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ABSTRACT

Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements
were carried out in a broad interval of Taylor numbers (52-725) and several gap width (R1/R2 = 0.5 – 0.8) by two
three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder.
The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a
slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates
and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors
and bioreactors containing shear sensitive cells.

Keywords: Taylor-Couette flow, Electrodiffusion diagnostics, Tangential filtration, Membrane reactors.

NOMENCLATURE

d gap width= R2-R1
G torque
G* normalized torque = G/ h 2R1

4

g normalized torque = G/ h R1
2

h height of cylinder
R1 radius of inner cylinder
R2 radius of outer cylinder
r, z, cylindrical coordinates, see Fig. 4
Re Reynolds number =  R1 d /
Ta Taylor number =  R1

0.5d 1.5/
v velocity
Greek letters

wall shear rate
dynamic viscosity
kinematic viscosity

radius ratio = R 1/R 2
rotational rate of inner cylinder
standard deviation

Subscripts
1 inner cylinder
2 outer cylinder
c1 critical value of start-up of Taylor

vortices
c2 critical value of upper limit of Taylor

vortices
m mean
r radial
x maximum
z axial

azimuthal

1. INTRODUCTION

Vedantam and Joshi (2006) reviewed numerous
applications of the Couette-Taylor flow (CTF). Due to
its cellular vortex structure, CTF is claimed to be one of
the rare flow types combining intense local mixing with
a limited axial dispersion (Desmet et al. 1996). Other
advantage of CTF is the enhanced heat and mass
transfer at the cylinder walls. A vast number of possible
applications of the unique reactor performance of CTF
covers the field of catalytic and biocatalytic (Baron and
Van Capellen 1990), electrochemical (Mizushina 1971;
Gu and Fahidy 1985; Coeuret and Legrand 1981),
photochemical (Haim and Pismen 1994) and

polymerization (Sinevic et al. 1986; Kataoka and
Okubo 1995) reactions as well as the field of counter
current extraction (Leonard et al. 1981), tangential
filtration (Holesovsky and Cooney 1991) and
crystallization (Kang et al. 2003).

Many studies concerning flow patterns in CTF have
been accomplished, but the knowledge of wall shear
rate is mostly qualitative. The wall shear rates are
primordial for the applications like membrane filtration
(Choi et al. 1999), the reactors with catalyst or enzyme
immobilised at a wall (Dutta and Ray 2004) and the
bioreactors containing shear sensitive cells (Curran et
al. 2004).
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The mean values of wall shear rate were calculated
from simple torque measurements (Donnelly and Simon
1960) and linear theories (Eagles 1974). However the
local shear rates in CTF are function of the axial
coordinate. Their maxima are the most important
quantity in the above mentioned applications. The
numerical simulations are rather devoted to velocity
profiles than to wall shear rates Sengupta et al. (2001).
The experimental methods like Laser-Doppler
anemometry (Curran and Black 2004) and PIV (Akonur
and Lueptow 2003) do not allow measurements in the
wall vicinity which is necessary for correct evaluation
of wall shear rate. The electrodiffusion diagnostics
(ED) is a convenient method for the measurements of
this quantity Mizushina (1971). Using three-segment
micro-probes the components of wall shear rate can be
measured (Wouahbi et al. 2007).

In this work, the axial and azimuthal components of the
instantaneous shear rate on the wall of the outer fixed
cylinder are measured in a broad interval of rotation
rate of the inner cylinder and several gap widths. The
axial distribution of wall shear rate components is
obtained by sweeping the vortices along the probes
using a slow axial flow. The experimental results are
confronted with Computational Fluid Dynamics (CFD)
simulations. The wall shear stress can be calculated
from the wall shear rate via viscosity function.

2. EXPERIMENTAL

The experimental apparatus is shown in Fig. 1. It
consisted of an outer cylinder 3 made of a Plexiglas
tube with an inner radius of R2 =31±0.2 mm and an
interchangeable inner Plexiglass cylinder 4. The inner
cylinders had a length of 275 mm and radii of R1 =24.8,
21.7, 18.6, and 15.5. For calibration of electrodiffusion
probes in situ, another cylinder with a radius of 29.5
mm was used. In this small gap of 1.5 mm, the Couette
flow is stable even at higher rotation rates. Thus the
probes could be calibrated with well-defined wall shear
rates. The corresponding radius ratios,  = R1 /R2, were
0.95, 0.8, 0.7, 0.6, and 0.5. The inner cylinder was
mounted on the stainless steel shaft 5 which had an
upper ball bearing and bottom polyamide sliding
bearing. The shaft was driven by a stepping motor with
a step of 0.9° and a gear box with a slow-down ratio of
1:9. There was a plastic clutch between the shaft and
gear box which also served as electrical insulation. The
revolutions were controlled by a computer directly from
the measuring software. Two three-segment
electrodiffusion probes 1, 2 were embedded in the wall
of the outer cylinder. For measurements of the height
and drifting velocity of vortices, three simple
electrodiffusion probes were flush mounted in the same
wall with a vertical distance of 6 mm.

With the aim of obtaining the axial distribution of the
velocity gradient components, the Taylor vortices were
swept along the probes by a small axial flow. The liquid
was circulated by a pump (Fluid Metering Inc.) with a
valveless piston head (RH1CKC) having a piston of a
diameter of 1/4’’. The maximum volume per stroke was
0.1 mL and the maximum flow rate was 0.81 mL/s. The
test liquid was pumped from a small tank with a volume
of one liter into an inlet tube in the bottom of the

apparatus. An outlet tube was mounted 8 mm below the
cover. It was connected with the tank by a hose.
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Fig. 1.  Experimental set-up. 1, 2 three-segment
electrodiffusion probes, 3 outer cylinder, 4 inner

cylinder, 5 shaft.

The measurement of wall shear rate by means of the
limiting diffusion current is a well-known technique. A
two-electrode cell consisting of a small working
electrode and a large auxiliary electrode, a solution
containing depolarizer and supporting electrolyte in
excess are used for measuring the limiting diffusion
current. The applied voltage must have a value at which
only the active species react on the working electrode –
probe. As the reaction is rapid, the concentration of the
active species is negligibly small at the working
electrode. The test liquid used in the experiments was a
25 mol/m3 equimolar potassium hexacyanoferrates (III)
and (IV) aqueous solution with 1.5 % b.w. K2SO4 as
supporting electrolyte. The electrolyte had a viscosity
of 1.05 mPa s at 21.3°C and a density of 1010 kg/m3.
The flow was visualized by addition of 2 % of
rheoscopic liquid AQ-1000 (Kalliroscope Corp.,
U.S.A.). The rheoscopic liquid contains small laminae
reflecting light in dependence on their orientation
imposed by the flow direction.

The three-segment probes were made in house. Three
platinum wires with a diameter of 0.5 mm were pulled
simultaneously through a wire-drawing die, starting
with a diameter of 1 mm and finishing with 0.5 mm.
The wires were then insulated by a layer of polymeric
paint and glued together with epoxy resin. After
soldering the connecting cables, the wires were
cemented with the resin into a stainless steel tube with a
tip diameter of 3 mm. The top view of a probe is shown
in Fig. 2. The small ring between the probe and the tube
is a remainder of burr after machining of the tube face.
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Fig. 2.  Top view of three-segment probe with a
diameter of 0.5 mm embedded in a tube with 3 mm

outside diameter.
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Fig. 3. Dependence of segment currents normalized by
their sum on flow angle.

For the evaluation of flow direction, we make use of the
non-linear dependence of the limiting current density on
the distance from the forward electrode edge, i(x) ~ x-1/3

(Lévêque 1928). The forward segment has higher
current than the segment that lies in his shade. Hence,
the absolute value of wall shear rate is calculated from
the sum of the limiting diffusion currents passing
through the segments and the flow direction
(components of wall shear rate) from the ratios of these
currents (Wein and Sobolik 1987).

The three-segment probe was calibrated in the
apparatus with a larger inner cylinder ( =0.95) where
the laminar Couette flow with wall shear rates in the
interval (5; 80 s-1) could be adjusted (2.5-40 rpm). The
sum of segment currents were measured as a function of
. We assumed that the limiting diffusion current is

power law function of wall shear rate (I=K n). For
decomposition of the wall shear rate into axial and
azimuthal components, directional calibration at
 =20 s-1 was curried up. The probe was turned by 15°

steps and the currents of three segments were measured
in the range (0; 360°). The dependences of the currents
normalized by the sum of currents on flow angle are
called directional characteristics, see Fig. 3. Every flow
angle corresponds to a unique combination of three
currents.

Fig. 4. Schematized Taylor vortex: 1 probe, 2 Taylor
vortex tube, z axial component of wall shear rate,

azimuthal component of wall shear rate.

When the Taylor number reaches a critical value (first
transition), laminar Couette flow is no longer stable and
disturbances appear which ultimately take the form of
cellular, toroidal vortices, regularly spaced along the
axis z. The cylindrical coordinates r, , z, the
corresponding velocity components vr, v , vz, and a
"stream tube" of a Taylor vortex are shown in Fig. 4.
The velocity field at the probe 1 are shown in a
magnified view. The wall shear rate components on the
inner and outer cylinder are defined by
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Mean value of the azimuthal component is defined by

1
0,
h dzi m ih

     (3)

In our experiments, the mean value of axial components
zim over vortex pair is equal to the wall share rate of the

axial flow ax.

If the rotational rate is further increased, azimuthal
waves are superposed on the toroidal vortices. In this
work, the wall shear rate components were measured in
regular Taylor vortices at several rotation rates. The
experiments were carried out as follows. The gap
between the cylinders was filled with the solution up to
the outlet tube and the pump was stopped. Critical
Taylor number of the first transition was found by
increasing gradually the rotation rate of the cylinder
until the start-up of vortices. This state was indicated by
a non zero axial component of wall shear rate and also
by pattern visualisation. Then the velocity was adjusted
on selected value. Once the Taylor vortices were steady
and fully developed, a slow axial flow of 0.12 mL/s was
set up.

3. NUMERICAL

Hydrodynamics of stable Taylor vortices was also
investigated by CFD. The simulations were done with
the commercial solver Fluent 6.2. The calculations were
carried out in a 2D axisymmetric domain. The gap
widths d between two cylinders were the same as in the
experimental device. The height of vortices was
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imposed to be equal to the gap width, see Fig. 5.

Fig. 5. Streamlines in r - z plane of two vortices for
 =0.5, Ta =725,  =16.4.

The domain included two pairs of vortices. The grids
were uniform having between 60000 and 80000 cells.
Steady-state, laminar and incompressible flow was
considered. The conservation equations of mass and
momentum were written in a cylindrical coordinate
system for 2D swirling flow. The pressure-velocity
coupling was obtained using the SIMPLEC algorithm.
Discretization scheme was used for momentum Third-
Order MUSCL and for pressure Body Force Weighted.
Symmetry boundary conditions were imposed on the
separation planes z = k d (k = 0 and 4). It means, that
there is no convective flux across the symmetry plane
and the axial velocity component vz is zero. No-slip
boundary conditions were applied on the walls of the
cylinders: the velocity components vz (R1, R2), vr (R1,
R2) and v  (R2) were zero and v  (R1) equal to R1.

4. RESULTS AND DISCUSSION

The measured data on Tac1 coincided well with the
literature data. In the interval  (0.5; 1), they were fitted
by the equation

0.44536.2( 0.256)1Tac    (4)

with a standard deviation of 0.24. This equation
approaches the data better than that of Choi et al.
(1999) with the exception of 1. The regime of
Taylor vortices separated by planes stays until the
second transition where azimuthal waves are
superposed on these vortices. The literature information
about Tac2 is scare. In our experiments, the critical Tac2
for  =0.8 and 0.7 had reproducible values 80.5 and
553, respectively. In the larger gaps, the free surface

had a disturbing effect on the stability of Taylor
vortices; hence it was eliminated by insertion of a ring
fixed on the outer cylinder. In these experiments, it was
necessary to increase the rotation rate by small steps
and wait about 10 minutes for a full flow development.
Then values of Tac2 789 and 1057 were found for

 =0.6 and 0.5, respectively.

The second transition, i.e. Taylor vortices with
azimuthal waves, depends strongly on the aspect ratio
(number of vortex pairs) (Cole 1976). For =0.8703,
Edwards et al. (1991) found Tac2 = 234 and 52 for 3
and 17 vortex pairs, respectively. This effect can be
explained by the Ekman vortices which are formed on
the motionless annular boundary. These vortices
decrease the critical number of the first transition and
increase the critical number of the second transition. It
means that the Ekman vortices damp the wave
formation on the Taylor vortices. Cole (1976) stated
that Tac2 does not depend on aspect ratio for the values
exceeding 40. In our experiments, this criterion was
satisfied only for = 0.8.

The measured values of wall shear rate components
were fitted by Fourier series of sixth order. The
agreement between measured and numerically
simulated data was better than 10%. Only the lowest
wall shear rates about 1 s-1 were measured with an error
of 20% due to the effect of longitudinal diffusion. The
experimental height of vortices was equal to the gap
width within 10%. Examples of the data obtained in the
geometries  = 0.8 and 0.6 are shown in Fig. 6.
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simulated (thick line) components of wall shear rate for
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Wall shear rate and its components are shown in Fig. 7
as a function of axial distance. The axial component has
a mean value which is practically equal to zero. For
z/d = 0, 2 and 4, there are sinks (rear critical point) on
the outer wall and sources (forward critical point) at
inner wall (see also Fig. 5). For z/d = 1 and 3, sources
are at the outer wall and sinks on the inner wall. At the
sinks and sources, the axial component takes zero
value, whereas the azimuthal component exhibits
extremes. The distributions have almost sinusoidal form
in a narrow gap ( =0.8) at a low Taylor number
(Fig. 7a, b). There is not much difference between the
wall shear rates at the inner and outer wall.
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a: outer wall, b: inner wall, = 0.8, Ta =52.2, =3.69.
c: outer wall, d: inner wall, = 0.5, Ta =725, =16.4.

The ratio of the corresponding values at the inner and
outer walls is approximately the same as in the laminar
Couette flow, i.e. 1 / 2 = (1+ 2) / 2 2. In a large gap
at high Taylor number (Fig. 7c, d) a jet flow in the
source at the outer wall manifest itself by a steep
variation of the axial component. This fact causes a
local minimum at the source and two maxima of wall
shear rate near the source (camel shape). The maximum
of axial component can be superior to the maximum of
azimuthal component. Jet flow does not exist at the
inner wall. At this wall, the variation of axial velocity is
steeper at the sink than at source. Due to low values of

z1 at the inner wall, the wall shear rate almost coincides
with its azimuthal component for all radius ratio
investigated.
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Fig. 8. Normalized values of mean azimuthal wall shear
rate component on the outer wall as a function

of Taylor number. Radius ratio  stands for
curve parameter.

The torque on a cylinder can be expressed by means of
the mean value of azimuthal wall shear rate component
on the outer cylinder normalized by

2,
22 2

Gm
R h

      .       (5)

Donnelly and Simon (1960) and Fasel and Booz (1984)
introduced dimensionless torque G* and g, respectively.
There are the following relations among 2,m, G* and g

Table 1 Coefficients of equation 7.

Tac1 a b c Tac2

0.8 47.5 -4990 1.260 0.397 0.018 80.5

0.7 51.9 -1760 0.426 0.462 0.016 553

0.6 58.2 -680 0.222 0.449 0.007 789

0.5 68.2 -126 0.128 0.418 0.004 1057

2 22, * 1
2 22

Rm G g     .       (6)

Normalized mean azimuthal components of wall shear
rates are shown in Fig. 8 as a function of Ta with  as
parameter. These values were fitted by the relation

2, 2m caTa bTa   .       (7)

This relation is similar to that of Donnelly and Simon
(1960). For comparison of our exponents -2 and c with
those found in the literature, unity must be added to our
values. It is due to the normalisation by . In the
following discussion, the coefficients correspond to our
normalisation. Stuart (1958) calculated the torque on
cylinder by an energy-balance method for the limiting
case of a small gap, 1. His result is expressed by
Eq. (7) with  c  =  0. Davey (1962) used a rigorous
perturbation expansion for solving the velocity of
Taylor vortices under the assumption of a small
amplitude. According to Davey (1962) the exponent c =
0, but the coefficients a and b are different from that of
Stuart (1958). Donnelly and Simon (1960) fitted several
sets of torque measurements and found c in the interval
(0.33, 0.5). Batchelor assumed that the vortex flow
consists of inviscid cores surrounded by boundary
layers and found that c =0.5 (appendix to Donnelly and
Simon 1960). Such a flow occurs at high Taylor
numbers where the first term in Eq. (7) equals zero. The
coefficients a, b, c, obtained from our numerical
simulations and measurements, are given in Table 1
together with Tac and standard deviations. The
exponent c coincides well with the value given by
Donnelly and Simons (1960).
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Fig. 9. Comparison of mean azimuthal wall shear rates
for = 0.5
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Table 2 Comparison of mean azimuthal component of
wall shear rate with mean value of wall shear rate.

Ta 1,m 1,m ,m ,m

0.8 52.2 5.56 5.85 4.20 4.36

0.8 105 10.69 11.45 7.50 8.22

0.5 97.2 2.42 3.60 0.85 1.03

0.5 725 7.01 7.68 2.00 3.13

The normalized azimuthal wall shear rate components
calculated from measured torque by Donnelly and
Simon (1960), simulated numerically by Fasel and
Booz (1984) and measured and simulated in this work
are compared in Fig. 9. The agreement is rather good
until Ta =400. For higher values of Ta, the data of
Donnelly and Simon (1960) lay below the data of Fasel
and Booz (1984) and the data obtained in this work.
The normalized maximal values of azimuthal
components are shown in Fig. 10 as a function of
normalized Taylor number. These values are almost
independent of . The dependence of normalized
maximal values of axial components on  is more
important (see Fig. 11).
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Fig. 10. Maximum values of azimuthal component of
wall shear rate on the outer wall. See Fig. 8 for symbols.
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Fig. 11. Maximum values of axial component of wall
shear rate on the outer wall. See Fig. 8 for symbols.

It should be remembered that 1,m and 2,m which can
be calculated from measured torque are not equal to the
mean values of wall shear rate 1,m and 2,m,
respectively. It is due to the axial component which can
achieved high values. These values are compared in
Table 2 for different Ta and . The difference makes
more than 50% for the shear rates at the outer wall at Ta
=725 and  =0.5.

Gaucher et al. (2002) studied the wall suction effect on
the wall shear rate at a plane ultrafiltration surface.
They found that the wall shear rates of the order 104 s-1

were doubled using a small suction (ratio of the wall Re
to the channel Re of the order 10-4). It will be
interesting to study the effect of the wall suction on the
wall shear rate in Taylor-Couette flow.

5. CONCLUSIONS

The mean values and maxima of wall shear rate and its
components in regular Taylor vortex flow were found
for the radius ratios 0.8, 0.7, 0.6 and 0.5. The Taylor or
Reynolds number is the only criterion which
characterizes the flow. At a given Taylor number, the
value of shear rate or its component normalized by
angular velocity of the inner cylinder is unique. It
allows us to evaluate shear rate for different fluid
viscosity. This conclusion can be generalized for
velocity fields. A local minimum at the source and two
maxima of wall shear rate near the source (camel shape)
at the outer wall start to appear at Ta =120 in  =0.7.
This effect is more pronounced with decreasing  and
increasing Ta. In larger gaps the mean value of wall
shear rate calculated from measured torque are lower
than its true value. The knowledge of wall shear rate
components and their distribution is helpful for
conception of apparatus based on Taylor-Couette flow.
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