region 20
2

h
Y   is occupied by another viscous, 

non-conducting fluid of density 2 , viscosity 2 , 

thermal conductivity 2K , and thermal expansion 

coefficient 2 .  A uniform magnetic field 0B  is applied 

normal to the plates and the uniform electric field 0E  is 

applied across the channel.  The fluids are assumed to 
have constant properties except the density in the 
buoyancy term in momentum equation. A fluid rises in 
the channel driven by buoyancy forces.  The transport 
properties of both the fluids are assumed to be constant.  
The fluids in both the regions are considered to be 
incompressible and the flow is steady, laminar and fully 
developed.  It is assumed that the only non-zero 
component of the velocity q


 is the X-component 

( 1,2)iU i  .  Thus, as a consequence of the mass 

balance equation, one obtains 

0iU

X





                                                          (1) 

so that iU depends only on Y. 

 
The stream wise and the transverse momentum balance 
equations yields (Arpaci and Larsen, 1984).  
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The Y-momentum balance equation can be expressed as 
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
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
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

Y
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                                                       (5) 

where 0P p gx   1 2for P P P   is the difference 

between the pressure and the hydrostatic pressure.  On 
account of Eqs. (3) and (5), P depends only on X so that 
Eqs. (2) and (4) can be rewritten as  
 
Region- I   

  
2

1
1 1 0 1 0 0 1 02

1 1

1
( ) 0edP d U

g T T v E BU B
dX dY


 

            (6)                        
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2
2
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2

1
( ) 0

dP d U
g T T v

dX dY



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Let us assume that the walls of the channel are 
isothermal.  In particular, the temperature of the 

boundary at 1

2

h
Y    is 1T , while the temperature at 

2

2

h
Y  is 2T , with 2 1T T .  These boundary conditions 

are compatible with Eqs. (6) and (7) if and only if 
dP

dX
  

is independent of X.  Therefore, there exists a constant 
A such that  

dP
A

dX
                                                        (8)  

 On account of Eq. (8) and by evaluating the derivatives 
of Eqs. (6) and (7) with respect to X, one obtains  

1 0
dT

dX
                                         (9)        

2 0
dT

dX
                                       (10) 

so that the temperature also depends only on Y.  By 
taking into account the effect of viscous dissipation, the 
energy balance equation can be written as 
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 
22

21 1 1
1 0 0 12

1

0e

p p

d T v dU
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dY C dY C



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2 2
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p

d T v dU
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    
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Equations (6), (11), (7) and (12) allow one to obtain 
differential equation for iU   namely 
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24 2 2

21 0 1 1 1 1 1
0 0 14 2

1 1 1 1

e ed U B d U g dU g
E BU

dY dY K dY K
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4
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                                        (14) 

The boundary conditions on iU  are both no-slip 

conditions 

1 0U     1

2

h
at Y                       (15)  

2 0U                    2

2

h
at Y                      (16) 
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and those induced by the boundary conditions on T  
and by Eqs. (6) and (7) are  

1 2(0) (0)U U                                      (17) 
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The Eqs. (13) to (22) can be written in the 
dimensionless form by employing the dimensionless 
quantities 
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The reference velocity  
0
iU  and the reference 

temperature 0T  are given by 
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Moreover, the temperature difference T  is given 

2 1T T T     1 2if T T                            (25)                                   

As a consequence, the dimensionless parameter TR  can 

only take the values 0 or 1.  That is TR  is 1 for 

asymmetric heating i.e. 1 2T T , while TR  is 0 for 

symmetric heating i.e. 1 2T T , respectively. The 

dimensionless mean velocity iu and the dimensionless 

bulk temperature bi  are given by  
0
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1 4
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02
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u
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Equation (8) implies that A can be either positive or 

negative.  If 0A  , then  
0 ,ReiU and GR  are negative, 

i.e. the flow is downward. On the contrary, if 0A  , 

the flow is upward, so that  
0 ,ReiU and GR  are 

positive.  
 
Using Eqs. (23) and (24), the Eqs. (13) to (22) become 
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The boundary and interface conditions become 
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3. SOLUTION 

3.1 Case- I  
The solutions of Eqs. (30) and (31) using Eq. (32) in the 
absence of viscous dissipation, so that 0Br  , the 
velocities become 
 
Region-I 

   1 1 2 3 4u B B y B Cosh My B Sinh My                 (33)    

Region-II 

2 3
2 5 6 7 8u B B y B y B y                                        (34) 

Using the Eq. (23) in Eqs. (6) and (7), we obtain the 
energy balance equation as 
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Using the velocities obtained in Eqs. (33) and (34), the 
energy balance Eqs. (35) and (36) can be evaluated and 
are not presented. 

3.2 Case- II 

The solutions of Eqs. (30) and (31) can be obtained 
when buoyancy forces are negligible and viscous 
dissipation is dominating, i.e., 0GR  , so that a purely 
forced convection occurs. For this condition solutions 
of Eqs. (30) and (31), using boundary and interface 
conditions given by Eq. (32) for 0GR  , the velocities 
are given by  
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Using Eq. (23) in Eqs. (11) and (12), the energy balance 
equations become  
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The boundary and interface conditions for temperature 
are  
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Using Eq. (37), (38) and (41), the energy balance Eqs. 
(39) and (40) can be evaluated and not presented.  

3.3 Perturbation Solution 

We define the dimensionless parameter 

Re

Gr
Br GR Br                                              (42) 

Equation (42) shows that  does not depend on the 
reference temperature difference T .  The fact that the 

product  GR Br   is very small and hence can be 

exploited to use the regular perturbation method.   To 
this end the solutions are assumed in the form: 

2
0 1 2

0
( ) ( ) ( ) ( ) ( )n

i i i i in
n

u y u y u y u y u y  

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Using Eq. (43) in Eqs. (30) and (31) and equating the 
coefficients of like powers  to zero, we obtain the 
zeroth and first-order equations as follows 

Isothermal-isothermal  1 2T T  wall conditions 
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The corresponding boundary and interface conditions  
reduces to Zeroth-order equations: 
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M u M E nb

dy nb dy

 
     

 
   0at y                  

3 3
210 10 20

3 3

1d u du d u
M

dy dy nbKh dy
          0at y         (48)  

                                                    

First-order equations: 

11 0u  ;  
2

11
2

0
d u

dy
              

1

4
at y    

21 0u  ; 
2

21
2

0
d u

dy
               

1

4
at y   

2
11 21u mh u ; 11 21du du

h
dy dy

              0at y   
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2 2
211 21

112 2

1d u d u
M u

dy nb dy
  ;   

3 3
211 11 21

3 3

1d u du d u
M

dy dy nbKh dy
        0at y             (49)                                                      

Solutions of zeroth-order Eqs. (44) and (46) using 
boundary and interface conditions   (48) are 

   10 1 2 3 4u C C y C Cosh My C Sinh My        (50)         
2 3

20 5 6 7 8u C C y C y C y                                        (51)                  

Solutions of first-order Eqs. (45) and (47) using 
boundary and interface conditions (49) are 

   
     

   
 

11 9 10 11 12

2
10 11 12

2
13 14

4 3 2
15 16 17 18

2 2

u C C y C Cosh My C Sinh My

g Cosh My g Sinh My g y Cosh My

g y Sinh My g yCosh My

g ySinh My g y g y g y

    

 

 

   

   

(52)                                                                                                        

8 7 6 5 4 3 213 14
21 19 20 21 22 23 15 166 2

C C
u g y g y g y g y g y y y C y C        

                                                                                   (53) 
Using Eq. (23) in Eqs. (6) and (7), we obtain the energy 
balance equations as  

Region-I 

 
2

21
1 12

1
48

d u
M E u

GR dy


 
     

 
                    (54)

          
Region-II 

2
2

2 2

1
48

d u

nbGR dy


 
   

 
                                    (55) 

Using velocities obtained in Eqs. (50) to (53) the energy 
balance Eqs. (54) and (55) can be evaluated and are not 
presented.  

Isoflux-isothermal  1 2q T wall conditions 

For this case, the thermal boundary conditions for the 
channel walls can be written in the dimensional form as  

1
1 1

dT
q K

dY
                 1

2

h
at Y    

2T T                   2

2

h
at Y      (56) 

The dimensionless form of the above equations can  be   

obtained by using the Eq. (23) along with 
1

11

K

hq
T  to 

give 

1 1
d

dy


    

1

4
at y    

2 2
qtR

                    
1

4
at y       (57)             

         
where  2 0qtR T T T    is the thermal ratio parameter 

for isoflux-isothermal walls.  Other than the no-slip 
conditions at the channel walls, two more boundary 

conditions in terms of 1U  are required to solve Eq. (13).  

These are induced by the conditions given by Eq. (57) 
and the other obtained from Eq. (6) as follows. 

Differentiating Eq. (6) with respect to Y with
dP

A
dX

  

gives 

3 2
1 0 1 1 1

3
1 1

0ed U B dU g dT

dY dY v dY

 


                       (58) 

Equation (58) is non-dimensionalised by using the      
Eq. (23) to give 

3
21 1 1

3
0

d u du d
M GR

dy dy dy


                        (59) 

Evaluating the Eq. (59) at the left wall  1 4y    

yields 
3

21 1
3

d u du
M GR

dy dy
       

1

4
at y                       (60)                                       

The other boundary condition at the right wall can be 
shown to be the same as that given for the isothermal-
isothermal wall with TR  is replaced by qtR  such that      

2
2

2
48

2
qtnbGR Rd u

dy
         

1

4
at y                      (61) 

The integrating constants appeared in the Eqs. (50) to 
(53) are evaluated using boundary conditions (48), (49), 
(60) and (61) and are not presented 

Isothermal-isoflux  1 2T q wall conditions 

For this case, the thermal boundary conditions for the 
channel walls can be written in the dimensional form as  

2
2 2

dT
q K

dY
       2

2

h
at Y   

1T T      1

2

h
at Y       (62) 

The dimensionless form of above equations can be 
obtained by using the Eq. (23) along with 

 
2 2

2

q h
T

K
 

 

to give 

2 1
d

dy


                   

1

4
at y   

1 2
tqR

                    
1

4
at y                       (63) 

where  1 0tqR T T T   is the thermal ratio parameter 

for isothermal-isoflux walls.  Other than the no-slip 
conditions at the channel walls, two more boundary 
conditions in terms of 2U  are required to solve          

Eq. (14).  These are induced by the conditions given in 
Eq. (63) and the other obtained from Eq. (7) as follows. 
Differentiating Eq. (7) with respect to Y with dP

A
dX

  

gives 

3
2 2 2

3
2

0
d U g dT

dY v dY


                       (64) 

Equation (64) is non-dimensionalised by using the Eq. 
(23) to give 



J. Prathap Kumar et al. / JAFM, Vol. 5, No. 3, pp. 11-21, 2012.  

17 
 

Table 1 Temperature values for different values of GR and  . 

y GR=-500,=-0.1 GR=500,=0.1 

 E=-1 E=0 E=1 E=-1 E=0 E=1 

-0.25 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

-0.175 -0.34976 -0.34976 -0.34975 -0.34964 -0.34964 -0.34962 

-0.1 -0.19955 -0.19955 -0.19952 -0.19954 -0.19953 -0.19949 

-0.025 -0.04945 -0.04944 -0.04941 -0.04947 -0.04946 -0.04942 

0 5.56E-04 5.61E-04 5.89E-04 5.44E-04 5.50E-04 5.78E-04 

0.025 0.05054 0.05055 0.05057 0.05054 0.05054 0.05057 

0.1 0.20047 0.20047 0.20048 0.20044 0.20044 0.20045 

0.175 0.35037 0.35037 0.35037 0.35023 0.35023 0.35024 

0.25 0.5 0.5 0.5 0.5 0.5 0.5 

 
3

2 2
3

0
d u d

GR nb
dy dy


                                      (65) 

Evaluating the Eq. (65) at the right wall  1 4y   

yields   
 

3
2

3

d u
GR nb

dy
           

1

4
at y                         (66)      

 

The other boundary condition at the right wall can be 
shown to be the same as that given for the isothermal-
isothermal wall with TR  is replaced by tqR  such that 

2
1

2
48

2
tqGR Rd u

dy
     

1

4
at y       (67) 

 The integrating constants appeared in the Eqs. (50) to 
(53) are evaluated using boundary conditions (48), (49), 
(66) and (67) and are not presented.             

3.4 Nuselt Number 

The heat transfer parameter on the wall expressed in 
terms of the Nuselt number, in non-dimensional form 
become 

  1_ 1
d

Nu h
dy


     

1

4
at y    

21
1

d
Nu

h dy




   
 

   
1

4
at y   

The expressions for Nu and Nu  can be directly 

obtained and are not presented. 

4. RESULTS AND DISCUSSION 

In this section the fluid flow and heat transfer results for 
an electrically conducting fluid flow in a vertical 
enclosure are discussed in the presence of an applied 
magnetic field 0B normal to gravity and applied electric 

field 0E  parallel to gravity considering both viscous 

and homic dissipations.  The electric loading parameter 
0E   corresponds to short circuit configuration and 
0E  corresponds to open circuit, E  may be positive 

or negative depending either on the polarity of 0E or on 

the sign of 2 1T T .  If the polarity of 0E  is fixed as 

positive, then E  may be positive or negative depending 
on 2 1 2 1T T or T T   respectively.  The effect of 

electromagnetic force when 0E   is found to 
accelerate the flow and hence acts as a MHD generator.  
Further, the direction of the flow when 0E   is 
opposite to that when 0E  and hence the present 
configuration can be used for effectively flow reversal 
situation required in many practical problems. 
 
The basic equations governing the flow are solved 
using regular perturbation method. The product of 
GR Br , where GR  is the ratio of Grashof number to 

Reynolds number and Br  is the Brinkmann number is 
used as the perturbation parameter. 
 
The flow field for asymmetric heating are obtained and 
depicted in  Figs. 2 to 10 and also shown in Tables 1 to 
3 for the values of the parameters fixed as 

1, 1, 1, 1, 1, 2, 500 0.1m b h K n M GR and        
 expect the varying one.  Equations (33) and (34) are 
the velocity field in both the regions in the absence of 
Brinkmann number and solutions are depicted 
graphically for 2, 2E M  , in Fig. 2.  There is a flow 

reversal near the cold wall at 1 4y   for 400GR   

and there is symmetric profile for 0GR  .   
 

 

Fig. 2. Velocity profile s for different values of GR 
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Table 2 Temperature profiles for different values of Hartmann number M. 

y M=2 M=6 

 E=-1 E=0 E=1 E=-1 E=0 E=1 

-0.25 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

-0.175 -0.34976 -0.34976 -0.34975 -0.34974 -0.34977 -0.3497 

-0.1 -0.19955 -0.19955 -0.19952 -0.19954 -0.19955 -0.19944 

-0.025 -0.04945 -0.04944 -0.04941 -0.04945 -0.04943 -0.04928 

0 5.56E-04 5.61E-04 5.89E-04 5.48E-04 5.77E-04 7.25E-04 

0.025 0.05054 0.05055 0.05057 0.05054 0.05056 0.0507 

0.1 0.20047 0.20047 0.20048 0.20047 0.20047 0.20055 

0.175 0.35037 0.35037 0.35037 0.35037 0.35035 0.35038 

0.25 0.5 0.5 0.5 0.5 0.5 0.5 

 

Table 3 Temperature profiles for different values of viscosity ratio m. 

y m=0.1 m=4 

 E=-1 E=0 E=1 E=-1 E=0 E=1 

-0.25 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

-0.175 -0.34992 -0.34993 -0.34993 -0.34931 -0.34931 -0.3493 

-0.1 -0.19987 -0.19989 -0.19987 -0.19868 -0.19868 -0.19865 

-0.025 -0.04986 -0.04987 -0.04986 -0.04826 -0.04824 -0.04821 

0 1.35E-04 1.25E-04 1.39E-04 0.00183 0.00185 0.00188 

0.025 0.05013 0.05012 0.05013 0.05186 0.05187 0.05191 

0.1 0.2001 0.2001 0.2001 0.20157 0.20158 0.2016 

0.175 0.35008 0.35007 0.35007 0.35112 0.35112 0.35113 

0.25 0.5 0.5 0.5 0.5 0.5 0.5 

 
 
Equations (44) and (45) are the solutions for 
temperature field in the absence of Grashof number 
which is depicted graphically in Fig. 3 for different 
values of Brinkmann number.  The temperature field 
increases with increasing values of Brinkmann number.  
Fig. 2  0Br   and 3   0GR   are the similar graphs 

obtained by Umavathi (2006) and Baraletta (1998) for 
one fluid model considering permeable fluid and 
viscous fluid respectively.   

 

Fig. 3. Temperature profiles for different values of Br. 
 
 

 
Fig. 4. Velocity profiles for different values of GR 

and . 
 
The effect of GR and   on the velocity is shown in 

Fig. 4 for short and open circuits.  For positive values of  
GR and   the flow reversal is near the cold wall and 

for negative values of GR and  the flow reversal is 

near the hot wall for open and short circuits.  The effect 
of GR and   on temperature for 0, 1E    is shown in 

Table 1.   
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Table 4 Nusselt values for different values of Hartmann number M. 

 

M 

E=-1 E=0 E=1 

Nu_ Nu+ Nu_ Nu+ Nu_ Nu+ 

2 14.42359639 3.979748009 14.42348712 3.980019086 14.42395032 3.980101942 

4 4.658277671 3.979524633 4.657859532 3.980437548 4.659464179 3.980711141 

6 4.136257668 3.979341515 4.135371929 3.980957939 4.13834317 3.981427017 

 
The variation of temperature for positive and negative
GR and  , the values are same up to three decimal 

places and effect is almost invariant for both open and 
short circuits. 

 
Fig. 5. Velocity profiles for different values of Hartmann 

number M . 
 
The effect of Hartmann number on velocity is shown in 
Fig. 5.  It is observed that the Hartmann number is to 
decrease the velocity in both the regions.  This graph 
also shows the effect of electric field load parameter E  
on the flow for both open and short circuits.  Effect of 
Hartmann number is to suppress the velocity.  The 
effect of Hartmann number on temperature varies from 
fifth decimal place as shown in Table 2 for both open 
and short circuits. 

 

Fig. 6. Velocity profiles for different values of viscosity 
ratio m. 

Figure 6 shows the effect of viscosity ratio m on the 
velocity.  It is found that larger the value of viscosity of 
conducting fluid in region-I compared to the viscosity 
of another conducting fluid in region-II, the larger the 
flow field in region-I and smaller the flow field in 
region-II for both open and short circuits.  For 1m  , 
flow reversal is observed near the cold wall.  The effect 
of viscosity ratio m on the temperature is very 
sensitive and it  varies from fourth decimal place as 
shown in Table 3 for 0, 1E   . 

The effect of width ration h  on velocity and 
temperature are shown in Figs. 7 and 8 respectively.  As 
the width ratio h  increases velocity decreases 
significantly in region-II when compared to region-I.  It 
is found that smaller the width of region-I compared to 
region-II, smaller the temperature.   

 

Fig. 7. Velocity profiles for different values of width 
ratio h. 

 

Fig. 8. Temperature profiles for different values of 
width ratio h. 

 
Fig. 9. Velocity profiles for different values of thermal 

conductivity ratio K . 
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Fig. 10. Temperature profiles for different values of 
thermal conductivity ratio K. 

 
It is interesting to note that the velocity and temperature 
are invariant for 0, 1E   for varying width ratio h . 
 
The effect of thermal conductivity ratio K  on the flow 
is shown in Figs. 9 and 10.  It is seen that increasing the 
value of K  decreases both velocity and temperature in 
both the regions.  There is a flow reversal near the cold 
wall.  There is no effect of electric field load parameter 
E  on the flow for varying K . 

 
Fig. 11. Velocity profiles for different values of 
Hartmann number H in isoflux-isothermal wall 

conditions. 

 
Fig. 12. Temperature profiles for different values of 

Hartmann number M in isoflux-isothermal wall conditions. 
 
Figures 11 to 14 shows the effect of Hartmann number 
M  on the flow for isoflux-isothermal and isothermal-
isoflux wall conditions for 0, 1E   .  The effect of 

Hartmann number M  is to suppress the velocity and 
temperature in both the regions as seen in Figs.11 and 
12 respectively.  The velocity is suppressed for both 
open and short circuits where as the effect of electric 
load parameter E  on temperature is invariant. 

For isothermal-isoflux wall conditions, the effect of 
Hartmann number is to promote the velocity and 
temperature in both the regions but the direction of flow 
is reverse when compared to isoflux-isothermal wall 
conditions.  In this case also the effect of electric field 
parameter E  is significant on velocity and invariant on 
temperature. 

 

Fig. 13. Velocity profiles for different values of Hartmann 
number M in isothermal-isoflux wall conditions. 

 
Fig. 14. Temperature profiles for different values of 

Hartmann number M in isothermal-isoflux wall 
conditions. 

 
The variations of Nusselt number for different values of 
Hartmann number for both open and short circuits is 
shown in Table 4.  For 1E   , as the Hartmann number 
M  increases, rate of heat transfer decreases near the 
cold wall and near the hot wall but magnitude is very 
large near the cold wall. Similar result is observed for 
short circuit  0E   and for open circuit  1E   on 

Nusselt number for varying Hartmann number.  .  
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