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Quadcopter Flight Control Using a
Non-invasive Multi-Modal Brain
Computer Interface
Xu Duan, Songyun Xie*, Xinzhou Xie*, Ya Meng and Zhao Xu

School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China

Brain-Computer Interfaces (BCIs) translate neuronal information into commands to

control external software or hardware, which can improve the quality of life for both

healthy and disabled individuals. Here, a multi-modal BCI which combines motor imagery

(MI) and steady-state visual evoked potential (SSVEP) is proposed to achieve stable

control of a quadcopter in three-dimensional physical space. The complete information

common spatial pattern (CICSP) method is used to extract two MI features to control

the quadcopter to fly left-forward and right-forward, and canonical correlation analysis

(CCA) is employed to perform the SSVEP classification for rise and fall. Eye blinking is

designed to switch these two modes while hovering. Real-time feedback is provided to

subjects by a global camera. Two flight tasks were conducted in physical space in order

to certify the reliability of the BCI system. Subjects were asked to control the quadcopter

to fly forward along the zig-zag pattern to pass through a gate in the relatively simple

task. For the other complex task, the quadcopter was controlled to pass through two

gates successively according to an S-shaped route. The performance of the BCI system

is quantified using suitable metrics and subjects are able to acquire 86.5% accuracy for

the complicated flight task. It is demonstrated that the multi-modal BCI has the ability to

increase the accuracy rate, reduce the task burden, and improve the performance of the

BCI system in the real world.

Keywords: multi-modal EEG, motor imagery, SSVEP, eye movement, quadcopter flight control

INTRODUCTION

Brain-computer interfaces (BCIs) have provided an entirely new communication way to interact for
both disabled and healthy people with the external world. Such a BCI system is achieved through
sensing, processing, and actuation (Nicolas-Alonso and Gomez-Gil, 2012). An electrophysiological
signal is firstly collected, amplified, and digitized. A computer then interprets the underlying
neurophysiology of the signal in order to translate user’s intents into the specific commands.
These commands are finally actuated by the external devices. Moreover, the user could receive
feedback in order to adjust his thoughts to generate updated and adapted commands (Yuan
and He, 2014). Among non-invasive BCI, the scalp-recorded electroencephalogram (EEG) is
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widely used due to its high temporal resolution and
convenience of use. Brain patterns including event-related
desynchronization/synchronization (ERD/ERS), steady-state
visual evoked potential (SSVEP), and P300 potential are
utilized for the EEG-based BCI (Hong and Khan, 2017). Upon
performing motor imagery, local neuron populations over a
sensorimotor area in charge of imagination task experience a
desynchronization and result in a decrease of mu-beta power,
which is accompanied by an increased synchronization in
the non-task hemisphere. These phenomena are termed ERD
and ERS, respectively (Pfurtscheller et al., 2006). SSVEP is a
continuous oscillating response from the posterior scalp of
the brain to a stimulus flickering at a constant frequency. The
amplitude of SSVEP is enhanced when a subject’s attention
is cued to the stimulus (Xie et al., 2016). P300 is one of the
components for event-related potentials (ERPs) that indicate the
responses to specific cognitive, sensory, or motor events. The
presentation of a stimulus in an oddball paradigm could produce
a positive peak which appeared 300ms after the onset of the
stimulus (Xie et al., 2014; Ramadan and Vasilakos, 2017).

Many researchers have begun to focus on flying robot
navigation in real space using BCI recently, since it could achieve
flexible movement in 3D real space, and any remote mobile
device which has meaningful interaction with the real world
could be a substitute as well. Shi et al. investigated the Unmanned
Aerial Vehicle (UAV) control by using a left/right-hand MI-
based BCI and semi-autonomous navigation for indoor target
searching, where MI EEG is simply employed to choose or not
choose the current feasible direction (Shi et al., 2015). Kim
et al. demonstrated the viability of flight control using a hybrid
interface with EEG and eye tracking. Eight different directions
were achieved by using eye tracking, while mental concentration
detected by EEG is only utilized for switching (Kim et al.,
2014). Though these flying robots are controlled with a relatively
high accuracy, BCI is only responsible for a small part of the
control system.

Some researchers have also investigated the brain-controlled
flying robot when the BCI is applied to users to deal with all
the commands. On the one hand, Audrey et al. used four-
class hand motor imagery to fly a virtual helicopter in a 3-
D world with the aid of intelligent control strategies (Royer
et al., 2010). LaFleur et al. successfully conducted a quadcopter
flight control experiment using a MI-based BCI in physical
world. Separable control of three dimensions was obtained by
imagining clenching of left hand, right hand, both hands, and idle
state. The success rate reached 79.2% (LaFleur et al., 2013). To
improve the success rate ofmotor imagery signals, various feature
extraction algorithms such as the common spatial pattern, cross-
correlation method, and neural network by complex Morlet
wavelets were investigated (Shi et al., 2015; Das et al., 2016;
Zhang et al., 2019). Moreover, the computational cost should
be paid attention to ensure real-time operation. To this end,
an improved CSP method called the complete information
common spatial pattern (CICSP) is selected in our system, which
employs additional intermediate spatial filters to extract more
discriminable features in motor imagery. These early efforts
have laid the groundwork for other research teams; however, in

this scenario, individual imagining movements may generate a
mental burden. Furthermore, performing a continuous mental
task to control a quadcopter in real time could be an exhausting
procedure, and when added to environmental distractions, it
could lead to a loss of control over the quadcopter.

On the other hand, SSVEP-based evoked BCI systems could
be set up easily with almost no training. Other researchers
have focused on developing a SSVEP-based BCI system with
a shorter time and lower error rate (Middendorf et al., 2000;
Liu et al., 2018). In order to overcome the discomfort of eyes
due to flickering, Wang et al. designed a wearable BCI system
based on 4-class SSVEP which presented using a head-mounted
device (Wang et al., 2018). Although it alleviates the user’s visual
burden to some extent, this was only conducted in the simulated
3D environment.

Considering these problems, a multi-modal BCI based on the
combination of different brain patterns was introduced recently
which is capable of beating specific targets more successfully
than a single-modal BCI (Li et al., 2016). The active MI
task combined with the reactive SSVEP task is commonly
used to constitute the multi-modal BCI system. It reduces
the mental burden, decelerating visual fatigue over time. This
multi-modal BCI consists of two protocols; that is, performing
both imagining movements and focusing on oscillating visual
attention simultaneously as well as executing two tasks separately
(Allison et al., 2010, 2012). A previous work found the dual-
task interference; that is, performing a simultaneous SSVEP
task might impair the performance of an ERD task, whereas
performing a secondary task (such as ERD) does not impair the
performance on a primary task (such as SSVEP) (Pfurtscheller
et al., 2010a; Das et al., 2016). Performing two tasks separately
could be more in line with the physiological basis. Therefore, in
this case, few studies have investigated a protocol that performs
motor imagery and visual attention separately. A study developed
a sequentially operating hybrid BCI that used a one-channel
imagery-based BCI to turn on/off an SSVEP BCI (Pfurtscheller
et al., 2010b; Brunner et al., 2011). Horki et al. designed a
hybrid BCI that employed imaging the brisk feet dorsi flexion to
control the open and close function of a gripper, and focusing
on flickering lights to control the extension and flexion function
of the elbow (Horki et al., 2011). Duan et al. employed three
SSVEP signals and one feet motor imagery signal to design
a hybrid BCI system which could provide both manipulation
and mobility commands to a service robot. Moreover, Alpha
rhythm is considered as a switch from SSVEP to motor imagery
(Duan et al., 2015). These methods described above inspired
the protocol of the multi-modal BCI-controlled quadcopter in
our research.

In this study, we investigate the capacity of a flying robot
controlled usingMI and SSVEP combined with multi-modal BCI
in the three-dimensional physical world, aiming at enhancing
the ability of interacting with the outside world. Subjects are
trained to imagine left/right-hand movement as well as to gaze
at two flickering lights which generate ERD/ERS and SSVEP in
order to actuate the quadcopter in both horizontal and vertical
directions, respectively. Moreover, two modes are switched by
eye blinking, since people who have motor neuro disease could
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nonetheless perceive and respond to the external world by
receiving visual stimuli and eye movements effectively (Lin et al.,
2010). Control commands decoded from EEG are transmitted
with a fixed time interval to the quadcopter for updating
its motor direction via Wi-Fi. The real-time video acquired
from the global camera is sent back to the subject’s monitor
in order to complete the BCI control by telepresence. Two
outdoor flight experiments were performed and some metrics
were utilized to evaluate the performance of the multi-modal
BCI system.

The remainder of this paper is arranged as follows. In
section Materials and Methods, the experimental set-up and
paradigm are explained, and the methods of EEG pattern
recognition are given. In addition, the metrics of performance
analysis are also introduced in this section. The experimental
results are depicted in section Results. Section Discussion
includes the discussion. Finally, section Conclusion summarizes
the conclusions obtained.

MATERIALS AND METHODS

Architecture of BCI System
Figure 1 shows the architecture of the multi-modal BCI system
for quadcopter flight control. Subjects perform three types of
tasks—motor imagery, SSVEP, and eye blinking to control the
quadcopter flying in the physical environment. The EEG signals
were collected from a comfortable and easy-to-use Geodesic
Sensor Net (Electrical Geodesics Inc, OR) before they were
imported into the Net Amps 300 amplifier (Electrical Geodesics
Inc, OR) to get the low-noise and high-quality data. The EEG
data acquisition and pattern recognition were run on BCI2000
platform. The EEG data was decoded into five specific patterns,
that is flying left-forward, flying right-forward, rise, fall, and flight
mode switch while flight hovering, as shown by means of the
gray and white arrows, specifically. The decoded outputs were
transmitted to the quadcopter’s onboard single chip via Wi-Fi,
in which they were converted into the control instructions. After
that, the instructions were sent to the flight control system by
USART to complete the continuous control of the quadcopter.
The subject watched the monitor of the experimental site real-
time video from a mounted camera; meanwhile, executed the
appropriate tasks to control the quadcopter autonomously.
Two flight modes, MI mode and SSVEP mode, took charge
of the actuation of the horizontal and vertical dimensions,
respectively, and the two modes were switched by eye blinking.
As for the stimulation of SSVEP, subjects had to gaze at
one of the two green LEDs which were placed on the top
and bottom of the monitor, while it did not require any
for MI mode.

Experiment Layout
Figure 2A illustrates the experiment layout of the flight
controlled by using the BCI system. The flight environment
was set up on vacant land outside the laboratory building
while subjects controlled the flight autonomously in a corner
of the land using telepresence. Subjects were asked to sit in a
comfortable chair with their arms relaxing on the chair handle.

The monitor was adjusted so that the screen was exactly at
the center of the subjects’ visual field. The length and width
of the screen were 16 and 12 cm, respectively, and the distance
between the two LEDs was 23.5 cm. Outdoors, two barriers were
made on one gate so that the quadcopter could pass through,
and the top of the gate was ∼2.5m above the ground. The
quadcopter could not fly out of the top of the gate. Subjects
were situated on the back of the flight field to ensure safety.
Since the subject’s sight was blocked out, the flight status of
the quadcopter was presented to the subject by a monitor from
the camera.

In order to prove the reliability of the BCI system, the flight
tasks consisted of two phases, as shown in Figure 2B. The first
one was relatively simple for the subject to familiarize themselves
with the real-time BCI system in the physical world, and the
second task wasmore complex in order to testify the performance
of the flight controlling system. The pre-designed trajectory of
the first flight task is shown in the top (b). The quadcopter was
controlled to fly forward along the zigzag pattern, while its height
was adjusted so that it could pass through the gate, which was
3 meters wide and 1.5 meters high, and subsequently landed at
the designated destination area. The second task is illustrated in
the bottom (b). The quadcopter’s starting position was located
nearly on the extension of the connection line of three obstacles
and three meters away from the first obstacle. Subjects were asked
to control the quadcopter to pass through two gates successively
according to an S-shaped route. The quadcopter bypassed the
first barrier and then adjusted its flight direction to pass through
the first 3.5-m-wide gate, which was immediately followed by
the second direction change, and then it passed through the
second gate of the same size and finally landed at the designated
destination area. During the experiment, subjects were required
to provide instructions for the task and destination, of which they
were informed in advance. Other experimental personnel were
not allowed to give any tips to the subjects. In order to ensure
the security of the flight, the safety boundaries of the control
area were stipulated as the vertical extension lines of the trees
beside the two barriers for the simple task, as well as two edges
of the road for the complex flight task (as shown by the red
dotted line in Figure 2B). Once the quadcopter went beyond the
boundaries, the experimenter landed the quadcopter in a safe
position by using the remote controller and announced an end
of this trial instantly.

The Matrix 100 (M100) quadcopter (DJI, Shenzhen, China)
was chosen as the external device for the BCI experiment due
to the extensive open source platform, which was suitable for
scientific research, and it was able to expand the capabilities
of the aerial platform with an onboard embedded system that
supported serial communication as well as DJI SDK. It provided
the interface to program a wide range of speed and yaw
rate in three dimensions. In addition, the M100 quadcopter
provided a stable and reliable flight, with up to 40min of
flight time.

Calibration Phase
Before steering an actual quadcopter, a training phase was carried
out in a virtual quadcopter flight simulator developed by DJI with
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FIGURE 1 | Architecture of the multi-modal BCI system for Quadcopter control.

FIGURE 2 | The view of the experiment layout (A) The sketch map of the experiment set-up. (B) The simpler and more complex flight tasks.

the main purpose being to calibrate subjects’ control signals. A
target instruction consisting of left-forward, right-forward, rise,
fall, as well as eye blinking were informed to the subject by sound.
EEG signals were collected to train the recognition method for
the three modes. The training would not stop until subjects
obtained a success rate of 80% or above for three separate modals
(Zhang et al., 2016).

Experimental Paradigm
Each trial started after the quadcopter took off, hovering about
1m off the ground. Imagining left-hand movement turned the
quadcopter to the left-forward direction at an angle of −42
degrees, with the forward direction speed at 0.25 m/s, while
imagining right-hand movement turned the quadcopter to right-
forward direction at a symmetrical angle to the left and the
same speed. Gazing at the top flickering LED for a climb
with a speed of 0.2 m/s while gazing at the bottom flickering

LED made the quadcopter descend with a speed of −0.3 m/s.
When the system switched to MI mode, the LEDs stopped
flickering and subjects had to concentrate on thinking of left- or
right-hand movement continuously. Consciously blinking eyes
kept the quadcopter hovering, and two flight modes switched
simultaneously. The 1.5 s time window of raw EEG signal
was pattern-recognized online to generate a control output
which was sent wirelessly every 1 s to the quadcopter’s onboard
single chip.

Nine human subjects (one female and eight males, aged 22–
32) were recruited to participate in this experiment. The details
of the subjects are listed in Table 1. Three of them attended the
BCI experiment before and the rest were naive to the experiment.
All subjects had normal or corrected-to-normal visual acuity. The
experimental procedures were approved by the Northwestern
Polytechnical University Hospital Ethics Committee. Subjects
attended the experiment for 8 non-consecutive days, with about
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TABLE 1 | The details of subjects.

Subject

number

Age Sex Handedness Corrected

visual acuity

Former

experimental

experience

1 23 Male Right 0.8/0.8 Yes

2 22 Female Right 0.9/0.8 No

3 32 Male Right 1/0.9 No

4 22 Male Right 1/1.2 No

5 25 Male Right 0.8/0.9 Yes

6 25 Male Left 0.8/0.8 Yes

7 25 Male Right 1/1 No

8 26 Male Right 0.9/0.9 No

9 26 Male Right 1/0.9 No

5 trials each session each day. Subjects were instructed to avoid
body movement during each trial. The raw EEG signal was
recorded from 12 electrodes (CP1, CP2, FC1, FC2, FC3, FC4,
C1, C2, C3, C4, Oz, Fp2), although the Geodesic Sensor Net
contained 64 electrodes of the standard 10/20 international EEG
positioning system. A reference electrode Cz was placed on the
central-parietal area. All impedances were kept below 5 kΩ .
EEG data were band-pass filtered between 0.3 and 100Hz and
sampled at 1,000Hz. The EEG processing was performed in
MATLAB R2013a (The MathWorks, Inc., Natick, MA, USA). If
the quadcopter passed through the gate navigating by the subject
successfully, a “gate acquisition” was recorded; however, if the
quadcopter went beyond the borders of the control area, an “out
of borders” was recorded.

Pattern Recognition Methods
Figure 3 illustrates the procedure of eye blinking, SSVEP, and MI
recognition algorithms. Firstly, a block of the raw EEG signal
is detected by the count trough method. Once the number of
troughs within a block was higher than 2, the quadcopter kept
hovering, and the two flight modes switched simultaneously.
Otherwise, this signal block is sent to the previous mode, which
is either SSVEP or MI mode for processing.

Eye Blinking
Eye blinking was used to switch between the two flight modes.
Conscious eye blinking is defined as excessive effort blinking with
a fixed frequency; that is, blinking twice within a 1.5 s EEG data
block. The EEG time series of the conscious eye blinking was
recorded by the Fp2 channel, which is located at the upper right
orbital in the prefrontal lobe. It demonstrated that the downward
vertical eyemovement could generate a large-magnitude negative
deflection, representing thus a remarkable trough for an eye
blinking (Corby and Kopell, 1972). A counting trough method
was proposed to the detect eye blinking of the subject. The flow
chart of the method is shown in the left part of Figure 3. A 0.3–
30Hz bandpass filter was employed since the frequency range
of eye movement activity is maximal at frequencies below 4Hz.
While removing the EEG baseline and high-frequency noise, the
characteristic waveform of eye blinking was preserved. Then the

number of troughs was counted in a 1.5 s time window under the
constraints of the average distance between two troughs d and
the minimum absolute height of the trough h. Two constraints
we set here aimed at differentiating conscious eyes blinking
from normal blinking or other noise like head movements or
frowning. The parameter d was set as 0.75 s long, while the
parameter h was averaged among the filtered EEGmeasurements
of calibration dataset. If the number of troughs was >2, the
subject was considered as eye blinking; otherwise, it was further
recognized within MI/SSVEP modes.

SSVEP
SSVEP is a periodic evoked potential induced by rapidly
repetitive visual stimulation, typically at specific frequencies
>6Hz. Subjects were able to steer the quadcopter rise and
fall simply by gazing at the top and bottom LED flicking at
12.4 and 18Hz, respectively (Liu et al., 2018). The EEG signals
were bandpass filtered between 5 and 40Hz, which included
the fundamental frequency of the visual stimulus and its first
harmonic (Müller-Putz et al., 2005). The canonical correlation
analysis (CCA) frequency recognition method, which is the most
commonly used feature extraction method, was employed for
SSVEP detection, as shown in the upper right part of Figure 3.
CCA was able to obtain the correlation between two sets of
variables in general. Considering two sets of variables X and
Y, CCA aims to find a pair of vectors a and b, which could
maximize the correlation between x = aTX and y = bTY . The
maximization problem can be described as below:

max corr(x, y) =
aT cov(X,Y)b

√

aT cov(X,X)a
√

bT cov(Y ,Y)b
(1)

In this approach, the CCA coefficients are calculated between
EEG measurements recorded by channel OZ and all reference
time series. The reference series is a set of Fourier series of the
specific frequency period signal (the same frequency fi of the
flickering frequency of LEDs) which can be described as below:

Yfi =



























sin(2π fit)
cos(2π fit)

...
sin(2πNhfit)
cos(2πNhfit)



























(2)

Where Nh = 2 represents the number of harmonics. The
frequency with the largest coefficient corresponds to the one of
SSVEP (Lin et al., 2006; Duan et al., 2015).

Motor Imagery
EEG signals from 10 electrodes (CP1, CP2, FC1, FC2, FC3, FC4,
C1, C2, C3, C4), which were distributed symmetrically over
two hemispheres of the sensorimotor area, were calculated to
extract MI features using an improved common spatial pattern
method called the complete information common spatial pattern
(CICSP). The aim of the conventional CSP is to construct
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FIGURE 3 | The procedure of recognition for three EEG patterns.

an optimal spatial filter which maximizes the variance of one
class while minimizing that of the other using the simultaneous
diagonalization of two covariance matrices mathematically
(Ramoser et al., 2000). Normally, only a few first and a few last
vectors of the spatial filters are most suitable for discrimination
of the two MI tasks, which were used for the construction of
the classifier, while the CICSP also extracted useful information
of the intermediate columns of the spatial filter vector using
a dimension reduction method. The EEG signals were firstly
bandpass filtered restricting to 9–12Hz, which encompassed the
mu frequency band, and were subsequently spatially filtered with
a common average reference (CAR) filter (McFarland et al.,
1997). The spatial filter was then calculated by using the CICSP
method. Two populations X1 and X2 related to left and right
motor imagery EEG measurements were spatially filtered by Q1

and Q2, leading to a new time series Zij, formulated as follows:

Zij = QiXj i, j = {1, 2} (3)

Where i and j denote the index of spatial filters and EEG
populations, respectively. Q1 and Q2 are defined as the m first
and the m last column as well as the intermediate column
of the spatial filter vector, respectively. The CSP features are
calculated by

λij = log
diag(ZijZ

T
ij )

tr
[

ZijZ
T
ij

] (4)

Where diag() is the diagonal element of the matrix, tr[·] is the
sum of the diagonal elements, f1 = [λ11; λ12] represents the first
m and last m feature vectors, and f2 = [λ21; λ22] represents the
intermediate feature vectors of two tasks, and then the dimension
canbe reduced by using principal component analysis (PCA) to
extract the most useful information, leading to f2

′.

F =
[

f1, f2
′
]

(5)

f1 and f2
′ were concatenated together to become the complete

information feature vectors F, which have been classified using

a linear kernel-based support vector machine (SVM) where the
SVM classifier model was trained among the calibration dataset
(Chang and Lin, 2011).

In addition, during the online implementation, the 1.5-s time
window EEG measurement X′ was separated into a 0.5-s time
window EEG series Xk

′, where k = {1, 2, 3}. Xk
′ were projected

through the intermediate spatial filterQ2, which was calculated in
the calibration phase, then the CSP features λ2k

′ were calculated
by (4). λ2

′ = [λ21
′; λ22

′; λ23
′] were reduced to one dimension,

which was considered to be the intermediate feature vector for
one EEG measurement.

Performance Analysis
The analogous information transfer rate (ITR)metric was created
for the physical world BCI task.

analogous ITR=
log2(

distance between initial postion to target
width of gate

+1)

time to pass through gate
(6)

The numerator of formula (6) is an index of difficulty computed
using the Fitt’s law formalization (Decety and Jeannerod, 1995).
The displacement from the initial position to the center of
the gate for two flight tasks are both 4.75m, and the width
of the gate, as shown in Figure 2B, is 3.5m. The quadcopter
passing through the gate and landing at the designated area
was considered as successful completion, whereas flying around
the gate or flying beyond the boundaries was deemed to be a
failure. It is a relatively simple computation which only related
to two distances and emphasizes the ability of the subject who
could give specific instructions throughout the entire controlling
process, including the time used to correct the instructions
(which was unintentional on the part of the subject). This metric
is a rough estimate of ITR, and some specific metrics to evaluate
the performance of the BCI system were also introduced. The
average gate acquisition time (AGAT) was used to evaluate the
speed of control, calculated as the total flight time divided by
the total number passing through the gate. Out Boundaries Per
Unit Time (OBUT) reports the average number of boundary
crossings that occurred in each trial. The Percent Task Correct
(PTC) metric reports the success rate of the BCI system, which
is defined as the number of passes through the gate divided by
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the sum of the number of passes through gate and failures. The
formulas are listed below (Doud et al., 2011).

AGAT =
total flight time

numbers of passing through gate
(7)

OBUT =
numbers of flying beyond boundaries

total flight time/averaged trial time
(8)

PTC =
numbers of passing through gate

(numbers of passing through gate+numbers of failure)
(9)

RESULTS

Results in Calibration Phase
The success rate of the three modes was obtained using the
whole EEG samples in calibration phase for nine subjects,
which is listed in Table 1. According to the results, the average
correct recognition rate of SSVEP was 83.44%, the average
correct recognition rate of MI was 80.45%, and that of eye
blinking was 99.07%. The success rate of the entire task reached
87.65%. The best performance was 97.76% whereas the worst
performance was 50.63% in the SSVEP experiment. Similarly,
in the detection of MI, the best success rate was 93.70%, and
the worst performance was below the level of chance. These
two worst success rates came from the same subject (subject
4), who demonstrated to be incapable of the BCI approach.
For comparison purposes, Table 2 also shows the performance
of the CSP method in MI recognition. It indicated that the
CICSP method clearly outperformed CSP among eight of the
nine subjects, with an average improvement of 4.45%. A paired
t-test revealed a significant difference between the accuracy rate
for CICSP and CSP (P = 0.009). All nine subjects performed
remarkably in eye blinking, six of whom reached 100%. Five
subjects (subjects 5, 6, 7, 8, and 9) performed at least an 80%
success rate for each mode in which they participated in the
experiment. The average success rates of SSVEP, MI, and eye
blinking among these five subjects were 92.06, 90.20, and 98.75%,
respectively. The success rate of the entire task was up to 93.67%
among these five subjects.

Results in Actual Environment
The performance of the quadcopter flight experiment using the
multi-modal BCI system is presented as below. As shown in
Table 3, the simple flight task consisted of 10 trials, and two of
the five subjects successfully completed PTC with 100% accuracy,
and the average for PTC was 92%. Only two subjects navigated
the quadcopter beyond boundaries once, and the total flight time
was 4.6min on average. The simple flight task aimed to give
subjects a glimpse of the brain-controlled quadcopter, and the
experiment results demonstrated that subjects had the ability to
reach the gate in succession.

In order to provide a comparison between the BCI control
and the common approach of control as well as the baseline

TABLE 2 | Experimental results in terms of success rate for 9 subjects in

calibration phase.

Subject Correct recognition rate Success rate of

the entire task

SSVEP MI Eye blinking

CSP CICSP

1 78.44% 82.61% 84.43% 100% 87.62%

2 62.19% 74.72% 78.82% 97.92% 79.64%

3 99.38% 51.54% 60.14% 100% 86.51%

4 50.63% 41.62% 49.63% 100% 66.75%

5 97.76% 86.94% 88.76% 97.92% 94.81%

6 97.06% 91.51% 93.70% 100% 96.92%

7 97.62% 92.04% 91.63% 100% 96.42%

8 87.05% 85.99% 87.97% 95.83% 90.28%

9 80.80% 86.20% 88.95% 100% 89.92%

Average 83.44% 77.02% 80.45% 99.07% 87.65%

SSVEP, steady-state visually evoked potential; MI, motor imagery.

TABLE 3 | Experimental results and performance of simple flight task.

BCI Total

trials

Numbers of

passing

through gate

Numbers of

beyond

boundaries

PTC (%) Total flight

time

Sub5 10 9 0 90 4.8

Sub6 10 10 0 100 3.8

Sub7 10 10 0 100 4.2

Sub8 10 9 1 90 5.2

Sub9 10 8 1 80 5.1

Average 10 9.2 0.4 92 4.6

BCI, brain computer interface; PTC, percent task correct.

level, two other experiments were also performed by using a
remote controller in absence of the subjects’ intent instead of
a BCI. In the remote controller experiment, an experimenter
who had experience but did not achieve proficiency completed
the complex task. In this protocol, the maximum rise and fall
speeds were equal to those of BCI. For the horizontal direction,
the motion could be in any direction such that not only the two
actuations occurred, and the maximum speed was also restricted
to that in the BCI control. In addition, the baseline level aimed
to identify the extent to which the subjects’ performance could
be attributed to the success of the BCI system. A subject was
instructed to sit quietly and to watch a video of a quadcopter
flight in the experimental site, which was considered as fake
feedback, without executing the mental or visual task or any eye
movement. The BCI system was set up identically to the actual
experimental protocol. EEG signals were recorded and controlled
the actuation of quadcopter after recognition. It should be noted
that poor performance cannot be attributed to the selection of
an unacceptable magnitude of EEG or random noise, due to
the fact that true EEG signals were employed as the input to
the system.

In the complex task, subjects passing through two gates
sequentially was considered a success, while passing through one
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TABLE 4 | Experimental results and performance in various metrics of complex flight task.

Total trials Number of

successes

Number of half

successes

Number of times

passing through gate

Numbers of times

beyond boundaries

Sub5 20 16 4 36 0

Sub6 20 19 1 39 0

Sub7 20 19 0 38 1

Sub8 20 16 1 33 3

Sub9 20 12 3 27 5

Total flight time

(min)

AGAT

(min/gate)

OBUT

(Numbers/min)

PTC (%) Analogous ITR

(bit/min)

Sub5 27.4 0.76 0 90.0 1.63

Sub6 20.7 0.53 0 97.5 2.33

Sub7 22.1 0.58 0.05 95.0 2.13

Sub8 30.0 0.90 0.10 82.5 1.37

Sub9 34.0 1.25 0.15 67.5 1.00

Average 26.8 0.80 0.06 86.5 1.69

Remote

control

– 0.32 0 100 3.90

Baseline – 20 7 2.5 0.09

AGAT, average gate acquisition time; OBUT, out boundaries per unit time; PTC, percent task correct; Analogous ITR, analogous information transfer rate.

gate was regarded as a half success. Subjects were successful
in achieving accurate control of the quadcopter in the actual
environment. The performances in various metrics are listed in
Table 4 according to the experimental record, and the results
of “remote control” and “baseline level” were also evaluated for
the purpose of comparison. PTC represented the success rate
among all trials. The average among five subjects for PTC was up
to 86.5%, which was slightly lower than the RC control (100%)
but considerably higher than the baseline level (2.5%). In other
words, subjects were able to achieve an average of ∼35 gates per
20 trials. Subject 6 reached the highest PTC (97.5%), where 39
gates were hit. Subject 9 passed through 27 gates and performed
worst in the calibration phase among the five subjects. It took
26.8min of total flight time on average for the 20 trials. The best
performer, subject 6, spent the shortest amount of time (20.7min)
to complete the flight task, whereas the total flight time of subject
9 was 1.6 times longer than that of subject 6. Because more time
was needed to correct the misclassification of commands, the
subject had a strong sense of frustration after navigating beyond
the boundary, which affected the performance in the following
trial. The average time for the quadcopter traveling through a gate
was 0.80min with a constant forward speed of 0.25 m/s, which
was nearly 2.5 times longer than the remote-control protocol
(0.32min); however, this was far below the time required for
the baseline (20min). The average number of beyond-boundary
flights was around 2; thus, the OBUT metric for the BCI control
was equal to 0.06, which was far below the baseline. In fact,
the quadcopter flew out of the boundary quickly after taking
off in each trial. Five subjects who participated in the complex
flight experiment displayed an average analogous ITR of 1.69
bit/min compared to 3.69 bit/min of RC protocol, and individual
subject values are listed in Table 4. It is a fact that the analogous

ITR for the BCI control was 18.8 times higher than that of the
baseline level, which is an indication that subjects made an effort
to intentionally modulate the EEG signal in order to complete the
task at a high success rate.

DISCUSSION

The present work demonstrates the capacity for subjects
controlling a quadcopter in the real world by a multi-modal
EEG-based BCI. The purpose of multi-modal BCI is to increase
the number of control commands, reducing the task burden
and improving the recognition success rate (Hong and Khan,
2017). It was observed that through this practical BCI, the
user could successfully and efficiently navigate a quadcopter to
approach a target while avoiding the obstacles in an outdoor
actual environment according to a fixed view. The multi-modal
BCI system could restore the capacity to explore the real world
for disabled people as well as extend the ability of fully capable
people in more practical ways. In the future, this multi-modal
BCI system could provide more practical purposes. (1) Injured
soldiers could rely on it remain in combat in battle fields. (2)
It could assist astronauts to accomplish multitask missions in
space. (3) Patients with severe disabilities could use them for
transporting objects (Nourmohammadi et al., 2018).

We would like to remark that the usage of blinking to facilitate
multi-modal BCI is the result of our careful consideration. At the
very beginning, the transformation of two modes was completed
automatically. If the coefficient in the detection of SSVEPs was
higher than a threshold, the EEG block was considered as the
SSVEPmode—otherwise, it was considered as the motor imagery
mode. Since the detection of the two modes owed to the channels
located in two separate areas of the brain, the evoked potential,
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and the induced potential would not affect each other. Under this
circumstance, the LEDs had to keep flickering during the whole
process of the experiment. However, gazing at the flickering lights
would distract the concentration required for the mental tasks,
which led to the increasing number of flights beyond boundaries.
Therefore, a switch was introduced in our work to turn on/off
the LEDs. Considering the fact that navigating a quadcopter
outdoors at a lower altitude is a time-sensitive task, some
prototypes have incorporated non-mental features such as eye
blinking and muscle movement as a precise switch to minimize
the manipulation delay. Since the detection of facial muscle
movement needs more electrodes, eye blinking was selected in
our work. Once a subject’s conscious eye blinking is well-trained
with a fixed frequency and the same strength (at least higher
than the trained strength), the parameter d (the average distance
between two troughs) in the blink-recognizing algorithm would
remain constant. The parameter h (the minimum absolute height
of the trough) needs to be estimated using the dataset recorded
in calibration phase. Therefore, the blink-recognizing algorithm
is robust, and the rest of the BCI system worked properly as well.
The quadcopter remains hovering instead of engaging in reckless
movement in the case of eye blinking as it does not include
mental information.

During the initial phase of the actual quadcopter controlling
experiments, the noises generated by the flying quadcopter in the
flight field caused the nervousness of some of the subjects to affect
the experimental results. Subjects adapted to the environment
over time. Since subjects could clearly see the consequence of the
task failure such as flying into the bushes, hitting obstacles, and
even crashing, this could influence the motivation of the subjects’
success in the experiment.

The control commands generated by our current multi-
modal BCI system could be further extended. Since CICSP
has been demonstrated as an efficient method for multi-
class motor imagery classification, in future work we plan
to extend the CI-CSP method for multi-class ERD/ERS
classification as well as place more flickering LEDs on the screen
for generating SSVEP features to actuate more motions on
three dimensions.

Generally speaking, the multi-modal EEG signals could be
used together to generate a series of control commands for
subjects interacting with the real world. The performance of our
multi-modal BCI system presents some advantages compared
with previous studies (LaFleur et al., 2013; Duan et al., 2015;
Wang et al., 2018). Duan et al. utilized a hybrid BCI system on
an actual humanoid robot. In the simulation experiment, the
average success rate for the entire task was higher than 80%,
which was lower than that of our system (93.67%). The overall
success rate on an actual device was 73.3%, lower than that
for PTC (86.5%), which represented the success rate among all
trials we obtained. The manipulation task was achieved with
the aid of a visual servo module on a service robot. On the
contrary, the quadcopter was controlled using only EEG signals
throughout the flight in our experiment. Wang et al. used a 4-
class SSVEP which was presented in a virtual reality environment
to control a simulated quadcopter. The online accuracy achieved
78%, which was lower than the overall accuracy rate of our

multi-modal BCI (86.5%). Although it alleviates the user’s visual
burden to some extent, it is only conducted in the simulated
environment. LaFleur et al. conducted a quadcopter control in
the physical word using unitary MI mode. The average ITR of
this work was 1.16, which was lower than that of our multi-
modal BCI system (1.69). The results indicate that our multi-
modal BCI system could effectively increase the accuracy rate
while alleviating both mental burden and visual fatigue to a
large extent.

CONCLUSION

This paper presents a multi-modal BCI system to accurately
and stably control a quadcopter to pass through gates in
three-dimensional physical space. The MI and SSVEP modes—
which are associated with two types of regular EEG patterns,
ERD/ERS, and SSVEP—were employed to actuate the flight on
both horizontal and vertical directions. Two modes were rapidly
switched by eye blinking. The ERD/ERS and SSVEP patterns
were analyzed by using the CICSP feature extraction method
and the CCA frequency recognition method, respectively. Eye
blinking was detected by counting the peak method within
each EEG data block. Subjects were able to navigate the
quadcopter passing through a series of gates in the outdoor
environment continuously, accurately and rapidly. Several
metrics for real-world BCI systems were used to assess the
performance of this system. The PTC reached 86.5% and the
analogous ITR attained 1.69 bit/min for five subjects, with
the average gate acquisition time being nearly 0.80min. This
system could build the ability for people who suffer from
paralyzing disorders to interact with three-dimensional real
world. The multi-modal BCI could increase the accuracy rate
while alleviating both the mental burden and the visual fatigue
to a large extent.
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