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ABSTRACT
Background. Osteoarthritis (OA) is one of themost important age-related degenerative
diseases, and the leading cause of disability and chronic pain in the aging population.
Recent studies have identified several lncRNA-associated functions involved in the
development of OA. Because age is a key risk factor for OA, we investigated the
differential expression of age-related lncRNAs in each stage of OA.
Methods. Two gene expression profiles were downloaded from the GEO database and
differentially expressed genes (DEGs) were identified across each of the different devel-
opmental stages of OA. Next, gene ontology (GO) functional and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses were performed to annotate the
function of the DEGs. Finally, a lncRNA-targeted DEG network was used to identify
hub-lncRNAs.
Results. A total of 174 age-related DEGs were identified. GO analyses confirmed that
age-related degradation was strongly associated with cell adhesion, endodermal cell
differentiation and collagen fibril organization. Significantly enriched KEGG pathways
associated with these DEGs included the PI3K–Akt signaling pathway, focal adhesion,
and ECM–receptor interaction. Further analyses via a protein–protein interaction (PPI)
network identified two hub lncRNAs, CRNDE and LINC00152, involved in the process
of age-related degeneration of articular cartilage. Our findings suggest that lncRNAs
may play active roles in the development of OA. Investigation of the gene expression
profiles in different development stages may supply a new target for OA treatment.

Subjects Bioinformatics, Geriatrics, Orthopedics
Keywords Osteoarthritis, CRNDE, LINC00152, KEGG pathway, DEGs, GO annotation

INTRODUCTION
Osteoarthritis (OA) is a common chronic joint disease in elderly individuals, with weight-
bearing joints such as the knees, hips, and the spine being the most commonly affected.
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Between 2011 and 2012, the prevalence of symptomatic knee OA in China was 8.1% (Tang
et al., 2016). OA progresses slowly over time, eventually resulting in joint pain, stiffness,
and dysfunction (Hunter & Felson, 2006). With the growing number of patients suffering
from OA, the treatment costs of OA are expected to present a huge economic burden to
both individuals and health systems worldwide. While the exact mechanisms underlying
OA remain poorly understood, numerous risk factors have been identified, including
age, obesity, sex, genetic predisposition, and joint injury (Loeser, 2017; Silverwood et al.,
2015). Among these factors, age is one of the most important critical influences on the
degeneration of articular cartilage. Previous studies have demonstrated that the prevalence
of radiographic knee OA increases with age (Shane Anderson & Loeser, 2010). Aging-related
changes in joint tissues include accumulation of senescent secretory phenotype cells,
increased expressions of catabolic factors, a gradual loss of extracellular cartilagematrix, and
oxidative stress (Campisi & d’Addadi Fagagna, 2007; Ding et al., 2005; Henrotin, Bruckner
& Pujol, 2003; Wu et al., 2002). Moreover, age-related increases in mesenchymal stromal
cells in the bone marrow are also thought to regulate of osteoblast formation and bone
remodeling (Ganguly et al., 2017).

Long non-coding RNAs (lncRNAs), defined as non-coding capacity RNAs >200 bp
in length, play an important role in transcriptional regulation (Ponting, Oliver & Reik,
2009). Recent studies have identified several lncRNA-associated functions involved in the
development of human diseases, including several forms of cancer, cardiovascular disease,
diabetes, and osteoporosis (Cao et al., 2013;Hao et al., 2015;Huang, 2018; Leti & DiStefano,
2017; Wang et al., 2018b), as well as OA. Using DNA microarrays and bioinformatic
approaches, Ming et al. identified a number of lncRNAs that are differentially expressed
in OA cartilage compared to normal samples (Fu et al., 2015). Similarly, Xiang et al. found
that synovium samples obtained from OA patients showed differential expression of
numerous mRNAs and lncRNAs (Xiang et al., 2018). In addition, an increasing number of
lncRNAs have been implicated in chondrocytes proliferation and cartilage metabolism. For
example, increased expression of lncRNA-ZFAS1 was shown to induce the proliferation
and migration of chondrocytes (Ye et al., 2018), while increased expression of lncRNA-
HOTAIR contributes to chondrocytes apoptosis and matrix degradation (Hu et al., 2018).
Finally, lncRNA-CIR acts as a sponge for miRNA-27b, resulting in increased extracellular
matrix degradation via its effects on MMP13 expression (Li et al., 2017c). Taken together,
these data suggest that lncRNAs play key roles in the pathogenesis of OA.

Because OA is an age-related chronic disease, morphological and molecular biological
characters may appear differently in different stages. Here, to explore differential
expression of age-related lncRNAs in each stage of OA, we examined two previously
published OA gene datasets available in the Gene Expression Omnibus (GEO) database.
Differential expression of lncRNAs across different developmental stages was examined
by comprehensive bioinformatic analyses. Then the differentially expressed lncRNAs
were correlated with other DEGs and potential diseases based on data obtained from the
RAID and MNDR databases. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses were also performed, and
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Figure 1 Workflow of the bioinformatics analyses.
Full-size DOI: 10.7717/peerj.7024/fig-1

a protein–protein interaction (PPI) network was used to screen for crucial genes and
lncRNAs.

MATERIALS AND METHODS
Expression profile dataset
Gene expression profiles for age-related degeneration in rat knee articular cartilage at
different development stages (GSE66554) were obtained from the GEO database and
analyzed alongside a second gene expression dataset (GSE113825) which investigated
lncRNA and mRNA expression profiles of human knee OA. A detailed workflow of the
data analyses is shown in Fig. 1. The quality of gene expression data was analyzed and
visualized using the ggplot2 package of R software for each sample.

Differential gene expression analyses
In GSE66554, the authors grouped rats as newborn (T0), youth (T1), adult (T2), early-stage
elderly (T3), and later-stage elderly (T4). To identify age-related DEGs, we compared the
different stages of rats with T0. We also identify DEGs between RNA-seq data of normal
human cartilage samples andOA samples in GSE113825. The LinearModels forMicroarray
data (LIMMA) (limma) package, which includes lmFit, eBayes, and topTable functions,
was used for pairwise comparison of DEGs (Ritchie et al., 2015). P < 0.05 and abs(log2)fold
change (FC) >1 were used as the cut-off criteria.
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GO annotation and KEGG pathway enrichment analyses of DEGs
The R package bioMart was used to transform rats genes into homologous human genes.
Thenwe narrowed down the protein codingDEGs by calculating intersection between these
homologous human genes and OA DEGs (from GSE113825) to identify age-related OA
DEGs. GO annotation, a classic method used to describe subcellular location, molecular
function, and the biological attributes of DEGs, was applied (Ashburner et al., 2000).
KEGG, a collection of databases summarizing genomes, biological pathways, and health
information, was used to clarify the potential role of the DEGs (Kanehisa & Goto, 2000).
GO functional analyses encompassing biological processes (BP), cell components (CC), and
molecular functions (MF) was performed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID; ver. 6.8), with P < 0.05 used as a cutoff.

PPI network construction and hub gene identification
The Search Tool for the Retrieval of Interacting Genes (STRING, http://string-db.org) was
used to create a PPI network for the DEGs (Szklarczyk et al., 2015), which was visualized
using Cytoscape (ver. 3.5.1). Genes served as ‘‘nodes’’ in the PPI network and the line
segment between two nodes represented associated interactions. The color of the lines
between genes indicates the degree of the interaction. The centiscape plugin was used to
determine the degree of connectivity for each node in the PPI network. Genes with a degree
>5 were defined as hub genes. The differentially expressed lncRNA-mRNA interaction
network was built and displayed using Cytoscape. lncRNAs interacting with the greatest
number of hub genes (mRNA) in the network were defined as hub lncRNAs.

Patient samples preparation and qRT-PCR validation
This study was approved by the Ethics Committee of the 2nd Affiliated Hospital, School
of medicine, Zhejiang University, Hangzhou, China (No.2018-043) and written informed
consent was obtained for each participant. Femoral heads were collected from eight
osteoarthritis patients and eight femoral neck fracture patients who underwent total hip
arthroplasty. Then the cartilages obtained from the femoral head (nearly 1 cm*1 cm)
were preserved in liquid nitrogen until use. Total RNA was extracted using TRIzol reagent
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s
instructions. And 1µg RNA was reverse-transcribed using the cDNA synthesis kit (Thermo
Fisher Scientific, Inc., Waltham, MA, USA). RT-PCR was performed using the SYBR
Premix Ex Taq II (Takara Biotechnology, Dalian, China) system on the following steps:
45 cycles of 95 ◦ C for 15 s and 60 ◦ C for 30 s. The sequences of the primers used in the
reaction are listed in Table 1. Relative gene expression was calculated using the 2−11Ct

method. 18S served as the internal control gene.

Statistical analysis
All data are presented asmeans± standard deviation (SD). All experiments were performed
at least three times. Student’s t -test was performed using SPSS (ver. 19.0; IBM Corp.,
Armonk, NY, USA) and GraphPad Prism 7 (GraphPad Software Inc., La Jolla, CA, USA)
software. For all analyses, a p value <0.05 was considered to indicate statistical significance.
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Table 1 Real-Time PCR Primers.

ID Primer Sequences(5′to 3′)

CTCTAGTCGTGTCCCCTCGT
CRNDE

CTAGCCCACGGGACGTCTG
TGGCACAGTCTTTTCTCTACTCA

LINC00152
GTCAAGAGGTTTCCAGGGGC
CCTGAGAAACGGCTACCACA

18S
ACCAGACTTGCCCTCCAATG

RESULTS
Data distribution analyses and DEG screening
In GSE113825, a total of 95,722 genes were detected in each sample. The expression values
(ranging from 0 to 20 log2 [fragments per kilobase of transcript, per million fragments
sequenced, FPKM]) and the distributions were similar between normal group and OA
group (Fig. 2A). Principal component and h-cluster analyses showed that samples were
easily grouped into different groups. As for GSE66554, a total of 36685 genes were detected
in each sample, with the values and distributions of these genes similar across the five
groups (Fig. 2B). Based on these assessments, further bioinformatics analyses could be
performed based on the available data.

Following data processing using limma, we identified 4470 DEGs (1658 upregulated,
2812 downregulated) in human normal vs. OA, including 2891 DEGs (1596 upregulated,
1295 downregulated) in rat T0 vs. rat T1, 4354 DEGs (2451 upregulated, 1903
downregulated) in rat T0 vs. rat T2, 5606 DEGs (2703 upregulated, 2903 downregulated)
in rat T0 vs. rat T3, and 14063 DEGs (6432 upregulated, 7631 downregulated) in rat T0 vs.
rat T4 (Fig. 2C).

Intersection between the predicted targets of lncRNAs and DEGs
Using the GSE66554 rat OA dataset, we identified a total of 1355 DEGs common across
each of the different stages (Fig. 3A). Hierarchical clustering of the identified DEGs is
displayed as a heatmap in Fig. 3B. Next, homologous human genes were identified for each
of the rat DEGs and compared against DEGs identified in the human OA dataset (Fig. 3C),
resulting in an overlap of 174 age-related OA genes, including 33 upregulated and 141
downregulated genes (Table S1). Alignment of these to the human genome is shown in
Fig. 3D, as intuitively, green means go and red means stop/downregulated.

GO annotation and KEGG pathway enrichment analyses
GO annotation and KEGG pathway enrichment analyses were performed to better
understand the functional significance of the DEGs. Biological processes (BP) were
significantly enriched for cell adhesion, endodermal cell differentiation, collagen fibril
organization, regulation of cell migration, and cell–matrix adhesion (Fig. 4A). Significant
cellular component (CC) terms revealed enrichment in extracellular exosome, extracellular
space, proteinaceous extracellular matrix, focal adhesion, and sarcolemma. Finally, the top
five molecular functions (MF) identified were calcium ion binding, extracellular matrix
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Figure 2 Distribution analyses of gene expression. (A) Distribution of gene expression levels in GSE113825. The x-axis indicates the log2 value
(fragments per kilobase of transcript, per million fragments sequenced [FPKM]) and the y-axis shows the proportion of genes. (B) Distribution
of genes expression for each sample in GSE113825. Individual samples are shown on the x-axis, with gene value distribution plotted on the y-axis.
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downregulated genes that passed the screening threshold. Black dots represent nonsignificant genes.

Full-size DOI: 10.7717/peerj.7024/fig-2

structural constituent, semaphorin receptor binding, chemorepellent activity, and spectrin
binding. All significantly enriched entries are shown in a histogram in Fig. 4B. KEGG
analyses of the DEGs revealed enrichment for 18 terms (Fig. 4C). The top five significantly
enriched KEGG pathways were the PI3K–Akt signaling pathway, focal adhesion, ECM–
receptor interaction, protein digestion and absorption, and pathways in cancer. Detailed
information regarding each of the DEGs involved in the BP analyses and KEGG pathway
are listed in Fig. 4.

PPI network construction and hub lncRNAs identification
We constructed a putative PPI network map for the overlapping DEGs using the STRING
database, which was visualized with Cytoscape. Excluding the DEGs distributed on the
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edge of the PPI network, the remaining 110 central DEGs were evaluated using the
centiscape plugin. After degree calculation, a total of 34 hub genes were colored red in
the PPI network (Fig. 5A and Table 2). Using this same approach, we also constructed a
lncRNA–gene co-expression network. Each hub lncRNA was determined by calculating
its downstream hub genes whose count should be ranked in the top three (minimum
of two genes). A total of 23 lncRNAs were screened and are presented in Table 3. From
this analysis, the lncRNAs CRNDE (target DEGs: COL4A2, COL6A2, COL6A1, COL5A1,
AGRN, POSTN and SGCG) and LINC00152 (target DEG: CDKN1A) stood out. We also
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focal adhesion 10 2.84E-03 DLC1, CDH13, MPZL1, ENAH, MCAM, NEXN, CSRP2, 
PHLDB2, ITGB1, PLEC

sarcolemma 8 2.52E-07 SLC8A1, SGCG, ANK3, DMD, COL6A1, ITGB1, SGCA, PLEC
extracellular matrix 7 4.58E-04 COL14A1, SFRP2, FBN1, COL15A1, COL12A1, LOXL1, DPT

collagen trimer 6 6.04E-05 COL4A2, COL4A1, C1QTNF3, COL3A1, COL15A1, LOX
external side of plasma membrane 6 2.22E-02 GPC4, CDH13, CD34, MCAM, IL7R, ITGB1

basement membrane 5 1.06E-03 MATN2, FBN1, COL15A1, LAMC1, COL5A1
basal lamina 3 4.29E-03 LAMA4, NID1, AGRN

calcium ion binding 18 2.83E-05 MATN2, SLC8A1, FBN1, PAMR1, NCS1, S100A10, NID1, 
MCTP1, CDH13, SULF2, FAT4, FBLN5, PKD2, VCAN, AGRN, 
PLCB2, SGCA, THBS3

extracellular matrix structural constituent 8 7.46E-08 COL4A2, COL4A1, COL3A1, FBN1, VCAN, LAMC1, LAMB1, 
COL5A1

semaphorin receptor binding 3 1.56E-02 SEMA6A, SEMA3C, SEMA3A
chemorepellent activity 3 2.64E-02 SEMA6A, SEMA3C, SEMA3A

spectrin binding 2 3.02E-02 ANK2, ANK3
fibronectin binding 2 4.98E-02 SFRP2, IGFBP3

protein kinase C binding 2 4.98E-02 DACT1, PLEK
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Term Count PValue Genes
PI3K-Akt signaling pathway 16 1.56E-06 PIK3CG, COL4A2, COL4A1, COL3A1, IGF1, IL7R, ITGB1, 

COL5A1, LAMA4, CDKN1A, COL6A2, COL6A1, LAMC1, 
PRKAA2, LAMB1, THBS3

Focal adhesion 14 1.76E-07 PIK3CG, COL4A2, COL4A1, COL3A1, IGF1, ITGB1, COL5A1, 
LAMA4, ARHGAP5, COL6A2, COL6A1, LAMC1, LAMB1, THBS3

ECM-receptor interaction 12 1.17E-09 COL4A2, LAMA4, COL4A1, COL3A1, COL6A2, COL6A1, LAMC1, 
AGRN, LAMB1, ITGB1, COL5A1, THBS3

Protein digestion and absorption 11 1.29E-08 COL4A2, SLC8A1, COL4A1, COL14A1, COL3A1, COL6A2, 
COL15A1, CPA3, COL6A1, COL12A1, COL5A1

Pathways in cancer 11 7.20E-03 PIK3CG, AGTR1, COL4A2, LAMA4, CDKN1A, COL4A1, IGF1, 
LAMC1, LAMB1, ITGB1, PLCB2

Amoebiasis 10 1.37E-06 PIK3CG, COL4A2, LAMA4, COL4A1, COL3A1, ITGB2, LAMC1, 
LAMB1, PLCB2, COL5A1

Hypertrophic cardiomyopathy (HCM) 8 1.67E-05 SGCG, DMD, LMNA, IGF1, PRKAA2, ITGB1, SGCA, SGCB
Small cell lung cancer 7 2.18E-04 PIK3CG, COL4A2, LAMA4, COL4A1, LAMC1, LAMB1, ITGB1

Dilated cardiomyopathy 7 2.33E-04 SGCG, DMD, LMNA, IGF1, ITGB1, SGCA, SGCB
Axon guidance 7 1.84E-03 SEMA6A, PLXNC1, SEMA3C, UNC5C, SEMA3A, ITGB1, EPHA3

FoxO signaling pathway 7 2.43E-03 PIK3CG, CDKN1A, IGF1, BCL6, PRKAA2, IL7R, HOMER1
Cell adhesion molecules (CAMs) 7 2.83E-03 NCAM1, MPZL1, CD34, ITGB2, VCAN, SELPLG, ITGB1

Arrhythmogenic right ventricular cardiomyopathy 6 6.50E-04 SGCG, DMD, LMNA, ITGB1, SGCA, SGCB
Transcriptional misregulation in cancer 6 2.15E-02 PLAT, EYA1, CDKN1A, IGF1, BCL6, IGFBP3

Viral myocarditis 5 1.67E-03 SGCG, DMD, ITGB2, SGCA, SGCB
Toxoplasmosis 5 2.58E-02 LAMA4, IL10RA, LAMC1, LAMB1, ITGB1

Leukocyte transendothelial migration 5 3.33E-02 PIK3CG, ARHGAP5, NCF4, ITGB2, ITGB1
Platelet activation 5 4.42E-02 PIK3CG, COL3A1, ITGB1, PLCB2, COL5A1

A B
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D

Figure 4 GO functional classification and KEGG pathways enrichment in DEGs. (A) Histogram of Gene Ontology (GO) functional classification
of DEGs. The x-axis represents the number of DEGs, with individual GO terms plotted on the y-axis. All GO terms were grouped into three cate-
gories: biological processes, cellular components, and molecular functions. The graph displays only significantly enriched GO terms (P < 0.05), with
darker blue indicating greater significance. (B) Top BP, CC, and MF terms and their corresponding genes in GO functional enrichment analyses. (C)
Histogram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment in DEGs. The x-axis represents the number of DEGs anno-
tated in a pathway, with individual KEGG terms shown on the y-axis. The graph displays only significantly enriched KEGG terms (P < 0.05), with
darker red indicating greater significance. (D) Individual KEGG terms are shown for each group.

Full-size DOI: 10.7717/peerj.7024/fig-4
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Figure 5 Protein–protein interaction (PPI) network construction. (A) A PPI network was used to
screen for lncRNA-targeted DEGs. Genes marked in red represent hub genes with a degree of interaction
≥ 5. The darker the connection line, the greater the confidence score. A total of 34 DEGs were identified
as age-related hub genes. (B) lncRNA-mRNA association network. Circles indicate mRNAs, with
diamonds used to indicate non-protein-coding RNAs. A larger node indicates a larger log_2FC value.
Upregulated genes are shown in red and downregulated genes are shown in blue. Here we identified two
hub-lncRNAs, CRNDE and LINC00152 and constructed their lncRNA-mRNA networks in graph B. (C)
PPARGC1A-lncRNA network. PPARGC1A was a novel DEG which exhibits a close relationship with
differently identified age-related lncRNAs.

Full-size DOI: 10.7717/peerj.7024/fig-5

identified an important hub gene, PPARGC1A, which exhibited tight connections with
other lncRNAs (Fig. 5C).
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Table 2 Hub-genes identified by centiscape (degree≥ 5) among 174 DEGs.

Name logFC AveExpr P.Value Transcript_id Degree

ITGB1 −1.75 16.20 5.68E–04 NM_002211 24
COL4A1 −2.08 6.32 1.06E–05 NM_001845 15
DMD −2.54 5.21 1.16E–04 NM_000109 15
PIK3CG −2.76 5.00 2.46E–03 NM_002649 15
ACTA2 −3.98 8.71 2.63E–05 NM_001141945 13
COL3A1 −2.17 14.51 9.08E–03 NM_000090 13
COL4A2 −2.39 5.86 1.27E–06 NM_001846 13
COL6A2 −2.16 7.79 5.55E–03 NM_001849 13
COL6A1 −3.24 12.98 2.16E–03 NM_001848 12
ITGB2 −1.57 5.28 2.96E–02 NM_000211 12
COL5A1 −3.98 12.58 4.02E–03 NM_000093 11
LAMB1 −4.11 7.02 6.24E–05 NM_002291 11
NCAM1 −2.70 9.34 8.57E–03 NM_000615 11
AGRN −1.29 5.82 3.74E–05 NM_198576 10
CD34 −2.22 8.14 8.45E–03 NM_001025109 10
FBN1 −2.32 12.40 2.56E–05 NM_000138 10
COL12A1 −2.64 14.08 4.18E–05 NM_004370 9
COL15A1 −3.08 8.66 7.14E–03 NM_001855 9
IGF1 −2.17 8.53 2.33E–04 NM_000618 9
LAMC1 −1.14 5.81 4.06E–03 NM_002293 9
PLEK −3.59 7.30 2.46E–04 NM_002664 9
COL14A1 −4.13 12.30 7.96E–04 NM_021110 8
LAMA4 −1.82 7.39 8.45E–05 NM_001105206 8
NID1 −4.19 9.38 2.22E–08 NM_002508 8
RRAD −1.19 4.96 3.31E–03 NM_001128850 7
VCAN −4.09 10.96 2.68E–04 NM_001126336 7
CAP2 −1.17 6.67 2.07E–03 NM_006366 6
H2AFX −1.19 6.96 2.48E–04 NM_002105 6
LOX −2.88 11.46 1.92E–03 NM_001178102 6
PLEC −1.05 8.23 4.22E–03 NM_000445 6
CDKN1A −1.73 7.04 6.11E–03 NM_000389 5
NID2 −3.56 9.41 3.20E–05 NM_007361 5
POSTN −7.29 10.68 1.97E–03 NM_001135934 5
SGCG −1.26 4.39 3.62E–02 NM_000231 5

qRT-PCR validation
To confirm the results of our bioinformatic analysis, we examined the expression of CRNDE
and LNC00152 by qRT-PCR in 16 cartilage samples. According to Fig. 6, the transcriptional
levels of CRNDE and LNC00152 were significantly decreased in OA group compared with
the normal group. These results were consistent with our previous integrative analysis
listed in Table 3 and showed the same trends of these hub lncRNAs.
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Table 3 All differentially expressed lncRNAs upstream of DEGs.

Gene symbol logFC AveExpr P.Value change

ACOX2 −1.29 5.88 1.83E–05 DOWN
ANKAR 1.44 9.79 6.63E–05 UP
BST2 −1.26 6.01 8.68E–04 DOWN
CALD1 −2.03 11.76 8.24E–05 DOWN
CRNDE −1.62 6.96 5.43E–06 DOWN
DDIT4 −1.08 6.48 6.00E–03 DOWN
DNAJA1 −1.18 10.99 1.41E–04 DOWN
ENO1 −1.24 12.23 3.24E–02 DOWN
EPS8 1.39 10.73 2.24E–04 UP
ERBB3 1.35 6.31 1.90E–03 UP
FASTKD1 −1.27 10.04 2.31E–03 DOWN
HSPA8 −1.20 14.94 7.94E–05 DOWN
ITGAV −1.35 9.69 6.15E–04 DOWN
KHDRBS3 −2.58 7.15 4.01E–04 DOWN
LINC00152 −2.20 8.75 2.19E–04 DOWN
MYO7A 1.09 6.56 4.67E–03 UP
N4BP2L2-IT2 1.27 11.17 1.64E–04 UP
NDRG2 1.83 9.05 9.92E–03 UP
RAPGEF5 1.88 5.55 2.01E–05 UP
SLC20A1 1.23 11.19 1.77E–02 UP
TMEM161B-AS1 1.02 7.91 1.70E–05 UP
TRIP12 −1.67 10.53 1.84E–04 DOWN
XPNPEP3 1.22 7.23 1.04E–03 UP

DISCUSSION
LncRNAs have emerged as critical modulators of transcriptional, post-transcriptional,
and epigenetic gene regulation, with emerging evidence suggesting a relationship between
lncRNAs and OA. With the development of high-throughput sequencing technology, an
increasing number of RNA-sequencing projects have been performed, identifying key
functional mRNAs, miRNAs, lncRNAs, and circRNAs in the development of OA. Xing et
al. (2014) reported six lncRNAs, including HOTAIR, GAS5, PMS2L2, RP11–445H22.4,
H19, and CTD-2574D22.4, which were differently expressed in OA samples in microarray
analyses (Xing et al., 2014). Subsequent studies have since described lncRNAs expression
patterns in human osteoarthritic cartilage using a combination of DNA microarray
and bioinformatic analyses (Fu et al., 2015). Additional lncRNAs including PACER,
CILinc01, and CILinc02, have also been reported in human hip OA chondrocytes, and
were significantly associated with the OA inflammatory response (Pearson et al., 2016).
Similarly, when comparing the expression of lncRNAs in OA cartilage of variable severity,
four hub lncRNAs, SNHG5, ZFAS1, GAS5, and DANCR, were identified as key functional
mediators in OA pathogenesis (Xiao et al., 2018).
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Figure 6 Relative expression of CRNDE (A) and LINC00152 (B) in human samples. Relative expression
of CRNDE (A) and LINC00152 (B) in human samples, as determined by RT-PCR. Each column repre-
sents the mean± SD. The OA group exhibited lower-level expression of CRNDE and LINC00152 com-
pared with the normal group. OA samples were obtained from eight osteoarthritis patients who under-
went total hip arthroplasty. Normal samples were obtained from eight femoral neck fracture patients who
underwent total hip arthroplasty. *p< 0.05 vs. normal group.

Full-size DOI: 10.7717/peerj.7024/fig-6

Although many bioinformatics analyses have revealed differences in gene expression
patterns in OA samples, few have examined what, if any, age-related lncRNAs are involved
in this process. Therefore, a detailed database of lncRNA observed in rat knee articular
cartilage at different developmental stages was used in our study. By comparing differential
gene expression in five stages, newborn (T0), youth (T1), adult (T2), early-stage elderly (T3),
and later-stage elderly (T4), a set of age-relatedDEGswere identified.Next, we identified the
homologous human genes for each of our age-related rat DEGs, which then were compared
against a separate set of DEGs extracted from a human OA lncRNAs expression database.
Our results broadly confirmed dysregulated gene in age-related cartilage, including ITGB1,
COL4A1, DMD, PIK3CG, ACTA2, COL3A1, COL4A2, COL6A2, and COL6A1. We also
identified two hub lncRNAs, CRNDE and LINC00152, which were not identified in
previous studies.

LINC00152 is an 828 bp lncRNA located on chromosome 2p11.2. Previous studies have
found that LINC00152 plays an oncogenic role in the development of a wide range of tumor
types (Chen et al., 2018a;Chen et al., 2018c). Enhanced LINC00152 expression has also been
found to be a potential prognostic biomarker in patients with lung and colorectal cancers
(Chen et al., 2018b; Li et al., 2017b). LINC00152 also acts as a sponge for various miRNAs,
as shown in a recent report describing the interaction between LINC00152 and miR-139
in colorectal cancer cells (Bian et al., 2017). This observation is important, as emerging
evidence has shown increased expression of miR-139 in OA cartilage, with increased
miR-139 expression resulting in higher expression of IL-6 and chondrocyte apoptosis (Hu
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Figure 7 KEGG analyses of (A) LINC00152 and (B) CRNDE. The x-axis represents the number of pre-
dicted target gene, with individual KEGG terms shown on the y-axis.

Full-size DOI: 10.7717/peerj.7024/fig-7

et al., 2016; Makki & Haqqi, 2015). Furthermore, KEGG analyses of LINC00152 (Fig. 7A)
revealed strong associations between osteoclast differentiation, cell cycle, andWnt signaling
pathways and LINC00152 in OA. Given these observations, the LINC00152/miRNA axis
will likely become a major focus of future OA studies.

Another hub lncRNA identified in our study, CRNDE, is a 1910 nt cancer-secreted
lncRNA transcribed by human chromosome 16 (16q12.2). This lncRNA has been observed
in a variety of cancers, including osteosarcoma, colorectal, cervical, and gastric cancers (Ding
et al., 2017;Hu et al., 2017; Li et al., 2018;Meng et al., 2017).Huan et al. (2017) reported an
important role for CRNDE in the pathophysiology of human breast cancer. CRNDE was
shown tomodulate theWnt/β-catenin signaling pathway by repressingmiR-136 expression
via the miRNA sponge mechanism, resulting in significant difference in proliferation,
migration, and invasion of breast cancer cells. Coincidentally, another group demonstrated
that miR-136 plays an important role in the regulation of chondrogenesis in human
adipose-derived stem cells (Zhang et al., 2012). Further research revealed that miR-136
bound to the 3′-UTR of MMP13, a key catabolic enzyme involved in the degradation of
ECM (Li et al., 2017a). By competitively binding with miR-136, circRNA-CER regulates
MMP13 expression, further promoting chondrocyte ECM degradation (Liu et al., 2016).
Beyond miR136, decades of research have shown that CRNDE modulates miR-384 activity
in a number of tumor cell types (Chen et al., 2016;Zheng et al., 2016). Recently,miR-384–5p
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Table 4 Potential functional miRNAs associated with hub lncRNAs.

predicted miRNAs for LINC00152 predicted miRNAs for CRNDE

hsa-miR-106a-5p hsa-miR-136-5p
hsa-miR-125a-3p hsa-miR-384
hsa-miR-129-5p hsa-miR-145-5p
hsa-miR-136-5p
hsa-miR-1-3p
hsa-miR-149-5p
hsa-miR-185-5p
hsa-miR-193a-3p
hsa-miR-193b-3p
hsa-miR-206
hsa-miR-24-3p
hsa-miR-320a
hsa-miR-320b
hsa-miR-320c
hsa-miR-320d
hsa-miR-376a-3p
hsa-miR-376b-3p
hsa-miR-376c-3p
hsa-miR-383-5p
hsa-miR-485-5p
hsa-miR-503-5p
hsa-miR-613
hsa-miR-873-5p

was shown to induce OA by regulating the expression of SOX9 and downregulating activity
of the NF-κB signaling pathway (Zhang et al., 2018). Taken together, these data suggest that
CRNDE can act as a miRNA sponge, competing for miRNA binding with protein-coding
transcripts, although the exact mechanism of lncRNA CRNDE-mediated regulation of
OA pathogenesis remains to be investigated. Other potential miRNAs related to these two
hub lncRNAs have been curated from databases (RAID 2.0, starBASE v2.0, miRTarBase),
and are listed in Table 4. Targets suggested by KEGG analyses suggest that the PI3K–Akt
signaling pathway, proteoglycan metabolism, and the Ras signaling pathway are promising
targets (Fig. 7B).

Outside of lncRNAs, the PPI network identified PPARGC1A as a novel mediator of OA
pathogenesis due to its close relationship with various age-related lncRNAs. PPARGC1A,
also known as human-accelerated region 20, encodes the peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α). PGC-1 α is widely viewed as a master
regulator of mitochondrial biogenesis (Liang & Ward, 2006). Reduced expression of
PGC-1α has been observed in knee cartilage of aged mice, where it may attenuate oxidative
stress and cartilage erosion in OA (Zhao et al., 2014). Activation of PGC-1α expression
significantly enhances mitochondrial biogenesis and inhibits oxidative phosphorylation in
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OA chondrocytes. Similarly, the AMP-activated protein kinase/PGC-1 signaling pathway
is an effective target for OA treatment in a rat model (Wang et al., 2018a).

CONCLUSIONS
The current study identified a series of DEGs and lncRNAs in each developmental stage of
articular cartilage. Using a series of bioinformatics analyses, two pivotal lncRNAs, CRNDE
and LINC00152, were identified, which are strongly associated with age-related cartilage
degradation. Further functional analyses suggest a potential mechanism through which
these hub lncRNAs mediate OA pathogenesis. Our results highlight the important role of
lncRNAs in the pathogenesis of OA, although more research is necessary to confirm our
findings.
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