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ABSTRACT:

We introduce a new method for the piecewise-planar approximation of 3D data, including point clouds and meshes. Our method
is designed to operate on large datasets (e.g. millions of vertices) containing planar structures, which are very frequent in an-
thropic scenes. Our approach is also adaptive to the local geometric complexity of the input data. Our main contribution is the
formulation of the piecewise-planar approximation problem as a non-convex optimization problem. In turn, this problem can be
efficiently solved with a graph-structured working set approach. We compare our results with a state-of-the-art region-growing-
based segmentation method and show a significant improvement both in terms of approximation error and computation efficiency.

a. Original point cloud b. Initialization c. First iteration d. Final result

Figure 1. Illustration of our method on a LiDAR scan of an urban scene. Our algorithm takes an input point cloud (a), and start by
extracting planes using a RANSAC approach (b). These planes are used to initialize a graph-structured working-set algorithm. We

represent the evolution of the approximation, after the first (c) and the last (d) iteration. Each color represents a different region.

1. INTRODUCTION

With the advance of modern acquisition technologies, 3D scans
tend to be more and more dense thus contain more and more
points. This allowed for an increase in the level of detail at the
cost of an increased computational and memory load. Therefore,
generalizing or simplifying 3D data would enable more efficient
processing, interpretation and visualization of the data. The struc-
ture of anthropic objects, such as roads, roofs and facades, can be
exploited to achieve this goal. Hence, LiDAR scans of anthropic
objects would thus highly benefit from piecewise-planar approx-
imation.

Most of the work in the literature focuses on the extraction of ge-
ometric primitives using a RANSAC-based approach (Schnabel
et al., 2007) or a region growing clustering algorithm (Cohen-
Steiner et al., 2004). These methods are then traditionally used
as a baseline for 3D reconstruction (Peternell and Steiner, 2004;
Chauve et al., 2010) or point cloud approximation (Fang et al.,
2018).

Our idea differs from the literature, as we propose a formulation
of the piecewise-planar approximation problem as a single non-

convex optimization problem. Our method aims at producing a
segmentation of point clouds into planes which is adaptive to the
local geometric complexity. We also argue that a mesh structure
is not necessary to perform a segmentation of 3D data, since we
can represent a point cloud as a graph, structured with point ad-
jacency (k-nearest neighbors for instance); and point adjacency
does not require mesh information (even if mesh information can
be used to build point adjacency).

2. STATE OF THE ART

Traditional approaches for approximation of 3D data consists in
clustering points belonging to the same primitive, and then fitting
models on each group. In this section, we present an overview of
the state-of-the-art for these two problems.

2.1 Plane Fitting

The least squares method is the standard approach for fitting para-
metric model on 3D data. It consists in selecting the models
for which the sum of square distance between the points and
the model is minimal. This method has been used extensively
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to find relevant primitives to approximate 3D point clouds as set
of planes (Xie et al., 2003; Dzitsiuk et al., 2017). Tatavarti et
al. (2017) partition their data into cubical regions and use a least
square algorithm to fit a plane in each cell. This approach has
also been used to reconstruct facades from 3D point clouds (Mar-
tinovic et al., 2015).

The RANSAC algorithm (Fischler and Bolles, 1981; Schnabel
et al., 2007) is one of the most popular method for extracting
planes in 3D point clouds. Given a dataset composed of inliers
and outliers, this method works by iteratively fitting a mathemat-
ical model to a random subset of the data and checking whether
the whole dataset is consistent with this mathematical model. In
the case of piecewise-planar approximation of 3D data, the math-
ematical model will be a plane equation. This approach has been
thoroughly investigated in the literature (Asvadi et al., 2016; Dzit-
siuk et al., 2017). Holzmann et al. (2017) used a RANSAC-based
approach for plane extraction in point clouds, and a reconstruc-
tion algorithm based on extracted planes to build a Manhattan-
like structure. Moreover, Xu et al. (2015) introduced a weighted
RANSAC approach with a soft threshold voting function, based
on two weighted functions. It allows them to lower the number
of spurious planes and improve segmentation quality.

Another way of finding planes in 3D data is to use a planarity
geometric feature as detailed in Demantke et al. (2011). These
features are based on the eigenvalues of the co-variance matrix
of points’ neighbors coordinates. Chauve et al. (2010) use a pla-
narity feature to detect planes. Boulch et al. (2014) first order
points according to their local planarity to seed a region growing
algorithm. In Ma et al. (2013), the authors find planes’ normals
by selecting points with the lowest curvature, and iteratively grow
regions based on these points.

Finally, planes can be interpreted as sets of non-parallel lines.
Holzmann et al. (2018) propose to find planes using sets of or-
thogonal lines that are close enough to be considered part of a
same object. Their method allows them to detect less spurious
planes in urban areas.

2.2 Segmentation

Region growing is one of the most prevalent segmentation ap-
proaches for the segmentation of 3D data (Cohen-Steiner et al.,
2004; Whelan et al., 2015; Fang et al., 2018). Vo et al. (2015) use
an adaptive octree to improve segmentation results. The RAPter
algorithm (Monszpart et al., 2015), a man-made scenes recon-
struction algorithm based on regular arrangements of planes, is
initialized using a region growing-based over-segmentation of
their input point cloud. Their algorithm is able to take into ac-
count plane primitives and inter-plane relations. Whelan et al.
(2015) argue that a local curvature-based region growing algo-
rithm can outperform RANSAC-based approaches for segment-
ing point clouds. Region-growing has also been coupled with
a regularization step based on simple relationships between ex-
tracted primitives (coplanarity, parallelism and orthogonality) in
Oesau et al. (2016).

One of the main other approaches for segmenting 3D data is the
Mean-Shift algorithm (Ferraz et al., 2012). It seeks maxima of
a density function, given discrete data samples. This method has
the advantage of being non-parametric. Dai et al. (2018) use a
mean-shift method to detect individual trees in multispectral air-
borne LiDAR point clouds.

Moreover, point clouds can be structured by an adjacency rela-
tionship between points, such as nearest neighbors, a triangulated
mesh or a 3D Delaunay triangulation (Boissonnat, 1984). This al-
lows us to represent the cloud as a graph, on which the vertices
are the 3D points. As a benefit, efficient graph-structured cluster-
ing methods can be used, typically relying on graph-cuts (Klasing
et al., 2008; Strom et al., 2010). Landrieu and Obozinski (2017)
introduced the `0-cut pursuit algorithm, a greedy working-set ap-
proach to computing piecewise constant approximation of signals
on such a graph. Dutta et al. (2018) adapted the Normalized Cut
algorithm (Shi and Malik, 2000) to 3D LiDAR point clouds, an
algorithm originally designed for perceptual grouping in raster
images.

One of the main drawbacks of point cloud clustering is its ten-
dency to either lose information on areas with high geometric
complexity, or to over-segment the cloud. Thus some work focus
on an non-adaptive over-segmentation to then generalize it at a
given level of detail (Attene and Patanè, 2010; Lejemble et al.,
2018). Nan and Wonka (2017) focus their work on an arrange-
ment of planes from which a manifold polyhedral surface model
without boundary is extracted, which can be seen as a piecewise
planar approximation.

For a more complete state of the art on primitive extraction and
segmentation, especially in a 3D reconstruction context, we refer
the reader to Berger et al. (2017).

3. METHODOLOGY

In this paper, our objective is to compute a piecewise-planar ap-
proximation of an unstructured and noisy point cloud, acquired
either from mobile mapping or terrestrial laser scanning. Even if
not demonstrated here, the method should extend seamlessly to
aerial or UAV liDAR scans. We denote V the set of 3D vertices
in the input data. We consider that a good approximation of our
data should contain as few planes as possible. As we are working
in urban areas, with man-made objects, which often have sim-
ple shapes, we want to favor simple interfaces between planes as
well. We use a weighted oriented graph structure G = (V,E,w)
to represent our data, where E ∈ V × V characterizes the adja-
cency between each point and w ∈ RE+ stands for the weight of
each edge, encoding the closeness between points.

Our approach can be decomposed in 2 steps: first, we compute
the weighted adjacency graphG, then we compute the piecewise-
planar approximation by solving a graph-structured optimization
problem.

3.1 Weighted adjacency graph

If the input 3D data already has a graph structure (for instance
if it is a mesh), we can simply use it as adjacency graph. If the
data is an unstructured point cloud, there are several possibilities
to build an adjacency graph structure (i.e. define which points
are neighbors): k-nearest neighbors, triangulated meshing, 3D
Delaunay triangulation, among others. We propose an adjacency
graph based on the work of Guinard and Vallet (2018) which ex-
ploits sensor topology to connect the scanned points with edges
and triangles and leaves isolated points unconnected. We chose
to create an edge in G if and only if the two vertices belong to
at least one shared triangle. Indeed, isolated points and edges of
the simplicial complex correspond to parts of the scene where the
geometry is not even locally surfacic, i.e. the geometry is too
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complex relative to scanning resolution to define a local tangent
plane, such as tree foliage or linear structures for which planar ap-
proximation would not be appropriate. This acts as a prefiltering
step in combination to providing the adjacency structure.

We design an edge weight which decreases with the distance be-
tween points:

wu,v =
1

α+ d(u,v)
d0

, (1)

where d0 is the mean length of edges in the input data, and α a
non-negative constant taken here as 2.

3.2 Piecewise-planar approximation

The piecewise-planar approximation is computed by solving a
graph-structured optimization problem. We use a modified ver-
sion of the `0-cut pursuit algorithm of Landrieu and Obozinski
(2017) which we dub `0-plane pursuit.

3.2.1 Formulation We denote the set of all planes of R3 asP .
We denote by d(v, π) the distance between a vertex v and a plane
π ∈ P . For Π a set of planes in PV , we denote Πv the plane
associated to vertex v. Such plane set defines an approximation of
V characterized by the projection of each vertex to its associated
plane.

We aim to construct an energyE : PV → R whose minimization
gives a precise and simple piecewise-planar approximation of V .
For Π ∈ PV , we propose the following energy:

E(Π) =
∑
v∈V

d(v,Πv)2 + µ
∑

(u,v)∈E

wu,v[Πu 6= Πv], (2)

where [π 6= π′] is the function of P2 → {0, 1} equal to 0 when
π and π′ are identical planes, and 1 otherwise. The parameter
µ ∈ R+ is the regularization strength. The first term of Equa-
tion 2 corresponds to the fidelity term of the energy. This term
ensures that each point is well approximated by its corresponding
plane. The second part of Equation 2 encourages the planes as-
sociated to adjacent vertices to have identical parametrization. It
also forces the interface between adjacent planes to have simple
shapes by penalizing edges between adjacent vertices with differ-
ent planes. Therefore, a set of planes with low energy should
achieve a tradeoff between shape complexity and precision of
their approximation of the input point cloud. Note that our choice
of w (see Equation (1)) favors cuts between distant points, insur-
ing that vertices associated to the same plane are never too far
from one another.

3.2.2 Energy minimization We define the set of approximat-
ing planes as the results of the following optimization problem:

Π? = arg min
Π∈PV

E(Π) . (3)

The energy E is non-convex, non-continuous and non-
differentiable, and hence is hard to minimize. However, it is
similar to the energy in the generalized minimal partition prob-
lem introduced by Landrieu and Obozinski (2017) to compute
piecewise constant approximation of multidimensional signals on
graphs. In this paper, the energy is minimized using the `0-cut
pursuit algorithm. It is a working set algorithm, maintaining a
partition V of the graph G into disjoint constant connected com-
ponents. It also keeps track of the adjacency structure of the com-
ponents.

The `0-cut pursuit algorithm proceeds in a top-down manner, it-
eratively splitting a current partition V in finer components. At
each iteration, each component is split into two parts through a
graph-cut formulation. If it is profitable with respect to the objec-
tive energy to split the component, it is replaced by the connected
components of the two parts. At the end of each iteration, ad-
jacent components whose fusion would decrease the energy are
merged. The algorithm stops when no components can be further
refined nor merged. While this algorithm does not guarantee to
find a global optimum of the generalized minimal partition prob-
lem, in practice it is able to find good approximate solutions in a
few iterations only.

Our problem differs from the generalized minimal partition prob-
lem since our variable associated with each vertex is in the space
of planes instead of a multidimensional signal. However, we can
follow a very similar scheme to the `0-cut pursuit algorithm to
minimize E. The key steps that we adapted are:

• Initialization: to minimize the influence of bad initializa-
tion, we start by computing k0 planes using the RANSAC
algorithm. k0 is chosen such that the relative decrease in
energy provided by adding an extra plane is under a given
threshold (chosen here to 0.005).

• Refining: in the `0-cut pursuit algorithm, components are
split according to the optimal binary partition criterion (Lan-
drieu and Obozinski, 2017, 3.1.1). Translated to our set-
ting, this amounts to finding the binary partition (B,Bc) of
a component U defined as follow:

arg min
B⊂U,(π,π′)∈P2

∑
v∈B

d(v, π) +
∑

v∈U\B

d(v, π′) + µ
∑

(i,j)∈EB

wi,j ,

with EB = E ∩ (B ×Bc ∪Bc ×B) the set of edges link-
ing B and Bc = U \ B. This step can be approximately
solved by an alternated minimization scheme adapted from
the original `0-cut pursuit algorithm. We replace the initial-
ization step from 2-means to a 2-plane extraction step using
the RANSAC algorithm. The optimization with respect to
B can be performed efficiently through a graph-cut formu-
lation, while the optimization with respect to π and π′ is
done through least square minimization. The scheme of this
algorithm is detailed in Algorithm 1. In practice, we observe
that ite split = 3 iterations of this scheme are sufficient.

• Backward step: as a greedy working-set method, the `0-cut
pursuit algorithm benefits from allowing the mergeing of ad-
jacent components as long as it decreases the global energy.
This can be easily adapted to our setting: to estimate if two
adjacent components should be merged, a common plane is
computed and the resulting energy increase is compared to
the decrease in penalty.

To summarize our algorithmic scheme, we introduce the follow-
ing subroutines:

• (π1, · · · , πk) ← RANSAC(U, k): takes U ⊂ V a set of ver-
tices and k a number of planes as input, and returns a set of
k planes extracted by the RANSAC algorithm.

• (π1, · · · , πk) ← fit(U): takes a set of k disjoint compo-
nents U = {U1, · · · , Uk} as input and returns (π1, · · · , πk)
a set of k planes fitting each vertex set Ui according to the
least square criterion.
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• V ← associate(π1, · · · , πk): takes a set of k planes as
input and return a partition V = {U1, · · · , Uk} of V such
that each component Ui contains all the points for which the
plane πi is the closest.

• U ′ ← connected components(U): takes U a set of dis-
joint components as input and return the partition of their
union into connected components with respect to graph G.

• U ← merge(U,U ′): takes two components U and U ′ ad-
jacent in G and return their merged component if is is prof-
itable with respect to the energy E, or {U,U ′} otherwise.

We summarize our method in Algorithm 2. The first for-loop
corresponds to the split step and the second one to the merge step.
We draw attention on the fact that the merge step is optional, but
helps reducing the number of regions in the partition as well as
decreasing the global energy.

Algorithm 1 U ← split(U)

(π, π′)← RANSAC(U, 2)
for ite split iterations do
B ← arg min

B⊂U

∑
v∈B

d(v, π) +
∑

v∈U\B

d(v, π′) + µ
∑

(i,j)∈EB

wi,j

(π, π′)← fit({B,U \B})
end for
U ← connected components({B,U \B))
return U

Algorithm 2 `0-plane pursuit

(π1, · · · , πk0)← RANSAC(V, k0) % Initialization
V ← associate(π1, · · · , πk0)
V ← connected components(V)
while not converged do

for U ∈ V do
U ← split(U) % Component splitting
V ← V \ U ∪ U

end for
for U,U ′ adjacent in G do
U ← merge(U,U ′) % Component merging
V ← V \ {U,U ′} ∪ U

end for
end while
return V , fit(V)

The `0-plane pursuit algorithm presented in Algorithm 2 returns
a partition V = (U1, · · · , Uk) of V as well as a set of planes
(π1, · · · , πk). The vertices in Ui are approximated by their pro-
jection in the plane πi. The plane set Π such that Πv = πi if and
only if v is in Ui is an approximate minimizer of the energy E.

We want to draw attention on the fact that our formulation doesn’t
have any assumption on the planes’ orientation and number, nor
on the number of vertices per region. This allow us to produce a
segmentation that is adaptive to the local geometry of the cloud,
by creating more regions in complex parts of the scene while
keeping a simple approximation with a small number of planes
for large planar parts, such as roads or facades.

4. RESULTS

We compare our results to our own implementation of the region-
growing-based method of Cohen-Steiner et al. (2004), which will

serve as baseline. We do not compare our method with other
state-of-the-art work such as Polyfit (Nan and Wonka, 2017) be-
cause they do not address exactly the same problem. For instance,
Polyfit consider the problem of point cloud approximation for
the 3D reconstruction by looking for an appropriate set of self-
intersecting primitives, whereas our approach is not meant to be
watertight, and each primitive can be disconnected from the other
primitives. We design our metric according to our main goal: ap-
proximating a set of points with a set of planes. Our metric will
be expressed as the sum of squared distances from the points to
their associated plane:

E =
∑
v∈V

d(v, πv)2. (4)

The method of Cohen-Steiner et al. (2004) takes a mesh and the
number of desired regions N as input. The seed planes are cho-
sen at random and the algorithm grows along the seeds. For every
iteration of the algorithm, the set of planesP is recomputed. Each
new plane corresponds to the best-fitting plane of each region ac-
cording to the same L2 criterion that we use. The region-growing
process is repeated until the algorithm converges.

This method works well for small datasets, but is not suitable for
large datasets, due to its time complexity. Another major draw-
back of this method is the need to specify the number of regions
as input: when working with a new scene, we cannot know in
advance how many planes will be necessary to precisely approx-
imate the scene.

4.1 Datasets

We evaluate our method on two urban point clouds, one outdoor
and the other indoor.

The outdoor scene was acquired via mobile mapping, with the
Stereopolis vehicle (Paparoditis et al., 2012) in the streets of
Paris. It contains 218, 546 points and 418, 254 triangles. The
scene represents a portion of street, with a road in the middle of
the scan. Two of the sides are occupied by buildings. Some ceil-
ings are acquired through the windows present in the scan.

The indoor scene was acquired with a fixed terrestrial laser inside
a small chapel by the Centre de formation ENSG-Forcalquier.
The acquisition is very dense and contains 1, 263, 321 points and
7, 313, 760 triangles. It represents wall portions with vaults. We
selected this dataset for two reasons, first to validate the scaling of
our method, and then because to evaluate its precision on surfaces
such as vaults which are not exactly planar. Because of the size
of the data, only our method is tested on this dataset.

The clouds have been meshed with the algorithm presented in
Guinard and Vallet (2018). We note that the reconstruction used
is noisy and leads to the creation of isolated triangles (that may
not be connected to the rest of the graph due to the use of the sen-
sor topology). The graph structure used in our paper would create
a separate sub-graph for each of such isolated triangle. Hence we
cleaned the datasets to keep only the main graph components for
both methods.

4.2 Numerical experiments

We also compare the baseline approach with our method on the
outdoor scene. The baseline algorithm is run twice, for 5 and 15
iterations respectively. More iterations do not significantly im-
prove the results. In order to be able to fairly compare our method

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-365-2019 | © Authors 2019. CC BY 4.0 License.

 
368



(a) Region-growing baseline, with 492 regions and 5 iterations (b) Region-growing baseline, with 492 regions and 15 iterations

(c) Ours, without merge step, 514 regions (d) Ours, 492 regions

Figure 2. Comparison of our method and the baseline. Each color represent a different region. Points are projected on the plane
supporting their region. Each result comes with a close picture of a building and a road portion. Our method creates large regions on

simple parts of the cloud, in order to be more adaptive on complex parts.

500 1,000 1,500 2,000 2,500 3,000

103

104

# of regions

error (m2)

`0-plane pursuit
`0-plane pursuit-no-merge
Region-growing (5 iter.)

Region-growing (15 iter.)

Figure 3. Comparison of the error between our method and the
region-growing baseline on the urban dataset.

500 1,000 1,500 2,000 2,500 3,000

102

103

# of regions

time (s)

`0-plane pursuit
`0-plane pursuit-no-merge
Region-growing (5 iter.)

Region-growing (15 iter.)

Figure 4. Comparison of the computation time in seconds
between our method and the region-growing baseline.
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(a) Original point cloud (b) RANSAC-based segmentation

(c) `0-plane pursuit segmentation
without merge step

Regularization strength: 0.1

(d) `0-plane pursuit segmentation
without merge step

Regularization strength: 0.01

(e) `0-plane pursuit segmentation
without merge step

Regularization strength: 0.001

(f) `0-plane pursuit segmentation
with merge step

Regularization strength: 0.1

(g) `0-plane pursuit segmentation
with merge step

Regularization strength: 0.01

(h) `0-plane pursuit segmentation
with merge step

Regularization strength: 0.001

Figure 5. Scan of the inside of the chapel cloud, composed of walls and vaults. Each color corresponds to a different region. We
remark that the use of the merge step decreases the number of regions without increasing the quality of the reconstruction.

to the baseline, we decide to evaluate both methods with the same
number of clusters. Therefore, we first run our method with a
given regularization strength, then we compute the baseline spec-
ifying the number of clusters found by our method. We also de-
cided to measure the influence of the merge step in our method
by launching it twice at each test: one time with the merge step
(which number of clusters will be used as input parameter for our
baseline) and one time without (called `0-plane pursuit-no-merge
in the results).

We can observe the results on Figure 2. We see that the region-
growing baseline has a tendency to cluster the data in regions of
homogeneous size. This implies that simple and regular parts of
the cloud, such as the road, will be clustered in more regions than
on our method, decreasing the number of regions available to ap-
proximate more complex parts of the cloud. This is the main rea-
son for the large difference in terms of performance between the
baseline and our method. The detailed results for the error metric
are plotted in Figure 3, and the computation times are plotted in
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Figure 4.

While we tried to compare our method with the baseline on the
larger indoor dataset, we could not achieve convergence with the
baseline in reasonable time. The results of our method on the
large indoor dataset are shown on Figure 5. Our expectations
here, are that the vaults should be divided into small planar pieces
elongated in the direction of minimum curvature. We observe that
this is indeed what happens on Figure5. Our method is able to
create large regions for large planar parts of the scene (e.g. walls)
and its high adaptability allows it to create smaller regions to fit
rounded parts of the scan. The detailed results are displayed on
Figure 6.

0 100 200 300 400 500 600 700

0.5

1

1.5

2
·104

# of regions

error (m2)

`0-plane pursuit
`0-plane pursuit-no-merge

Figure 6. Comparison of the error between our method with and
without the merge step on the chapel dataset.

5. CONCLUSION

In this paper, we introduced a new method for the piecewise-
planar approximation of 3D data based on an adjacency structure.
This method is adaptive to the local geometric complexity of the
cloud and is suitable for large datasets (i.e. millions of points).
Our algorithm only required a point cloud as input but can bene-
fit from an existing adjacency information such as that provided
by a triangulated mesh.

We acknowledge that our method could be improved by imple-
menting an adaptation of the merge-resplit strategy presented in
Landrieu and Obozinski (2017). Indeed, the merge step doesn’t
seem able to remove all the small artifacts occasioned by early
segmentation steps.

However, the main drawback of our method is its tendency to lose
the topological connection between adjacent regions. Instead, we
obtain a set of planar regions that are not topologically connected.
A reconstruction as in Ochmann et al. (2016) could overcome this
drawback.

An interesting contribution to improve this method would be the
use of multi-primitives as in Vidal et al. (2014) in our RANSAC
(like spheres or cylinders) that are closer to some objects found

in urban areas, such as trunks or poles. Another interesting per-
spective would be to use the proposed segmentation as part of a
polyhedral reconstruction algorithm.
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