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ABSTRACT

A steady two-dimensional MHD free convection and mass transfer flow past an inclined semi-infinite vertical surface
in the presence of heat generation and a porous medium has been studied numerically. The governing partial
differential equations are reduced to a system of ordinary differential equations by introducing similarity
transformations. The non-linear similarity equations are solved numerically by applying the Runge-Kutta method of
fourth order with shooting technique. The numerical results are presented graphically for different values of the
parameters. Finally, the numerical values of the local skin-friction coefficient, local Nusselt number and Sherwood
number are shown in Table 1.
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NOMENCLATURE

0B       Applied magnetic field

C  Concentration
pc Specific heat at constant pressure

D  Mass diffusivity
f  Dimensionless  stream function
g  Acceleration due to gravity
Gr  Local temperature Grashof number
Gm    Local mass Grashof number
K        Permeability parameter
k  Thermal conductivity of the fluid
M  Magnetic field parameter
Nu  Nusselt number
Pr  Prandtl number

0Q  Heat generation constant
Q  Heat generation parameter

Sc  Schmidt number
Sh  Sherwood number

,u v  Velocity components along x and y axes,
             respectively

Angle of inclination
 Coefficient of thermal expansion

*  Coefficient of concentration expansion
 Electrical conductivity

Similarity variable
 Density of the fluid

   Kinematic viscosity
Dimensionless temperature

   Dimensionless concentration
subscripts
w       Condition at wall

       Condition at infinity
Superscripts

‘ Differentiation with respect to

1. INTRODUCTION

The problem of free convection and mass transfer flow
of an electrically conducting fluid past an inclined
vertical surface under the influence of a magnetic field

has attracted interest in view of its application to
geophysics, astrophysics and many engineering
problems, such as cooling of nuclear reactors, the
boundary layer control in aerodynamics. Hossain et al.
(1996) studied the free convection flow from an
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isothermal plate inclined at a small angle to the
horizontal. Recently, Anghel et al. (2001) presented a
numerical solution of free convection flow past an
inclined surface. Chen (2004) performed an analysis to
study the natural convection flow over a permeable
inclined surface with variable wall temperature and
concentration.

The study of the heat generation or absorption in
moving fluids is important problems dealing with
chemical reactions and those concerned with
dissociating fluids. Vajravelu and Hadjinicolaou (1993)
studied the heat transfer boundary layer of a viscous
fluid over a stretching sheet with internal heat
generation. Hossain et al. (2004) studied the  problem
of natural convection flow along a vertical wavy
surface in the presence of heat generation/absorpation.

The aim of the present paper is to study mass transfer
and heat generation effects on MHD free convection
flow past an inclined vertical plate in a porous medium.
The dimensionless equations are solved numerically.
The effects of various physical parameters on the
velocity, temperature and concentration are shown
graphically.

2. MATHEMATICAL ANALYSIS

Consider a steady two hydromagnetic flow of a viscous
incompressible, electrically conducting fluid past a
semi-infinite inclined porous plate with an acute angle

to the vertical. The flow is assumed to be in the x -
direction, which is taken along the semi-infinite
inclined porous plate and y - axis normal to it. A
magnetic field of uniform strength 0B is introduced
normal to the direction of the flow. In the analysis, we
assume that the magnetic Reynolds number is much
less than unity so that the induced magnetic field is
neglected in comparison to the applied magnetic field.
It is also assumed that all fluid properties are constant
except that of the influence of the density variation with
temperature and concentration in the body force term.
The surface is maintained at a constant temperature wT ,
which is higher than the constant temperature T  of the
surrounding fluid and the concentration wC  is greater
than the constant concentration C . Then, under the
usual Boussinesq’s and boundary layer approximations,
the governing equations are
Continuity equation

0u v
x y

                                                               (1)

Momentum equation
2
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Energy equation
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Species equation
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The boundary conditions for the velocity, temperature
and concentration fields are

0, 0, , 0w wu v T T C C at y
     (5)

0, ,u T T C C as y

In order to obtain a similarity solution of the problem
we introduce the following non-dimensional variables
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Now substituting Eq. (6) in Eqs. (2) - (4), we obtain

1 cos
2

cos 0

f ff Gr

Gm M K f
     (7)

1 Pr Pr 0
2

f Q                                      (8)

1 0
2

Scf                                                         (9)

The corresponding boundary conditions are

0, 0, 1, 1 0f f at

0, 0, 0f as    (10)

The local skin-friction, Nusselt number and Sherwood
number are important physical parameters for this type
of boundary layer flow.

The local skin-friction in non-dimensional form is
1
22 Re 0fC f

The local Nusselt number in non-dimensional form is

1
2(Re) 0Nu
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The local Sherwood number in non-dimensional form is
1
2Re 0Sh

where Re U x  is the Reynolds number

3. NUMERICAL SOLUTION AND
DISCUSSION

The Eqs. (7) - (9) with boundary conditions (10) were
solved numerically using the Runge-Kutta fourth order
with Shooting method. As a result of the numerical
calculations, the dimensionless velocity, temperature
and concentration distributions for the flow are obtain
Pr 0.71ed from the Eqs. (7) - (9) and are displayed in
Figs. 1-7 for different values of Gr , Gm , M , K , ,
Q  and Sc . The value of the Prandtl number is chosen
for air (i.e. Pr 0.71).

In order to ascertain the accuracy of the numerical
results, the present study is compared with the previous
study. The velocity profiles for 2.0Gr , 2.0Gm ,

0.5K , Pr 0.71 , 0.0Q , 0.6Sc , 030 are
compared with the available solution of Sivasankaran et
al. (2006) in Fig. 1. It is observed that the present
results are in good agreement with that of Sivasankaran
et al. (2006)

Fig.1. Comparison of velocity profiles

For various values of thermal Grashof number and
solutal Grashof number, the velocity profiles are plotted
in Fig.2. The thermal Grashof number Gr signifies the
relative effect of the thermal buoyancy force to the
viscous hydrodynamic force in the boundary layer. As
expected, it is observed that there is a rise in the
velocity due to the enhancement of thermal buoyancy
force. Here, the positive values of Gr correspond to
cooling of the surface. Also, as Gr increases, the peak
values of the velocity increases rapidly near the porous
plate and then decays smoothly to the free stream
velocity. The solutal Grashof number Gm defines the
ratio of the species buoyancy force to the viscous
hydrodynamic force. As expected, the fluid velocity
increases and the peak value is more distinctive due to
increase in the species buoyancy force. The velocity
distribution attains a distinctive maximum value in the
vicinity of the plate and then decreases properly to
approach the free stream value. It is noticed that the
velocity increases with increasing values of the solutal
Grashof number.

Fig.2. Effect of Gr and Gm  on velocity profiles

The velocity profiles are shown in Fig. 3 for different
values of M  and K .  The velocity decreases with an
increase in the magnetic parameter. It is because that
the application of transverse magnetic field will result a
resistive type force (Lorentz force) similar to drag force
which tends to resist the fluid flow and thus reducing its
velocity. Also, the boundary layer thickness decreases
with an increase in the magnetic parameter. The
parameter K as defined in Eq. (6) is inversely
proportional to the actual permeability K of the porous
medium. An increase in K  will therefore increase the
resistance of the porous medium (as the permeability
physically becomes less with increasing K ) which will
tend to decelerate the flow and reduce the velocity. This
behaviour is evident from Fig.3.

Fig.3. Effect of M and K  on velocity profiles

The effect of inclination parameter  on the velocity
are shown in Fig.4. It is observed that the fluid (air)
velocity is decreased for increasing angle .

Fig.4. Effect of  on velocity profiles
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Figure 5 shows the effect of the heat generation
parameter Q  on the velocity distribution. It is seen
from this figure that when heat is generated the
buoyancy force increases, which induces the flow rate
to increase, giving rise to the increase in the velocity
profiles. The effect of Q  on temperature profiles are
shown in Fig.6. It is clear that the heat generation
increases, the temperature is also increases.

Fig.5. Effect of Q  on velocity profiles

Fig.6. Effect of Q  on temperature profiles

The influence of thermal Schmidt number Sc  on the
velocity is shown in Fig. 7. The Schmidt number
embodies the ratio of the momentum to the mass
diffusivity. The Schmidt number therefore quantifies
the relative effectiveness of momentum and mass
transport by diffusion in the hydrodynamic (velocity)
and concentration (species) boundary layers. As the
Schmidt number increases the concentration decreases.
This causes the concentration buoyancy effects to
decrease yielding a reduction in the fluid velocity. It is
observed that an increase in Sc, the velocity decreases.

Fig.7. Effect of Sc  on velocity profiles

The effect of the Schmidt number Sc on concentration
profiles are shown in Fig. 8.  A rise in Sc strongly
suppresses concentration levels in the boundary layer
regime. All profiles decay monotonically from the
surface (wall) to the free stream. Sc embodies the ratio
of momentum diffusivity  to molecular diffusivity

.D It is conclude that, an increase in Sc, the
concentration decreases.

Fig.8. Effect of Sc on concentration profiles

The effect of various physical parameters for the local
skin-frication coefficient fC , the local Nusselt number

Nu  and the Sherwood number Sh  are shown in Table
1.   ( Pr 0.71  and 030 ).  It is observed that an
increase in Gr or Gm  , the local skin-friction
coefficient, Nusselt number, Sherwood number are
increases. The heat generation increase, the skin-
friction coefficient, Sherwood number increase, where
as Q increase the Nusselt nuber is decrease. Also, an
increase in M or K or Sc , the local skin-friction
coefficient, Nusselt number, Sherwood number is
decreases.

4. CONCLUSIONS

In this paper, a mathematical model has been presented
for the mass transfer and heat generation effects on
MHD free convection flow past an inclined vertical
plate in a porous medium. Using the similarity
transformations a set of ordinary differential equations
has been derived for the conservation of mass,
momentum and species diffusion in the boundary layer.
These nonlinear, coupled differential equations have
been solved under physically valid boundary conditions
using Runge-Kutta fourth order technique with shooting
method. The particular conclusions drawn from the
study can be listed as follows:

1. The velocity increases with the increase thermal
Grashof number and solutal Grashof number.

2. The velocity decreases with an increase in the
magnetic parameter. Also, the boundary layer
thickness decreases with an increase in the
magnetic parameter.

3. An increase in the heat generation results in
increasing velocity and temperature within the
boundary layer.

4. The velocity as well as concentration decreases
with an increase in the Schmidt number.
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Table 1 Numerical values of fC , Nu  and Sh  for Pr 0.71 and 030

Gr Gm M K Q Sc fC Nu Sh

2.0
3.0
2.0
2.0
2.0
2.0
2.0

2.0
2.0
3.0
2.0
2.0
2.0
2.0

0.5
0.5
0.5
1.0
0.5
0.5
0.5

0.5
0.5
0.5
0.5
1.0
0.5
0.5

0.5
0.5
0.5
0.5
0.5
1.0
0.5

0.6
0.6
0.6
0.6
0.6
0.6
0.78

2.28697
2.82219
2.75604
2.07847
2.04279
2.58995
2.26675

0.08245
0.12267
0.11471
0.05676
0.05232
-0.48870
0.07930

0.43260
0.45285
0.44892
0.42036
0.41826
0.4517
0.45990
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