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ABSTRACT 

The effects of opposing buoyancies on natural convection heat and mass transfer in the boundary layer over a vertical 

cylinder immersed in a quiescent Newtonian fluid are presented in this paper. The surface of the cylinder is 

maintained at a constant temperature and concentration. The homotopic transformation is proposed to transform the 

physical domain into a flat plate. The boundary layer equations and the boundary conditions are solved numerically 

using an implicit finite difference scheme and the Gauss-Seidel algorithm. The buoyancy ratio N, Prandtl number Pr 

and Schmidt number Sc are important parameters for this problem. The numerical results for Pr=Sc and Pr≠ Sc, 

including the velocity, temperature, concentration fields and the Nusselt number as well as the Sherwood number 

along the surface of the cylinder are discussed for aiding and opposing buoyancies. Results show that the Nusselt 

(Sherwood) number increases with positive or negative buoyancies ration N (N=Grc/Grt). Moreover, for opposing 

flows with Sc<Pr , the flow is completely downward, the thickness of the concentration layer is larger than that of the 
thermal layer . For Pr<Sc , the velocity are weak and the thermal layer thickness is much larger.  
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NOMENCLATURE 

C concentration                                                     

C        dimensionless concentration   

D        diffusion coefficient of the species                     

G gravitational acceleration                                    

Grt   thermal Grashof number  

Grc     species Grashof number 

K thermal conductivity of the fluid                

L length of the cylinder 

N buoyancy ratio                                     

NuL mean Nusselt number 

Nux local Nusselt number 

Pr Prandtl number 

r radius of the cylinder 

r* dimensionless radius 

Sc Schmidt number 

ShL mean Sherwood number    

Shx local Sherwood number 

T temperature    

 

u, v velocity components in x and 

            y direction 

U,V dimensionless velocity components    

x,y Cartesian coordinates  

X,Y dimensionless  Cartesian coordinates   

α thermal diffusivity 

t thermal expansion coefficient  

c species expansion coefficient                                

  dynamic viscosity   

 cinematic viscosity    

θ dimensionless temperature  

, dimensionless coordinates in the 

            computational domain  

 x ,y  derivation with respect to x and y      

            direction 

w surface condition    

∞ reference 

 

1. INTRODUCTION  

Heat and mass transfer along a surface have received 

considerable attention in recent years because of their 

importance in  wide  range  of  scientific  field  such  as  

 

biology, oceanography, astrophysics, geology, chemical 

processes and crystal-growth techniques as those 

reported by Fournier (1990), Rudels et al. (1999), 
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Marcoux et al. (1999), Mamou (2003), and Markus 

(2004).   

In nature, the free convection currents caused by 

differences of the temperature, the flow is also affected 

by the differences in material constitution, for example, 

in atmospheric flows there exist differences in H2O 

concentration and hence the flow is affected by such 

concentration difference. In many engineering 

applications, the foreign gases are injected. This causes 

a reduction in wall shear stress, the mass transfer 

conductance or the rate of heat transfer. Usually, H2O, 

CO2, etc are the foreign gases, which are injected in the 

air flowing past bodies.   The effects of foreign mass, 

also know as diffusing species concentration were 

studied under different conditions by Somers (1956), 

Mathers et al. (1956), and others either by integral 

method or by asymptotic analysis. 

 

Previous studies of natural convection heat and mass 

transfer have focused mainly on a flat plate or regular 

ducts. Somers (1956), Mather et al. (1957), and Gill et 

al. (1965) analyzed the same problem of simultaneous 

heat transfer and double diffusion on a vertical surface 

with different situations or different numerical schemes. 

Adams and Fadden (1966) experimentally studied the 

free convection with opposing body force. Bottemanne 

(1971) has considered simultaneous heat and mass 

transfer by free convection along a vertical flat plate 

only for steady state theoretical solutions with Pr= 0.71 

and Sc=0.63. Gebhart and Pera (1971) made a general 

formulation of the vertical two-dimensionless boundary 

layer flows. 

 

Moreover, these results were extended to flows about 

horizontal surfaces by Pera and Gebhart (1972). 

Callahan and Marner (1976) studied the free convection 

with mass transfer on a vertical flat plate with Pr =1 and 

a realistic range of Schmidt number. Chen and Yuh 

(1979) investigated the effects of inclination of flat 

plate on the combined heat and mass transfer in natural 

convection. Chen and Yuh (1980) presented local non 

similarity solution for natural convection along a 

vertical cylinder. Chen et al. (1980) studied the mixed 

convection with combined buoyant mechanism along 

vertical and inclined plates. Jang and Chang (1988) 

studied the problem of buoyancy-induced inclined 

boundary flows in a porous medium resulting from 

combined heat and mass buoyancy effects. Mahajan 

and Angivasa (1993) studied the natural convection 

along a heated surface with opposing buoyancies. 

Results show that boundary layer solutions do not yield 

accurate solutions for natural convection flows with 

opposing buoyancies. Moreover, the heat and mass 

transfer rates follow complex trends depending on the 

buoyancy ratio. Ching-Yang (2000) analysed the 

free thermal and mass transfer near a vertical 

wavy surface with constant wall temperature and 

concentration in a porous medium. The results 

obtained show that increasing the buoyancy ratio 

tends to increase both the Nusselt and Sherwood 

numbers. Kefeng and Wen-Qiang (2006) 

numerically analyzed the magnitude of the 
buoyancy ratio N on the double-diffusive convection in 

a vertical cylinder with radial temperature and axial 

solutal gradients for different values of Gr, Pr and Sc. 

The aim of the present work is to examine numerically 

the laminar natural convection heat and mass transfer 

along a vertical cylinder with opposing buoyancies. The 

boundary layer equations and the boundary conditions 

are solved numerically using an implicit finite 

difference scheme and the Gauss-Seidel algorithm. The 

numerical results for different numbers of Pr and Sc as 

well as for different buoyancy ratio N (N > 0 and N < 

0) on the characters of the flow, heat and mass transfer 

rates are investigated in detail. 

 

2. MODEL DESCRIPTION  

It is considered a vertical cylinder as shown 

schematically in Fig.1. The surface of this cylinder is 

maintained at a uniform temperature Tw and 

concentration cw different than the ambient medium one 

T∞ and c∞. The buoyancy forces induced by theses 

temperatures and concentration give rise to the flow.  

The origin of the Cartesian coordinates system (x,y) is 

placed at the leading edge of the surface. The u and v 

are the velocity components in the x and y direction 

respectively. The fluid is assumed to have constant 

physical proprieties except for the density variation in 

the buoyancy term of the momentum equation. 

 

 
Fig. 1.  Physical model and coordinates system 

 

3. GOVERNING EQUATIONS  

The governing equations for a steady, laminar and 

incompressible flow in the boundary layer along a 

vertical cylinder with Boussinesq approximation may 

be written as: 

 

Continuity equation 

0
(ru) (rv)

x y

 
 

 
                                          (1)                                                                                   

Momentum equation 
2 2

2 2

1
T c

u u p u u
u v ν gβ (T T ) gβ (c - c )

x y ρ x x y
 

     
        

     

           (2)         

 
2 2

2 2

1v v p v v
u v ν

x y ρ y x y

     
     

     

                 (3)                                                                     

Energy equation                 

 
2 2

2 2

p

T T k T T
u v

x y ρc x y

     
    

      

              (4) 

Concentration equation  

 
2 2

2 2

c c c c
u v D

x y x y

     
    

      

                   (5) 
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The appropriate boundary conditions for the problem 

are: 

 

At the surface,   y=f(x):   u=0, v=0, T= TW, c=cw 

y∞:     u=0, T= T∞, c=c∞                                                                   (6) 

 

In no-dimensionless, the governing equations, the 

following variables were introduced     

1/4 *

1 2 1 4

2
3

2 2

;

/ /

T W

x y r
X ;    Y  Gr  ; r     

L L L

L L
U u ;   V v   ;  

νGr νGr

ρL gβ (T T )
P p,   Gr L

μ Gr ν

  

 

 
 

            

 
w w

T T c c
  θ ;  C

T T c c

 

 

 
 

 
                                     (7)                                                              

For the current problem, after ignoring the small order 

terms in Gr and the pressures ∂p/∂x, ∂p/∂y. With the 

no-dimensionless variables (7), Eqs. (1)-(5) become 

 
* *( ) ( )

0
r U r V

X Y

 
 

 
                                             (8)                                                                                 

2

2

U U U
U V θ NC

X Y Y

  
   

  
                  (9) 

                                                                  
2

2

1

Pr

θ θ θ
U V

X Y Y

  
 

                            (10)    
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2

C C C
U V

X Y Sc Y

  
 

  
                       (11) 

Where, Pr PμC μ
  ;  Sc   

k ρD
   

Moreover, the above equations are subject to the 

following boundary conditions:   

  

Y=0 :    U = 0;  V = 0;    θ = 1 ;  C = 1   

 Y∞: U= 0 ;V=0 ; θ=0 ;  C=0                                (12)                  

  

3.1 Coordinate Transformation 

In order to avoid the non-uniformity of the mesh 

spacing in the vicinity of the outer surface of the 

cylinder, the physical domain is transformed into a 

straight line using the following transformation       

(Yao 1983): 

 

f (X,Y)  f(ξ,η) 

1 4
x   ;  

4 /

Y
η

( ξ )
                                           (13)                                                                        

In the new coordinate system (O, ξ ,η) the Eqs. (6-9) 

became: 

 

0               x

U U V
η     

ξ η η

  
  

  


2
2

2
           x y y

U U U
U (η U Vη )  (η ) θ N.C  

ξ η η

  
    

  
              (15) 

2 2

2
          

Pr

y

x y

ηθ θ θ
U (η U Vη )   

ξ η η

  
  

  
                          (16) 

2 2

2
         

y

x y

ηC C C
U (η U Vη )    

ξ η Sc η

  
  

  
                          (17)                                                                      

Where, ηx and ηy  are the first derivative of the variable 

η   to x and y respectively.   

 

The corresponding boundary conditions are: 

 

 = 0  ;  U = V = 0   ;   θ  = 1 ;  C=1                             

 ∞: U=0  ;  θ = 0  ;  C=0                                      (18)  

 

The local Nusselt number and the local Sherwood 

number are defined in the (0, ξ, η) coordinate system as: 

1 4

0

     
4

/

x

η

Gr θ
Nu  -  

ξ η


   
    

   

                       (19)            

1 4

0

  
4

/

c
x

η

Gr C
Sh  -     

ξ η


   
    

   

                      (20)       

The dimensionless average rates of heat and mass 

transfer along the surfer of the cylinder are expressed 

by the mean Nusselt and Sherwood numbers, 

respectively 

1 4

1/4

0 0

1 1

(4 )

L

/

LNu / Gr dξ
L





 


 
   

 
                           (21)             

1 4

1/4

0 0

1 1

(4 )

L

/

L c

C
Sh / Gr dξ

L


 


 
   

 
             (22) 

 

4. NUMERICAL METHOD  

In this work, a marching finite difference schemes was 

used to discretize the coupled Eqs. (8)-(11) for U, V, θ 

and C. Moreover, grid independency checks were 

made. Some of the calculations were tested using 

(400×350) nodes in the X and Y directions respectively 

but  no significant improvement over (220×190) grid 

points  was  found. The algebraic systems of equations 

are solved using Gauss-Seidel algorithm with a 

relaxation coefficient equal to 0.1 for the variables U, V 

and to 0.2 for θ and C. During the program test, the 

convergence criterion used was |(Φk+1 -Φk )/Φk+1 |max 

≤10-5 , where Φk and Φk+1 are the values of the kth and 

(k+1)th  iterations of U , V, θ and C. Furthermore, the 

numerical scheme used in this work is checked. Our 

computational results for aiding and opposing 

buoyancies were compared with the experimental data 

(Pr=0.7, Sc=2.23) for opposing flow which were 

obtained for a vertical surface by Adams (1966) and 

with the numerical results obtained by Mahajan (1993). 

 

5. RESULTS AND DISCUSSION  

The controlling parameters of the fluid flow and heat 

and mass transfer rates for the laminar natural 

convection in the boundary layer along the surface of 

the vertical cylinder are Prandtl number Pr, Sherwood 

number Sc and buoyancy ratio N (N= Grc/Grt ). The 

detailed numerical results of velocity, temperature and 

concentration fields are presented. Hence, the 

inadequacies of the boundary layer analysis are 

specified. Moreover, we present comprehensive results 

of Nusselt and Sherwood numbers for some values of 

Pr and Sc.  

 

We first compare our computational results (Nu and Sh) 

with the experimental data (Pr=0.7, Sc=2.23) for 

opposing flow which were obtained for a vertical 
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surface by (Adams and McFadden 1966) as well as with 

the numerical results obtained by (Mahajan and 

Angirasa 1993). 

 

Table 1 Comparison of Nu and Sh numbers for a 

vertical surface for N=-0.43  

 Nu Sh 

Present work 25.24 41.30 

(Adams and Mc.Fadden 1966) 24.38 42.10 

(Mahajan and Angirasa 1993)       23.03 41.44 

 

The comparison is presented in Table 1. We observe 

that the agreement between our numerical results and 

those obtained by the authors is very good. These 

results are just the same as for a vertical flat plate 

because in our computational, the radius ro of the 

cylinder is considered very small than its length L. 

5.1 Boundary Layer Analysis 

The velocity profiles for Pr=0.7, Sc=5 (Pr<Sc) and for a 

different values of negative N are presented in Fig. 2. 

As shown in this figure, while N=-0.5, the U velocity is 

positive and the flow upward. This suggests that for this 

values of N, although the boundary layer analysis 

predicts a reasonably solution. Moreover, for N <-0.5, 

the U velocity is negative for  η < 0.2  and positive  for 

η > 0.2 .  

 
Fig. 2. Velocity profiles for different values of N for 

Pr<Sc 

 
Fig. 3.  Streamfunction contours for N=-2 and for 

Pr=0.7, Sc=5 (Pr< Sc) 

 

Figure 3 shows that the flow reversal near the surface 

and exaggerates the magnitude of the upward velocities 

and this can not be accounted as a boundary layer type 

flow. In Figs. 4 and 5, for Pr=Sc=0.7 and for Pr>Sc, 

when N<-0.5, the mass buoyancy is greater than the 

thermal buoyancy, hence the U velocity is negative and 

the flow is fully reversed as observed in Figs. 6 and 7. It 

is worth noting that for N=-1 and for Pr=Sc, the flow is 

steady; this is because in this case, the two buoyancies 

are equal to and oppose each other. 

 
Fig. 4. Velocity profiles for different values of N 

(Pr=Sc=0.7) 

 
Fig. 5. Velocity profiles for different values of N       

(Pr >Sc) 

 
Fig. 6. Stream function countours for N=-2, 

(Pr=Sc=0.7) 

 

5.2 Nusselt and Sherwood Number 

The variation of the average Nusselt (Sherwood) 

number for Pr=Sc, Pr<Sc and for Pr>Sc with positive 

and negative buoyancy ration N is presented in Figs. 8, 

9 and 10.  
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Fig. 7. Stream function contours for N= -2, 

Pr=7, Sc=0.22 (Pr>Sc) 

 

From these figures, it can be seen that increasing of 

positive or negative N leads to increase both the 

average Nusselt number and the average Sherwood 

number for all cases of Pr and Sc. In the case of Pr = 

Sc=0.7, Fig. 8 illustrates the effect of the buoyancy 

ration N for the Nusselt and the Sherwood numbers. It 

is seen that the N-Nu or N-Sh curve is symmetric about 

Nmin=-1 and the heat transfer is the same as the mass 

transfer where is the thicknesses of the thermal and 

concentration layers are equal (not shown). For Pr=0.7 

and Sc= 5 (Pr<Sc), Fig. 9 shows that the mass transfer 

is greater than the heat transfer, this is because the 

thermal layer thickness is more important than the 

concentration layer thickness as shown in Fig. 11.  

 
Fig. 8. Nusselt (Sherwood) number for Pr=Sc=0.7 

  
Fig. 9.  Nusselt and Sherwood numbers for Pr=0.7, 

Sc=5 

 
Fig. 10.  Nusselt and Sherwood numbers for Pr=7, 

Sc=0.22 

 
Fig. 11. Temperature and Concentration profiles for 

Pr<Sc 

 
Fig. 12. Temperature and Concentration Profiles for    

Pr >Sc 

 

This is can be explained from Fig. 12, the thermal layer 

thickness is much smaller which leads to reduce the 

thermal conduction between the fluid and the surface of 

the cylinder. Consequently, It should be noted that for 

Pr ≠ Sc, The Nu-N and Sh-N curves are not symmetric 

(see Figs. 9 and 10). This is explained from the unequal 

thicknesses of the thermal and concentration layers 

(Figs. 11 and 12).  

 

5.3 Correlation 

A correlation has been made from Figs. 9 and 10  for 

the mean  Nusseelt  (Sherwood) number  as a function 
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of the  buoyancy ratio N which are  found  that they 

depend  to the Pr and Sc numbers; 

 

For N≥ -1  

0

2 1
2 Pr

1
L (N N ) / DN

A A
Nu A

e 


 


2 1

2
0

1

A A
Su A Sc

L (N N ) / DN
e


 




 

Where;   

 

A1=147.35; A2= 166.52; N0= -0.95; DN=3.27 

 

For N< -1; 

A1= -857.85; A2= 1002.85; N0= 1, DN= 1.  

6. CONCLUSION  

In this work, the free convection heat and mass transfer 

in the boundary layer with opposing buoyancies along a 

vertical cylinder with a constant surface temperature 

and concentration has been analyzed numerically. The 

physical domain is transformed using a homotopic 

transformation into a straight line. The effects of the 

positive and negative buoyancy ratio N, Prandtl number 

Pr and Schmidt number Sc on heat and mass transfer in 

the boundary layer have been studied in detail. Brief 

summaries of the major results are listed in the 

following:  

 

 Finite difference solutions of the boundary layer 

equations give accurate solutions. Our numerical 

results agree very well with the velocity fields as 

well as with the Nusselt and Sherwood number 

with the known results for a vertical surface with 

aiding and opposing buoyancies.  

 

 The heat and mass transfer rates submit for a 

complex changes with positive and negative N. 

From a minimum at a particular value of negative 

N which is a function of Pr and Sc, increasing or 

decreasing N leads to increase both Nu and Sh 

numbers. 

 

 Boundary layer solutions do not yield exact 

solutions for free convection flows with opposing 

buoyancies for Pr<Sc. In this case, the flow 

reversal near the surface and exaggerates the 

magnitude of the upward velocities. 

REFERENCES 

Adams, J.A. and P.W. McFadden (1966). Simultaneous 

heat and mass transfer in free convection with 

opposing body forces. AICHE, Journal, 12, 642-

647. 

 

Bottemanne, F.A.  (1971). Theoretical solution of 

simultaneous heat and mass transfer by free 

convection about a vertical flat plate. Applied 

Scientific Research  25, 137–149. 

 

Callahan, G.D. and W.J. (1976). Transient free 

convection with mass transfer on an isothermal 

vertical flat plate.  International Journal of Heat 

and Mass Transfer 19, 165–174. 

Chen, T.S. and C.F.  Yuh (1979). Combined heat and 

mass transfer in natural convection on inclined 

surfaces. Numerical Heat Transfer 2, 233–250. 

 

Chen T.S. and C.F. Yuh (1980). Combined heat and 

mass transfer in natural convection along a vertical 

cylinder. International .Journal of Heat and Mass 

Transfer 23, 451-461. 

 

Chen, T.S, C.F. Yuh and A.  Motsolgon (1980). 

Combined heat and mass transfer in mixed 

convection along a vertical and inclined plates. 

International Journal of Heat and Mass Transfer 

23, 527-537. Somers, E. (1956). Theoretical 

considerations of combined thermal and mass 

transfer from a flat plate. ASME, Journal of 

Applied Mechanical 23, 295-301. 

 

Ching-Yang Cheng (2000). Natural convection heat and 

mass transfer near a vertical wavy surface with 

constant wall temperature and concentration in a 

porous medium. International Communication of 

Heat and Mass Transfer 27(8), 1143-1154. 

 

Fournier, R.O.  (1990). Double-diffusive convection in 

geothermal systems: the Salton Sea. California, 

Geothermal System as a likely candidate 

Geothermics 19(6), 481–496.  

 

Gebhart, B., L.  Pera (1971). The nature of vertical 

natural convection flows resulting from the 

combined buoyancy effects of thermal and mass 

diffusion. International Journal of Heat and Mass 

Transfer 14, 2025–2050. 

 

Gill, W.N., E.D. Casal and D.W. Zeh (1965). Binary 

diffusion and heat transfer in laminar free 

convection boundary layers on a vertical plate. 

International Journal of Heat and Mass Transfer 

8, 1135–1151. 

 

Jang, J.Y., and W.J.  Chang (1988). Buoyancy-induced 

inclined boundary layer flow in a saturated porous 

medium resulting from combined heat and mass 

buoyancy effects. International Communication  

Heat and Mass Transfer 15, 17–30. 

 

Kefeng, Shi. and Lu. Wen-Qiang (2006). Time 

evolution of double-diffusion convection in a 

vertical cylinder with radial temperature and axial 

solutal gradients. International Journal of Heat 

and MassTtransfer 49, 995–1003.  
 

Mahajan, R.L. and D. Angirasa (1993). Combined heat 

and mass transfer by natural convection with 

opposing buoyancies. Journal of Heat Transfer 

115, 606-611.  

 

Mamou, M.  (2003). Stability analysis of the perturbed 

rest state and of the finite amplitude steady double-

diffusion convection in a shallow porous 

enclosures. International Journal of Heat and 

Mass Transfer 46(12), 2263–2277. 

 

Marcoux, M.,  M.C. Charrier-Mojtabi and  M.  Azaiez 

(1999). Double diffusive convection in an annular 



M. Si Abdallah and B. Zeghmati / JAFM, Vol. 4, No. 4, pp. 15-21, 2011.  

 

21 
 

vertical porous layer. International Journal of 

Heat and Mass Transfer 42(13), 2313–2325.  

 

Markus, M.  (2004). Double-diffusive convection: a 

simple demonstration. Journal of Chemical 

Education 81(4), 526–529. 

 

Mather, W.G., A.J. Madden and E.L. Piret (1957). 

Simultaneous heat and mass transfer in free 

convection. Industrial Engineering Chemical 49, 

961-968. 

 

Pera, L. and B. Gebhart (1972). Natural convection 

flows adjacent to horizontal surfaces resulting 

from the combined buoyancy effects of thermal 

and mass diffusion. International Journal of Heat 

and Mass Transfer 15, 269-278. 

 

Rudels, B., G. Björk, R.D. Muench and U.  Schauer 

(1999). Double-diffusive layering in the Eurasian 

basin of the arctic ocean. Journal of Marine 

Systems  21,  3–27. 

 

Yao, L.S. (1983). Natural convection along a wavy 

surface. Journal of Heat Transfer 105, 465-468. 

 

 

 

 


