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ABSTRACT
Background. Malaria is a life-threatening disease caused by Plasmodium parasites that
infect the red blood cells (RBCs). Manual identification and counting of parasitized
cells in microscopic thick/thin-film blood examination remains the common, but
burdensomemethod for disease diagnosis. Its diagnostic accuracy is adversely impacted
by inter/intra-observer variability, particularly in large-scale screening under resource-
constrained settings.
Introduction. State-of-the-art computer-aided diagnostic tools based on data-driven
deep learning algorithms like convolutional neural network (CNN) has become the
architecture of choice for image recognition tasks. However, CNNs suffer from high
variance and may overfit due to their sensitivity to training data fluctuations.
Objective. The primary aim of this study is to reduce model variance, improve
robustness and generalization through constructing model ensembles toward detecting
parasitized cells in thin-blood smear images.
Methods. We evaluate the performance of custom and pretrained CNNs and construct
an optimal model ensemble toward the challenge of classifying parasitized and normal
cells in thin-blood smear images. Cross-validation studies are performed at the patient
level to ensure preventing data leakage into the validation and reduce generalization
errors. The models are evaluated in terms of the following performance metrics: (a)
Accuracy; (b) Area under the receiver operating characteristic (ROC) curve (AUC); (c)
Mean squared error (MSE); (d) Precision; (e) F-score; and (f) Matthews Correlation
Coefficient (MCC).
Results. It is observed that the ensemble model constructed with VGG-19 and
SqueezeNet outperformed the state-of-the-art in several performance metrics toward
classifying the parasitized and uninfected cells to aid in improved disease screening.
Conclusions. Ensemble learning reduces the model variance by optimally combining
the predictions of multiple models and decreases the sensitivity to the specifics of
training data and selection of training algorithms. The performance of the model
ensemble simulates real-world conditions with reduced variance, overfitting and leads
to improved generalization.
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INTRODUCTION
Malaria is a serious and life-threatening disease caused by Plasmodium parasitic infection
transmitted through the bite of female Anopheles mosquitoes. The parasites mature in the
liver, are released into the human bloodstream and infect the red blood cells (RBCs) to result
in fatal symptoms. Several species of the parasites exist including Plasmodium falciparum,
P. vivax, P. ovale, P. Knowlesi, and P. malariae; however, P. falciparum can be lethal and
infects themajority of global population. According to the 2018WorldHealthOrganization
(WHO) report, an estimated 435,000malaria-related deaths are reported globally. Children
under 5 years of age are reported to be the most vulnerable, accounting for 61% of the
estimated death counts. The disease transmitted through Plasmodium falciparum has a high
prevalence in Africa followed by South-East Asia and Eastern Mediterranean regions. An
estimated US $3.1 billion has been reported to be invested worldwide in malaria control
and elimination strategies by disease-endemic countries (WHO, 2018). Early diagnosis and
treatment is the most effective way to prevent the disease. Microscopic thick/thin-film
blood examination remains the most reliable and commonly known method for disease
diagnosis (Centers for Disease Control and Prevention, 2018). However, manual diagnosis is
a burdensome process, the diagnostic accuracy is severely impacted by the liability imposed
by factors including inter/intra-observer variability and large-scale screening, particularly
in disease-endemic countries with resource-constrained settings (Mitiku, Mengistu &
Gelaw, 2003).

Computer-aided diagnostic (CADx) tools using machine learning (ML) algorithms
applied to microscopic blood smear images have the potential to reduce clinical burden by
assisting with triage and disease interpretation. Poostchi et al. (2018) provided a survey on
such techniques. These tools process medical images for typical appearances and highlight
pathological features to supplement clinical decision-making. For these reasons, CADx tools
have gained prominence in image-based medical diagnosis and risk assessment. However,
a majority of these tools applied to malaria diagnosis use handcrafted feature extraction
algorithms that are optimized for individual datasets and trained for specific variability
in source machinery, dimension, position, and orientation of the region of interest (ROI)
(Ross et al., 2006; Das et al., 2013). At present, data-driven deep learning (DL) methods
have superseded the performance of handcrafted feature extraction mechanisms by
self-discovering the attributes from raw pixel data and performing end-to-end feature
extraction and classification (LeCun, Bengio & Hinton, 2015). In particular, convolutional
neural networks (CNN), a class of DL models, have demonstrated promising results in
image classification, recognition, and localization tasks (Krizhevsky, Sutskever & Hinton,
2012; Redmon et al., 2016).

The promising performance of CNNs is attributed to the availability of huge amounts of
annotated data. Under circumstances of limited data availability as in the case of medical
images, transfer learning strategies are adopted. The CNN models are pretrained on
large-scale datasets like ImageNet (Deng et al., 2009) to transfer the knowledge learned in
the form of generic image features to be applied for the target task. The pretrained weights
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serve as a good initialization and are found to perform better than training the model from
scratch with randomly initialized weights.

Literature studies reveal the application of conventionalML and data-drivenDLmethods
toward the challenge of malaria parasite detection in thin-blood smear images. Dong et
al. (2017) compared the performance of kernel-based algorithms like support vector
machine (SVM), and CNNs toward classifying infected and normal cells. A small-scale
collection of segmented RBCs were randomly split into train/validation/test sets. It was
observed that the CNNs achieved a classification accuracy of over 95% and significantly
outperformed the SVM classifier that obtained 92% accuracy. The CNNs self-discovered
the features from the raw pixel data, thereby requiring minimal human intervention
for automated diagnosis. Liang et al. (2017) performed cross-validation studies at the
cell level to evaluate the performance of custom and pretrained CNN models toward
classifying parasitized and normal cell images. Experimental results demonstrated that
the custom CNN outperformed the pretrained AlexNet (Krizhevsky, Sutskever & Hinton,
2012) model with an accuracy of 97.37%. In another study (Bibin, Nair & Punitha, 2017),
the authors performed randomized splits with peripheral smear images and evaluated the
performance of a shallow deep belief network toward detecting the parasites. Experimental
results demonstrated that the deep belief network showed promising performance with an
F-score of 89.66% as compared to that of SVM based classification that gave an F-score
of 78.44%. Gopakumar et al. (2018) developed a customized CNN to analyze a focal stack
of slide images for the presence of parasites. In the process, they observed that the custom
CNN model achieved a Matthews Correlation Coefficient (MCC) score of 98.77% and
considerably outperformed the SVM classifier that achieved 91.81% MCC. These studies
were evaluated at the cell level, with randomized splits and/or small-scale datasets. The
reported outcomes are promising; however, patient-level cross-validation studies with a
large-scale clinical dataset are required to substantiate their robustness and generalization
to real-world applications. Rajaraman et al. (2018a) used a large-scale, annotated clinical
image dataset, extracted the features from the optimal layers of pretrained CNNs and
statistically validated their performance at both cell and patient level toward discriminating
parasitized and uninfected cells. It was observed that at the patient level, the pretrained
ResNet-50model outperformed the other CNNs with an accuracy of 95.9%. However, deep
neural networks learn through stochastic optimization and are limited in performance due
to their high variance in predictions that arises due to their sensitivity to small fluctuations
in the training set. This results in modeling the random noise from the training data and
leads to overfitting. This variance is frustrating especially during model deployment. An
effective approach to reducing the variance is to trainmultiple, diversemodels and combine
their predictions. The process results in ensemble learning that leads to predictions that
are better than any individual model (Dietterich, 2000). DL models and ensemble learning
are known to deliver inherent benefits of non-linear decision making, the combination of
these strategies could effectively minimize variance and enhance learning.

Ensemble learning strategies are often applied to obtain stable and promising model
predictions. Krizhevsky, Sutskever & Hinton (2012) used a model averaging ensemble to
achieve state-of-the-art performance in the ImageNet Large Scale Visual Recognition
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Competition (ILSVRC) 2012 classification task. Model ensembles are used by the winning
teams in Kaggle and other machine learning challenges. Literature studies show that
ensemble methods have been applied to medical image classification tasks. In (Lakhani
& Sundaram, 2017), the authors evaluated the efficacy of an ensemble of custom and
pre-trained deep CNNs toward Tuberculosis (TB) detection in chest X-rays (CXRs). It was
observed that the ensemble accurately detected the disease with an AUC of 0.99. Rajaraman
et al. (2018b) created a stacking of classifiers operating with handcrafted and deep CNN
features toward improvingTBdetection inCXRs. The performance of the individualmodels
and the model ensemble was evaluated on four different CXR datasets. It was observed that
the model ensemble outperformed the individual models and the state-of-the-art, with
an AUC of 0.991, 0.965, 0.962, and 0.826 with Shenzhen, Montgomery, India, and Kenya
CXR datasets respectively. However, to our knowledge, there is no available literature on
the application and evaluation of ensemble methods toward malaria parasite detection in
thin-blood smear images.

In this study, we evaluate the performance of custom and pretrainedCNNs and construct
an optimal ensemble model to deliver predictions with reduced bias and improved
generalization toward the challenge of classifying parasitized and normal RBCs in thin-
blood smear images. Compared to our previous study (Rajaraman et al., 2018a), we aim
to reduce the model variance by combining the predictions of multiple models and reduce
model sensitivity to the specifics of training instances and selection of training methods.
In the process, the model ensemble is expected to demonstrate improved performance and
generalization, and simulate real-world conditions with reduced variance. To the best of
our knowledge, this is the first study to construct and statistically evaluate an ensemble
model to classify a large-scale clinical dataset of parasitized and uninfected cells toward the
current task.

MATERIALS & METHODS
Data Collection and preprocessing
The parasitized and normal cell image collection used in this study ismade publicly available
by Rajaraman et al. (2018a). Giemsa-stained thin-blood smear slides were collected from
P. falciparum-infected patients and healthy controls and photographed using a smartphone
camera. The slide imagesweremanually annotated by an expert, de-identified, and archived.
The Institutional Review Board (IRB) at the National Library of Medicine (NLM), National
Institutes of Health (NIH) granted approval to carry out the study within its facilities (IRB#
12972). A level-set based algorithmwas applied to detect and segment the RBCs (Rajaraman
et al., 2018a). The dataset includes 27,558 cell images with equal instances of parasitized and
healthy RBCs. Cells containing Plasmodium are labeled as positive samples while normal
instances contain no Plasmodium but other objects including impurities and staining
artifacts. The images are re-sampled to 100×100 pixel dimensions and mean normalized
for faster model convergence.
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Predictive models and computational resources
We evaluated the performance of the following CNN models toward the task of classifying
parasitized and uninfected RBCs segmented from thin-blood smear images: (a) custom
CNN; (b) VGG-19 (Simonyan & Zisserman, 2015); (c) SqueezeNet (Iandola et al., 2016);
and (d) InceptionResNet-V2 (Szegedy, Ioffe & Vanhoucke, 2016). The VGG-19 model is
developed by the Oxford’s Visual Geometry Group. It uses 3×3 filters throughout its depth
and offers 7.3% test classification error in the ILSVRC-2012 classification challenge. The
model is also known to generalize well to other datasets. The SqueezeNet model offers
comparable accuracy of AlexNet in the ILSVRC challenge at a reduced computational
cost. The model uses 1×1 filters and a squeezing layer to reduce the depth and parameters
to offer high-level feature abstraction. The InceptionResNet-V2 model combines the
architectural benefits of Inception modules and residual blocks to achieve top accuracy in
the ILSVRC image classification benchmark. The predictive models are evaluated through
five-fold cross-validation. We performed cross-validation at the patient level and ensured
preventing data leakage into the validation to reduce generalization errors. The images are
augmented with transformations to prevent overfitting of the training data and improve
model generalization and performance. Augmentations including rotations, translation,
shearing, zooming, and flipping are performed on-the-fly during model training. The
models are evaluated in terms of the following performance metrics: (a) Accuracy; (b) Area
under the receiver operating characteristic (ROC) curve (AUC); (c) Mean squared error
(MSE); (d) Precision; (e) F-score; and (f) Matthews Correlation Coefficient (MCC).

We trained the models on an Ubuntu system with Xeon E5-2640v3 processor, 64GB
Random Access Memory (RAM), and NVIDIA

R©
1080Ti graphical processing unit (GPU).

The models are configured in Python using Keras API with Tensorflow backend and
CUDA/CuDNN dependencies for GPU acceleration.

Configuring custom and pretrained CNN models
Custom model configuration
The custom CNN model has three blocks of batch normalization, convolution, pooling,
and convolutional dropout layers. The convolutional layers use 5×5 filters throughout
the depth and same values for padding to maintain identical feature map dimensions.
The first convolutional layer has 64 filters, the number of filters is doubled after every
max-pooling layer. Usage of batch normalization layers reduces overfitting and improves
generalization by normalizing the output of the previous activation layers. Non-linear
activation layers add non-linearity into the decision-making process and speed up training
and convergence (Shang et al., 2016). Usage of 2×2 max-pooling layers summarizes the
outputs of the neural groups in the feature maps from the previous layers. The dropout
used in the convolutional layers offers regularization by constraining the model adaptation
to the training data and avoiding overfitting (Srivastava et al., 2014). The output of the
deepest convolutional layer following a dropout is fed to a global average pooling (GAP)
layer that performs dimensionality reduction by producing the spatial average of the feature
maps to be fed into the first dense layer. The output of the dense layer following a dropout
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Figure 1 Process flow diagram for optimizing the hyperparameters of the custom CNNmodel. The
model architecture is instantiated and evaluated within the parameter search boundaries. The process is
repeated until an acceptable model is found.

Full-size DOI: 10.7717/peerj.6977/fig-1

is fed into the final dense layer with two neurons. The model is trained and optimized to
minimize the cross-entropic loss and output the probability of predictions.

We optimized the parameters and hyperparameters of the custom CNNmodel using the
Talos optimization tool (https://github.com/autonomio/talos). The process flow diagram
of the optimization procedure is shown in Fig. 1. Talos incorporates random, grid, and
probabilistic hyperparameter optimization strategies that helps to maximize the model
efficiency and performance on the target tasks. The model architecture is instantiated and
evaluated within the search boundaries set in the parameter dictionary. The following
parameters are optimized: (a) dropout in the convolutional layer; (b) dropout in the dense
layer; (c) optimizer; (d) activation function; and (e) number of neurons in the dense layer.
The search ranges for the optimizable parameters are shown in Table 1. The process is
repeated until an acceptable model is found.

Fine-tuning the pretrained CNN models
We instantiated the pretrained CNNs with their convolutional layer weights and truncated
these models at their deepest convolutional layer. A GAP and dense layer are added to
learn from and predict on the cell image data. The generalized block diagram of the usage
of pretrained models is shown in Fig. 2.
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Table 1 Search ranges for the hyperparameters of the custom CNNmodel. The following parameters
are optimized: (A) Dropout in the convolutional layer; (B) Dropout in the dense layer; (C) Optimizer; (D)
Activation function; and (E) Number of neurons in the dense layer.

Parameters Search range

Convolutional dropout [0.25, 0.5]
Dense dropout [0.25, 0.5]
Optimizer [SGD, Adam]
Activation [ReLU, eLU]
Dense neurons [256, 512]

Figure 2 The custom architecture of pretrained models used in this study. The pretrained CNNs are in-
stantiated with their convolutional layer weights, truncated at their deepest convolutional layer, and added
with a GAP and dense layer.

Full-size DOI: 10.7717/peerj.6977/fig-2

We fine-tuned the models entirely using a very low learning rate (0.0001) with the
Adam optimizer to minimize the categorical cross-entropic loss as not to rapidly modify
the pretrained weights.

Constructing the model ensemble
The predictions of the custom and pretrained CNN models are averaged to construct the
model ensemble. Figure 3 shows the process flow diagram for combining the predictions
of the predictive models and selecting the optimal ensemble from a collection of model
combinations, for further deployment. The inherent benefit of the model averaging
ensemble is that it needs no training since averaging the predictions does not take any
learnable parameters.

Statistical analysis
We performed statistical analyses to ensure that the results are correctly interpreted and
apparent relationships are significant. Statistical tests assist in evaluating the statistically
significant difference in the performance of the individual models, called the base-learners,
and model ensembles. We empirically determined the presence/absence of a statistically
significant difference in the mean values of the performance metrics of the pretrained
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Figure 3 Process flow diagram depicting the construction of the model averaging ensemble. The aver-
aging ensemble averages the prediction probabilities from the individual models.

Full-size DOI: 10.7717/peerj.6977/fig-3

and ensemble models. We opted to perform a one-way analysis of variance (ANOVA)
to determine the existence of a statistically significant difference (Rossi, 1987). However,
one-way ANOVA should be performed only when the following assumptions are satisfied:
(a) data normality; (b) homogeneity of variances; (c) absence of significant outliers; and
(d) independence of observations (Daya, 2003). We performed the Shapiro–Wilk test
(Shapiro & Wilk, 1965) to investigate for the normal distribution of data and Levene’s
test (Gastwirth, Gel & Miao, 2009), for the homogeneity of variances. We also analyzed
the data for the presence of significant outliers. The null hypothesis is accepted if there
exists no statistically significant difference in the performance metrics. If the test returns
a statistically significant result (p< 0.05), the null hypothesis is rejected and the alternate
hypothesis is accepted. This demonstrates the fact a statistically significant difference in the
mean values of the performance metrics exists between at least two models under study.
One-way ANOVA is an omnibus test that further needs post-hoc analyses to identify the
specific models that demonstrate statistically significant differences (Kucuk et al., 2016).
We performed Tukey post-hoc analysis to identify the specific models that demonstrate
these statistically significant difference in their performances. We used the IBM SPSS (IBM,
Armonk, NY, USA) package to perform these analyses.

RESULTS
Custom model hyperparameter optimization
The performance of the optimized custom CNN and pretrained models are evaluated
toward the challenge of classifying parasitized and uninfected cells. The optimal values
for the parameters and hyperparameters of the custom CNN, obtained with the Talos
optimization tool are shown in Table 2. The model is trained and optimized to minimize
the cross-entropic loss and categorize the cell images to their respective classes.
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Table 2 Optimal hyperparameter values obtained with Talos optimization for the custom CNN
model. The custom model is trained and optimized with the hyperparameter values obtained through
Talos optimization to categorize the cell images to their respective classes.

Parameters Optimal values

Convolutional dropout 0.25
Dense dropout 0.5
Optimizer Adam
Activation ReLU
Dense neurons 256

Evaluation of performance metrics
Table 3 lists the values for the performance metrics obtained with the custom, pretrained
and the All-Ensemble models, in terms of mean and standard deviation across the cross-
validated folds. The learning rate is reduced whenever the validation accuracy ceased to
improve. The training and validation losses decreased with epochs that stood indicative of
the learning process. It is observed that the VGG-19 model outperformed the other models
in all performance metrics. The generic image features learned from the ImageNet data
served as a good initialization as compared to random weights in the custom CNN model.
The model is trained end-to-end to learn parasitized and normal cell-specific features to
reduce bias and improve generalization. The architectural depth of the VGG-19 appeared
optimal for the current task. The other pretrained models are progressively more complex
and did not perform as well as the VGG-19 model. The All-Ensemble model shared the
same input as the individual models and computed the average of the models’ predictions.
We observed that the All-Ensemble model didn’t outperform VGG-19. An ensemble model
yields promising predictions only when there is significant diversity among the individual
base-learners (Opitz & Maclin, 1999). Under current circumstances, the All-Ensemble
model didn’t deliver promising results compared to custom and pretrained models under
study. For this reason, we created several combinations of models as listed in Table 4 and
averaged their predictions toward creating the optimal model ensemble for the current task.
Table 5 lists the performance metrics of these model combinations. It is observed that the
Ensemble-D model created with VGG-19 and SqueezeNet, outperformed the individual
models and other ensembles in all performance metrics. This model combination has a
significant diversity that resulted in reduced correlation in their predictions and variance
to offer improved performance and generalization.

We performed the Shapiro–Wilk test to investigate for data normality and Levene’s
test, for homogeneity of variances. We observed that p > 0.05 (95% confidence
interval (CI) for both tests that signified that the assumptions of data normality and
homogeneity of variances are not violated. The independence of observation existed
and no significant outliers are observed. Hence, we performed one-way ANOVA to
explore the presence/absence of a statistically significant difference in the mean values
of the performance metrics for the models. Table 6 shows the consolidated results of
Shapiro–Wilk, Levene, one-way ANOVA, and Tukey post-hoc analyses. We used M1,
M2, and M3, to denote the VGG-19, All-Ensemble, and Ensemble-D models respectively.
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Table 3 Performance metrics of individual models andmodel ensemble. The performance of the models are evaluated with metrics including ac-
curacy, AUC, MSE, precision, F-score, and MCC.

Model Accuracy AUC MSE Precision F-score MCC

Custom CNN 99.09 ± 0.08 99.3 ± 0.6 00.9 ± 0.1 99.56 ± 0.1 99.08 ± 0.1 98.18 ± 0.1
VGG-19 99.32± 0.1 99.31± 0.7 00.69± 0.1 99.71± 0.2 99.31± 0.1 98.62± 0.2
SqueezeNet 98.66 ± 0.1 98.85 ± 0.3 1.41 ± 0.2 99.44 ± 0.1 98.64 ± 0.1 97.32 ± 0.1
InceptionResNet-V2 98.79 ± 0.1 99.2 ± 0.9 1.88 ± 0.9 99.56 ± 0.2 98.77 ± 0.1 97.59 ± 0.2
All-Ensemble 99.11 ± 0.1 98.94 ± 0.3 0.78 ± 0.1 99.67 ± 0.1 99.1 ± 0.1 98.21 ± 0.2

Notes.
Bold text indicates the performance measures of the best-performing model/s.

Table 4 Combining different models to determine the optimum ensemble. Several combinations of
models are created and their prediction probabilities are averaged in an attempt to find the best perform-
ing ensemble toward the current task.

Combination index Models

A [Custom CNN, VGG-19]
B [Custom CNN, SqueezeNet]
C [Custom CNN, InceptionResNet-V2]
D [VGG-19, SqueezeNet]
E [VGG-19,InceptionResNet-V2]
F [SqueezeNet, InceptionResNet-V2]
G [Custom CNN,VGG-19, SqueezeNet]
H [Custom CNN, VGG-19, InceptionResNet-V2]
I [VGG-19, SqueezeNet,InceptionResNet-V2]

Table 5 Performance metrics achieved with different combinations of model ensembles. The performance of the different combination of model
ensembles is evaluated with metrics including accuracy, AUC, MSE, precision, F-score, and MCC.

Combination index Accuracy AUC MSE Precision F-score MCC

A 99.34 ± 0.1 99.07 ± 0.5 0.71 ± 0.1 99.76 ± 0.1 99.32 ± 0.1 98.65 ± 0.2
B 98.98 ± 0.1 99.76 ± 0.1 1.07 ± 0.1 99.43 ± 0.1 98.96 ± 0.1 97.95 ± 0.2
C 98.72 ± 0.8 98.64 ± 1.1 1.88 ± 0.6 99.56 ± 0.1 99.07 ± 0.1 98.15 ± 0.2
D 99.51± 0.1 99.92± 0.1 0.63± 0.1 99.84± 0.1 99.5± 0.1 99.0± 0.2
E 99.16 ± 0.1 99.18 ± 0.2 0.83 ± 0.1 99.73 ± 0.1 99.15 ± 0.1 98.31 ± 0.2
F 98.73 ± 0.1 99.2 ± 0.6 1.65 ± 0.4 99.63 ± 0.2 99.08 ± 0.1 98.18 ± 0.2
G 99.21 ± 0.1 98.98 ± 0.2 0.81 ± 0.1 99.64 ± 0.1 99.2 ± 0.1 98.42 ± 0.1
H 99.22 ± 0.1 99.89 ± 0.1 0.82 ± 0.1 99.75 ± 0.1 99.21 ± 0.1 98.44 ± 0.2
I 99.13 ± 0.1 99.67 ± 0.1 0.99 ± 0.1 99.75 ± 0.1 99.12 ± 0.1 98.26 ± 0.2

Notes.
Bold text indicates the performance measures of the best-performing model/s.

Tukey post-hoc analysis is performed to determine the specific models demonstrating
the statistically significant difference in performance. It is observed that a statistically
significant difference in the mean values of the performance metrics existed between
these models. For accuracy, the post-hoc analysis revealed that the accuracy of VGG-19
(0.993 ± 0.0008, p< 0.05) and the All-Ensemble model (0.991 ± 0.0008, p< 0.05) is
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Table 6 Consolidated results of Shapiro–Wilk, Levene, one-way ANOVA and Tukey post-hoc analyses. The value p > 0.05 (95% CI) for
Shapiro-Wilk and Levene’s test signified that the assumptions of data normality and homogeneity of variances are not violated. Hence, one-way
ANOVA analysis is performed to explore the presence/absence of a statistically significant difference in the mean values of the performance metrics
for the models.

Metric Shapiro–Wilk test (p) Levene’s test (p) ANOVA Tukey post-hoc (p < 0.05)
F p

Accuracy 0.342 0.316 37.151 p <0.05 (M1, M2, M3)
AUC 0.416 0.438 8.321 p <0.05 (M2, M3)
MSE 0.862 0.851 11.288 p <0.05 (M1, M2) & (M2, M3)
Precision 0.52 0.294 5.841 p <0.05 (M2, M3)
F-score 0.599 0.73 34.799 p <0.05 (M1, M2) & (M1, M3)
MCC 0.63 0.697 35.062 p <0.05 (M1, M2, M3)

statistically significantly lower compared to the Ensemble-D model (0.995 ± 0.0005). A
similar trend is observed for AUC where the AUC for Ensemble-D model and VGG-19 is
0.9993 ± 0.0004) and 0.993 ± 0.0006, p> 0.05) respectively. Considering the harmonic
mean of precision and recall as demonstrated by the F-score, the Ensemble-D model
(0.995 ± 0.001) outperformed the All-Ensemble (0.991 ± 0.0009, p< 0.05) and VGG-19
(0.993± 0.0008, p< 0.05) models. Similar trends are observed for the performance metrics
including MCC, precision, and MSE. The Ensemble-D model statistically significantly
outperformed the VGG-19 and All-Ensemble model in all performance metrics.

Web-based model deployment
We deployed the trained model into a web browser to enable running the model at reduced
computational cost and alleviate issues due to the complex backend, architecture pipelines,
and communication protocols. A snapshot of the web application is shown in Fig. 4. The
benefits of running the model on web browsers include (a) privacy, (b) low-latency, and
(c) cross-platform implementation (Manske & Kwiatkowski, 2009). Client-side models
facilitate privacy while dealing with sensitive data, not supposed to be transferred to the
server for inference. Low latency is achieved by reducing the client–server communication
overhead. Client-side networks offer cross-platform benefits by working on the web
browser irrespective of the type of the operating system. It does not demand installation of
libraries and drivers to perform inference. We used TensorflowJS to convert the model to
layer API format. Express for NodeJS is used to set up the web server, serve the model and
host the web application. Express offers the web framework and NodeJS is the open-source
run-time environment that executes JavaScript code on the server-side. The node program
starts the server and hosts the model and supporting files. We named the application as
Malaria Cell Analyzer App to which the user submits an image of the parasitized/uninfected
cell and the model embedded into the browser gives the predictions.

DISCUSSIONS
We ensured that the custom CNN converges to an optimal solution through (a)
architecture and hyper-parameter optimization, (b) implicit regularization imposed
by batch normalization, and (c) improved generalization through aggressive dropouts in
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Figure 4 Snapshot of the web application interface. The web application is placed into the static web di-
rectory and the web server is initiated to browse through theMalaria Cell Analyzer App. The user submits
a cell image and the model embedded into the browser gives the predictions.

Full-size DOI: 10.7717/peerj.6977/fig-4

the convolutional and dense layers. We performed cross-validation at the patient-level
to present a realistic performance measure of the predictive models so that the test data
represents truly unseen images with no leakage of information pertaining to the staining
variations or other artifacts from the training data.

CNNs suffer from the limitation of high variance as they are highly dependent on the
specifics of the training data and prone to overfitting leading to increased bias and reduced
generalization.We addressed this issue by trainingmultiplemodels to obtain a diverse set of
predictions that can be combined to deliver optimal solutions. However, it is imperative to
select diversified base-learners that are accurate in diverse regions in the feature space. For
this reason, we evaluated a selection of model combinations and empirically determined
the best model combination to construct the ensemble for the current task. Experimental
results are statistically significant for a given statistical significance level if they are not
attributed to chance and a relationship actually exists. We performed statistical analyses to
determine the existence of a statistically significant difference in the performance metrics
of the individual and ensemble models under study. We also performed post-hoc analyses
to identify the specific models demonstrating these statistically significant performance
differences.

Table 7 gives a comparison of the results achieved in this study with the state-of-the-art.
It is observed that the ensemble model constructed with VGG-19 and SqueezeNet

outperformed the other models and the state-of-the-art toward classifying the parasitized
and uninfected cells to aid in improved disease screening.

CONCLUSIONS
It is observed thatmodel ensemble usingmultiple DLmodels obtained promising predictive
performance that could not be accomplished by any of the individual, constituent models.
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Table 7 Comparison of the results obtained with the proposed ensemble and the state-of-the-art literature. The ensemble model constructed
with VGG-19 and SqueezeNet outperformed the other models and the state-of-the-art toward classifying the parasitized and uninfected cells to aid
in improved disease screening.

Method Accuracy AUC MSE Precision F-score MCC

Proposed Ensemble (patient level) 99.5 99.9 0.63 99.8 99.5 99.0
Rajaraman et al. (2018a) (patient level) 95.9 99.1 – – 95.9 91.7
Gopakumar et al. (2018) 97.7 – – – – 73.1
Bibin, Nair & Punitha (2017) 96.3 – – – – –
Dong et al. (2017) 98.1 – – – – –
Liang et al. (2017) 97.3 – – – – –
Das et al. (2013) 84.0 – – – – –
Ross et al. (2006) 73.0 – – – – –

Notes.
Bold text indicates the performance measures of the best-performing model/s.

Ensemble learning reduces the model variance by optimally combining the predictions of
multiple models and decreases the sensitivity to the specifics of training data and training
algorithms. We also developed a web application by deploying the ensemble model into
a web browser to avoid the issues of privacy, low-latency, and provide cross-platform
benefits. The performance of the model ensemble simulates real-world conditions with
reduced variance, overfitting and leads to improved generalization. We believe that the
results proposed are beneficial toward developing clinically valuable solutions to detect
and differentiate parasitized and uninfected cells in thin-blood smear images.
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