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Cannabis has long been known to limit or prevent nausea and vomiting, lack of appetite, 
and pain. For this reason, cannabinoids have been successfully used in the treatment 
of some of the unwanted side effects caused by cancer chemotherapy. Besides their 
palliative effects, research from the past two decades has demonstrated their promising 
potential as antitumor agents in a wide variety of tumors. Cannabinoids of endogenous, 
phytogenic, and synthetic nature have been shown to impact the proliferation of cancer 
through the modulation of different proteins involved in the endocannabinoid system 
such as the G protein–coupled receptors CB1, CB2, and GRP55, the ionotropic receptor 
TRPV1, or the fatty acid amide hydrolase (FAAH). In this article, we aim to structurally 
classify the antitumor cannabinoid chemotypes described so far according to their 
targets and types of cancer. In a drug discovery approach, their in silico pharmacokinetic 
profile has been evaluated in order to identify appropriate drug-like profiles, which should 
be taken into account for further progress toward the clinic. This analysis may provide 
structural insights into the selection of specific cannabinoid scaffolds for the development 
of antitumor drugs for the treatment of particular types of cancer.

Keywords: cannabinoid, cancer, ADMET, in silico, chemotype

INTRODUCTION

During these last years, significant research has been focused on the therapeutic potential of 
cannabinoids to manage palliative effects in cancer patients (Badowski, 2017; Guzmán, 2018). 
Cancer-induced emesis represents the initial target indication for Marinol® (dronabinol) and 
Cesamet® (nabilone), two cannabis-based medicines approved by various regulatory drug agencies. 
Management of cancer-induced neuropathic pain is also part of the palliative applications of 
cannabis-based medicines. Besides such palliative applications, some cannabinoids have shown 
anticancer properties (Guzmán, 2003; Guindon and Hohmann, 2011; Khan et al., 2016; Hinz and 
Ramer, 2019). As widely reported in the last decades, some cannabinoids are able to modulate 
different cellular signaling pathways implicated in cancer cell proliferation, migration, or death 
(Chakravarti et al., 2014). Even though the underlying mechanisms are not totally unraveled, 
there is significant evidence for the involvement of at least four mechanisms: direct inhibition 
of transformed-cell growth through the suppression of mitogenic signal, induction of apoptosis, 
inhibition of tumor angiogenesis, and metastasis (Velasco et al., 2016). The signaling pathways 
implicated in the activation of the endocannabinoid system may differ depending on specific 
cancers and/or experimental models, making more complex the understanding of these processes. 
So far, only few clinical data on the efficacy of cannabinoids as anticancer agents have been provided 
(Ladin et al., 2016). However, great efforts are currently being made to elucidate the potential utility 
of cannabinoids as anticancer therapeutics.
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The physiological processes triggered by most of these 
cannabinoids are mediated by two G protein–coupled cannabinoid 
receptors (CBR), CB1R and CB2R. CB1R is predominantly 
and abundantly expressed in the central nervous system, with 
predominance in the hippocampus, cerebellum, basal ganglia, and 
cortical and olfactory regions, but CB1R is also present in many 
organs of the peripheral system. CB2R is mainly found in the 
immune system, in the spleen, thymus, lymph nodes, and tonsils, 
but it is also expressed in immune cells.

The overexpression of CBR and elevated endocannabinoid 
levels have been reported in different cancer types (Blázquez 
et al., 2006; Pisanti et al., 2013). This expression in cancer cells 
is crucial for downstream signaling with implications on cell 
viability.

Non-CB1R, non-CB2R targets related to the endocannabinoid 
system have also been reported to be involved in the anticancer 
action of cannabinoids. For instance, specific effects may be 
due to interactions with enzymes of the endocannabinoid 
system such as FAAH (fatty acid amide hydrolase), NAPE-
PLD (N-acyl phosphatidylethanolamine phospholipase D), 
MAGL (monoacylglycerol lipase), DAGL (diacylglycerol lipase), 
ABHD6 (α/β-hydrolase domain containing 6), or ABHD12 (α/β-
hydrolase domain containing 12); with GPR55 and/or GPR18, 
two putative cannabinoid orphan G protein–coupled receptors; 
with transient receptor potential (TRP) channels (TRPV1–4, 
TRPM8, and TRPA1); or with COX-2 (cyclooxygenase-2), 
among others (Morales et al., 2017a; Morales and Reggio, 2017).

Focusing on a drug discovery approach, herein we have 
summarized the anticancer profiling of the cannabinoids reported 
thus far to impact cancer. Moreover, we have calculated their in silico 
pharmacokinetic profiles in order to predict appropriate drug-like 
profiles that may provide useful criteria for further development 
selection. In silico prediction of pharmacokinetic properties is a 
very useful approach that provides a great translational tool since 
absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) properties and bioavailability of drugs can strongly 
influence their development (Di et al., 2018).

CANNABINOIDS WITH ANTICANCER 
POTENTIAL

Molecules that modulate the endocannabinoid system are 
considered cannabinoids. These compounds generally have been 
classified following their structural nature or origin. Thus, they all 
belong to phytogenic-, endogenous-, or synthetic-derived families.

Endocannabinoids
Endogenous cannabinoids, called endocannabinoids, such as 
anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), form a 
major family of cannabinoids (Ligresti et al., 2016). Structurally, 
they are lipid-based derivatives derived from arachidonic acid. 
They are involved in a number of physiological processes but 
are also easily degraded through enzymatic pathways. AEA is 
known to affect cancer cell proliferation; however, there are 
cell lines whose proliferation is more sensitive to anandamide 

than others. The molecular mechanism of action differs also 
from one cell line to another. For instance, AEA exerts a potent 
CB1R-mediated effect on the proliferation of MCF-7, and EFM-
10 human breast cancer cells (Di Marzo et al., 1998), while in 
N18TG2 murine neuroblastoma cells, the effect is due to FAAH-
mediated degradation of AEA to ethanolamine (Matas et al., 
2007). Another example concerns non-melanoma skin cancer, 
for which AEA induces endoplasmic reticulum stress and 
apoptosis mediated by oxidative stress and by CBR-independent 
endocannabinoid signaling (Soliman and Van Dross, 2016).

(R)-Methanandamide (Met-AEA, Table 1) has been used 
in diverse biological assays as a metabolic stable anandamide 
analogue. One of the first assays in cancer concerns prostate 
LNCaP cells (Sánchez et al., 2003).

The anandamide synthetic analogue arachidonyl-2’-
chloroethylamide (ACEA, Table 1) is a CB1R-selective compound, 
active in breast cancer stem cell invasiveness (Mohammadpour 
et  al., 2017) but inactive in Kaposi’s sarcoma cells (Luca 
et al., 2009).

From a series of linolenic and arachidonic derivatives, 4g 
and 5c (Table 1) enhance AEA cytotoxicity on C6 glioma cell 
viability (Quintana et al., 2016). Both of them incorporate the 
same alkanolamine moiety in their structure.

Phytocannabinoids
The plant-derived family is exemplified by the phytocannabinoids 
tetrahydrocannabinol [(-)-Δ9-THC); THC] and cannabidiol 
[(-)-CBD; CBD], the two main components of Cannabis sativa. 
Structural modifications of THC mainly have been developed 
in the Makriyannis laboratory some years ago (Thakur et al., 
2005). Concerning CBD, a recent review dedicated to CBD 
as scaffold provides an overview of the chemical structure 
of natural and synthetic derivatives, including their relative 
molecular targets (Morales et al., 2017b). Reports on anticancer 
effects of phytocannabinoids mainly have been focused on 
the activity of Δ9-THC, CBD, Δ9-tetrahydrocannabinolic acid 
(Δ9-THCA), cannabidiolic acid (CBDA), cannabigerol (CBG), 
and cannabichromene (CBC) (Table 1) (Guzmán, 2003; Velasco 
et al., 2012; Fowler, 2015; Hinz and Ramer, 2019; Pellati et al., 
2018). The effects of Δ9-THC have been tested in different cell 
lines of prostate cancer, breast cancer, colon cancer, pancreatic 
cancer, lymphoma, lung cancer, glioblastoma, and myeloma, 
among others (Fowler, 2015; Fraguas-Sánchez et al., 2016). 
Intracellular signaling through CBR has been shown to play 
an important role in these effects, involving complex signal 
transduction pathways, for instance, the ceramide pathway and/
or the PI3-K and ERK pathways. However, the mechanism of 
action of Δ9-THC can also result in being CBR-independent, as 
has been shown for leukemic cell lines (Powles et al., 2005). 

The nonpsychoactive cannabinoid CBD revealed proapoptotic 
effects in different cancer cell lines (Hinz and Ramer, 2019). 
CBR activation is not required for CBD anticancer action 
since CBD shows very low affinity. Accumulation of reactive 
oxygen species (ROS) is one of the main reported mechanism 
responsible for apoptosis induced by CBD (Ligresti, 2006). 
However, several molecular targets have been suggested, such 
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TABLE 1 | Cannabinoids exerting anticancer effects.

Compound Targeted tumor Antitumor effect/mechanism of action References

Endocannabinoids and derivatives

Non-melanoma skin cancer: JWF2 cells Induces apoptosis mediated by oxidative stress and by CB receptor–
independent endocannabinoid signaling

(Soliman and Van Dross, 2016)

Breast cancer: MCF-7 and EFM-10 cells Blocks cancer proliferation through CB1R-mediated inhibition of 
endogenous prolactin action

(Di Marzo et al., 1998)

Neuroblastoma: N18TG2 cells Neuroprotection from apoptosis mediated by FAAH (Matas et al., 2007)
Prostate cancer: PC-3 cells Inhibits cancer cell proliferation via CB1R (Mimeault et al., 2003)

Gastric cancer: human AGS adenocarcinoma 
cells

Apoptosis induction (Ortega et al., 2016)

Prostate cancer: LNCaP Upregulation of androgen receptor expression (Sánchez et al., 2003)
Breast cancer: MDA-MB-231 Inhibition of cell adhesion and migration (Grimaldi et al., 2006)

Breast cancer: MDA-MB-231 cells Decreases cancer stem cell invasiveness (Mohammadpour et al., 2017)

Glioma: C6 cells Inhibits cell proliferation, enhancing AEA cytotoxicity (via FAAH 
inhibition)

(Quintana et al., 2016)

Glioma: C6 cells Inhibits cell proliferation, enhancing AEA cytotoxicity (via FAAH 
inhibition)

(Quintana et al., 2016)

Phytogenic compounds

Endometrial cancer: HEC-1B and An3ca cells Inhibits metastasis by targeting matrix MMP9 (Zhang et al., 2018b)
Breast cancer: MDA-MB-231, MCF-7 Induces apoptosis (Ligresti, 2006)
Prostate cancer: PC-3 cells Induces cell death and apoptosis (Ruiz et al., 1999)
Glioma: human GBM tumor samples Reduces tumor growth (Velasco et al., 2016; Dumitru 

et al., 2018; López-Valero 
et al., 2018)

Leukemia: CEM, HEL-92, and HL60 cells Induces apoptosis (Powles et al., 2005)

(Continued)
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TABLE 1 | Continued

Compound Targeted tumor Antitumor effect/mechanism of action References

Breast cancer: MDA-MB-231, MCF-7 Induces apoptosis, inhibiting cell viability via CB2R and TRPV1 (Ligresti, 2006)

Prostate cancer: LNCaP cells Inhibits cell proliferation
and induces apoptosis

(Sreevalsan et al., 2011)

Glioma: glioma stem cells Reduces tumor growth (Singer et al., 2015; Hinz and 
Ramer, 2019)

Breast cancer: MDA-MB-231, MCF-7 Induces apoptosis, inhibiting cell viability (Ligresti, 2006)

Breast cancer: MDA-MB-231, MCF-7 Induces apoptosis, inhibiting cell viability (Ligresti, 2006)
Prostate cancer: DU-145 and LNCaP cells Inhibits cell proliferation (De Petrocellis et al., 2013)

Colon cancer: Caco-2 and DLD-1 cells Proapoptotic effects mediated through CB1R (Refolo et al., 2015)

Bone cancer: tibia bone cancer rat model Suppresses astrocyte activation and neuro-inflammation in bone 
cancer pain via CB2R activation

(Jiang et al., 2017)

Colon and pancreas cancer: HCT116, HT-29, 
and PANC-1 cells

Antiproliferative effects (Dahham et al., 2015)

(Continued)
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TABLE 1 | Continued

Compound Targeted tumor Antitumor effect/mechanism of action References

Synthetic cannabinoids

Colon cancer: HCT116 and DLD-1 cells Reduces both tumor differentiated and cancer stem cell proliferation (Fiore et al., 2018)
Colon cancer: HCT116 and SW48 cells Reduces tumor growth and destabilizes the nuclear localization of 

β-catenin
(Proto et al., 2017)

Colon cancer: DLD-1 cells In combination with oxaliplatin, blocks cancer proliferation (synergic 
effect)

(Gazzerro et al., 2010)

Breast cancer: MDA-MB-231 Inhibits cancer growth via a CB1R lipid raft/caveolae–mediated 
mechanism

(Sarnataro et al., 2006)

Colon cancer: DLD-1, CaCo-2, and SW620 cells Inhibits cancer growth, inducing mitotic catastrophe (Santoro et al., 2009)

Breast cancer: MDA-MB-231 Increases invasiveness (Mohammadpour et al., 2017)
Lung cancer metastasis Inhibits metastasis (Marshall et al., 2011)

Renal carcinoma: 786-O, SMKT-R2, SMKT-R3,
Caki-2, RCC-6, 769-P, Caki-1, and ACHN cells

Tumor growth inhibition and G0/G1 cell cycle arrest via CB2R 
activation

(Khan et al., 2018)

Myeloma: U266, U266-LR7, RPMI, RPMI-LR5, 
MM1.S, and MM1.R cells

Proapoptotic effects (Barbado et al., 2017)

Lung cancer and testicular cancer: A549 and 
HoTu-10 cells

Proapoptotic effects (Müller et al., 2017)

Prostate cancer: LNCaP cells Prevents neuroendocrine differentiation (Morell et al., 2016)
Gastric cancer: SGC7901 and AGS cells Inhibits cell migration and invasion through COX-2 downregulation (Xian et al., 2016)
Hepatocellular carcinoma: BEL7402 cells Induces cell cycle arrest and inhibits tumor proliferation and migration (Xu et al., 2015)
Breast cancer: MDA-MB-231, MDA-MB-231-
luc, and MDA-MB-468

Inhibits tumor growth and metastasis (Qamri et al., 2009)

Breast cancer: 4T1 and MCF-7 cells Apoptosis and reduction of metastasis (Hanlon et al., 2016)
Non–small cell lung cancer (NSCLC): A549 
cells

Reduces tumor growth and inhibits macrophage recruitment (Ravi et al., 2016)

(Continued)
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TABLE 1 | Continued

Compound Targeted tumor Antitumor effect/mechanism of action References

Gastric cancer: human AGS adenocarcinoma 
cells

Apoptosis induction (Ortega et al., 2016)

Breast cancer: MDA-MB-231, MDA-MB-231-
luc, and MDA-MB-468

Inhibits tumor growth and metastasis via CB2R (Qamri et al., 2009)

Human cancer patients Chemotherapy-induced nausea and vomiting (Velasco et al., 2016; 
Badowski, 2017)

Brain cancer: human patients Antiproliferative effects (A Phase 1 Study of 
Dexanabinol in Patients With 
Advanced Solid Tumours, 
clinicaltrials.gov)

Leukemia, lymphoma, and colon cancer: 
Jurkat, Raji, and HT-29 cells

Inhibition of DNA topoisomerase II and antiangiogenic effects (Kogan et al., 2004; Kogan 
et al., 2006; Kogan et al., 2007)

Prostate cancer: LNCaP and PC-3 cells G0/G1 phase arrest and apoptosis through oxidative stress and 
activation of CB1R and PPARγ receptors

(Morales et al., 2013)

(Continued)
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TABLE 1 | Continued

Compound Targeted tumor Antitumor effect/mechanism of action References

Breast cancer: MDA-MB-231 cells Apoptosis through activation of CB2R receptors and oxidative stress (Morales et al., 2015)

Breast cancer: MCF-10A cells Antiproliferative effects related with its GPR55 activity (Badolato et al., 2019)

Colon cancer: Colo-205 cells Reduces viability, migration, and invasiveness through FAAH inhibition (Wasilewski et al., 2017)

Hepatic and pancreatic cancers: HepG2 and 
PANC-1 cells

Impairs cancer cell motility via GPR55 signaling (Paul et al., 2014)

Colon cancer: HCT116, SW480, and LoVo 
cells

Regulates apoptosis and migration through MAGL inhibition (Ma et al., 2016)

(Continued)
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as the COX-2, 5-LOX, PPARγ, mTOR, and p38 MAPK pathway 
(Hinz and Ramer, 2019).

The Δ9-THC plant precursor, Δ9-THCA, was shown to be 
slightly less active than its parent compound in human prostate 
carcinoma androgen receptor–negative and –positive cell lines 
(De Petrocellis et al., 2013), whereas in other cancer types such 
as breast, colon, gastric, glioma, and basophilic leukemia, they 
exert similar potency in vitro (Ligresti, 2006).

CBDA, the acidic precursor of CBD, inhibits the migration of 
MDA-MB-231 cells through COX-2 (Takeda et al., 2017), while 
CBC and CBG are much less active than CBD or inactive in 
different cancer cell lines (De Petrocellis et al., 2013).

Quercetin, a flavonoid present in fruits and vegetables, inhibits 
the growth of human colon adenocarcinoma cells through CB1R 
(Refolo et al., 2015). Another flavonoid structurally closely 
related to quercetin, morin (Table 1), showed an apoptotic 
effect by a mechanism not fully resolved (Hyun et al., 2015), 
but interestingly, morin also showed analgesic effects mediated 
through CB2R (Jiang et al., 2017).

Terpenes present in Cannabis sativa such as myrcene, 
α-pinene, and β-caryophyllene (BCP, Table 1) have been shown 
to exert synergic therapeutic actions with phytocannabinoids 
(Blasco-Benito et al., 2018). Anticancer and analgesic properties 
of β-caryophyllene have also been reported (Fidyt et al., 2016).

Synthetic Cannabinoids
Medicinal chemistry programs focused on cannabinoids 
led to the discovery of different scaffolds that constitute the 
synthetic cannabinoid family (Vemuri and Makriyannis, 2015). 
In particular, CP-55,940, WIN55,212-2, JWH-015, JWH-133, 
SR141716 (rimonabant), SR144528, and ACEA have been 
considered excellent pharmacological tools to provide insights 
into the endocannabinoid system. The cyclohexylphenol 
CP-55,940, initially developed by Pfizer, was radiolabeled in 
Allyn Howlett’s laboratory (Yamada et al., 1996). Another 
CB1R/CB2R (cannabinoid receptor CB1/cannabinoid receptor 
CB2) mixed reference agonist is the aminoalkylindole 
WIN55,212-2 developed by Sterling Winthrop. From more 
than 400 cannabinoids synthesized in John W. Huffman’s 
laboratory, JWH-015 became a reference THC derivative for 
showing better affinity for CB2R than for CB1R (Huffman and 
Marriott, 2008). Then, with the naphthoylindole derivative 
JWH-133, Huffman’s team provided a potent selective CB2R 
receptor agonist versus CB1R.

Arylpyrazoles
Rimonabant (SR141716, Table 1), a CB1R inverse agonist, 
elicits alternative cell death pathways depending on the cell 
type affected. For example, Bifulco (Sarnataro et al., 2006) 
provides evidence for a lipid raft–mediated mechanism 
related to the CB1R in MDA-MB-231 cells, whereas it induces 
apoptosis in colon cancer through a CB1R-independent 
mechanism that involves the canonical Wnt/β-catenin 
pathway and β-catenin target genes (Santoro et al., 2009; 
Proto et al., 2017; Fiore et al., 2018). Rimonabant induces cell 
cycle arrest and programmed cell death in leukemia cell lines TA
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by a mechanism unlikely to be CB1R-dependent due to a low 
expression of CB1R in the cell lines used (U937 and Jurkat 
cells) (Gallotta et al., 2010). Recently, rimonabant has been 
shown to reduce colon cancer stem cell proliferation, which 
may account for cancer initiation, progression, and metastasis 
(Fiore et al., 2018). Synergy with antineoplastic drugs has 
been explored. A synergic antitumor effect was observed 
when combining rimonabant and oxaliplatin in colon cancer 
(Gazzerro et al., 2010).

AM-251 (Table 1) is a CB1R antagonist structurally closely 
related to rimonabant. It often has been used as pharmacological 
tool. For instance, AM-251 allowed determining of the functional 
relevance of CB1R signaling in Hodgkin lymphoma (Benz et 
al., 2013) and in rhabdomyosarcoma (Marshall et al., 2011). 
As an antitumor agent, AM-251 has not been reported to have 
significant differences with rimonabant.

Aminoalkylindoles
WIN55,212-2, a CB1R/CB2R dual agonist, has been one of the 
most widely used pharmacological tools to get insights into 
the endocannabinoid system. WIN55,212-2 (Table 1) inhibits 
cell proliferation and migration in triple-negative breast 
cancer (Qamri et al., 2009); in prostate cancer (Morell et al., 
2016); in gastric cancer (Xian et al., 2016); in hepatocellular 
carcinoma (Xu et al., 2015); in lung cancer, testicular 
cancer, and neuroblastoma (Müller et al., 2017); in myeloma 
(Barbado et al., 2017); and in renal carcinoma (Khan et al., 
2018). Most of these results were confirmed in vivo in various 
mouse model systems. The contribution of WIN55,212-2 to 
the proliferation relies on a different mechanism of action also 
involving cooperation processes. CB2R is clearly involved in 
hepatocellular carcinoma (Xu et al., 2015), myeloma (Barbado 
et al., 2017), and renal carcinoma (Khan et al., 2018), whereas 
both CB1R and CB2R contribute to the antiproliferative activity 
in triple-negative breast cancer (Qamri et al., 2009). In the case 
of prostate cancer (LNCaP), WIN55,212-2 preserves the levels 
of CB2R activity, which decrease during the neuroendocrine 
process (Morell et al., 2016). Cyclooxigenase-2 has been 
shown to be an important downstream target of WIN55,212-2 
in gastric cancer metastasis (Xian et al., 2016). Moreover, this 
aminoalkylindole has been shown to improve inflammatory 
conditions, which ameliorate oncologic pathologies (Solbrig 
et al., 2010).

The naphthoylindole JWH-015 (Table 1) is characterized by 
high CB2R affinity, but it is not devoid of CB1R activity. CB2R 
activation has been reported to be involved in the antiproliferative 
effect of JWH-015 in different cancer cells, such as PC-3 prostate 
cancer cells (Olea-Herrero et al., 2009). In metastatic breast 
cancer MCF-7, crosstalk between CB2R and CXCR4 signaling 
seems to participate in the antiproliferative effect of JWH-015 
(Nasser et al., 2011). In lung cancer cell lines, the effect of JWH-
015 is comparable to WIN55,212-2, with CB1R/CB2R agonist-
mediated antiproliferative effects (Preet et al., 2011). In cancer 
murine 4T1 and human MCF-7 mammary carcinoma cells, the 
action of JWH-015 seems to be complex, since it is not mediated 
either by CB1R or CB2R, or by GPR55, TRPV1, or TRPA1 
receptors (Hanlon et al., 2016).

Quinones
Many quinones are cytotoxic through DNA intercalation, 
inhibition of DNA topoisomerase II enzyme, and free radical 
production. In this context, phytocannabinoids are interesting 
starting materials for preparing quinones. Thus, oxidation 
of CBD, ∆8-tetrahydrocannabinol, and cannabinol leads 
to para-quinone derivatives respectively named HU-331 
(Table 1), HU-306, and HU-345 (Kogan et al., 2004). They all 
exert antiproliferative activity for Burkitt’s lymphoma, T-cell 
lymphoma, glioblastoma, breast cancer, prostate cancer, lung 
cancer, and colon cancer. Efforts have been focused on the 
mechanism of action of HU-331, whose antitumor effect has 
been shown as not being directly mediated by CB1R or CB2R 
receptors (Kogan et al., 2006). HU-331 was found to specifically 
be an inhibitor of topoisomerase II, while having no effect on 
topoisomerase I (Kogan et al., 2007).

Based on the synthetic cannabinoid scaffold chromenopyrazole, 
para- and ortho-quinones were reported (Morales et al., 2013; 
Morales et al., 2015). As indicated by their profile, CB1R/
CB2R for para-quinones and CB2R for ortho-quinones, para-
quinones (such as PM49, Table 1) inhibit prostate LNCaP 
cell viability through a mechanism involving oxidative stress, 
PPARγ, and  partially  CB1R (Morales et al., 2013), while 
ortho-quinones (such as 10, Table 1) act on triple-negative 
breast cancer cells via CB2R activation and ROS production 
(Morales et al., 2015).

Recently, 1,4-naphthoquinone derivatives have been 
reported as efficient against triple-negative breast cancer 
(Badolato et al., 2019), which is not very surprising knowing 
that 1,4-naphthoquinone is a privilege scaffold for cytotoxicity. 
The cell viability assays assessed against the MDA-MB-231 
cell line, which has been determined to overexpress GPR55 
(Andradas et al., 2011), suggest that the most potent 
1,4-naphthoquinone, 3a (Table 1), acts as an inverse agonist 
of GPR55.

Naphthyridine and Naphthalene
1,8-Naphthyridin-2-ones, CB2R agonists, have been shown 
to be, in general, more active against prostate carcinoma 
cells (DU-145 cell line) than MCF-7 breast carcinoma cells, 
gastric adenocarcinoma cells, and glioblastoma cells (Manera 
et al., 2012). Recently, the proapoptotic effect of the 2-oxo-
1,8-naphthyridine-3-carboxamide LV50 (Table 1) on Jurkat 
leukemia cells was reported to be mediated by CB2R receptor 
(Capozzi et al., 2018).

Despite the expression of β2-adrenoceptor in the HepG2 
hepatocarcinoma cell line and its β2-adrenergic properties, MNF 
[(R,R’)-4’-methoxy-1-naphthylfenoterol, Table 1] causes growth 
arrest and apoptosis through signaling pathways downstream 
of GPR55 rather than a β2-adrenergic–dependent mechanism 
(Paul et al., 2014).

Others
Apoptotic and necrotic cell death have been reported to be 
associated with elevated levels of AEA (Matas et al., 2007). Thus, 
inhibition of the enzymes involved in the biodegradation of 
the endocannabinoids has been shown to play a role in cancer 
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cell viability, migration, and metastasis, as, for instance, does 
the FAAH inhibitor URB597 (Table 1) in lung cancer cells 
(Winkler et al., 2016). In colon cancer, FAAH inhibition (PF-
3845, Table 1) seems to be a better strategy than MAGL (JZL184, 
Table 1) or DAGL inhibition (RHC-80267) (Wasilewski et al., 
2017). However, in other studies, JZL184 was shown to have 
antiproliferative activity in apoptotic LoVo, HCT116, and SW480 
cells (Ma et al., 2016).

The 2-(3-hydroxycyclohexyl)phenol CP-55,940 (Table  1), 
a well-known CB1R/CB2R agonist, has been used as a 
pharmacological tool for comparing the antineoplastic activity 
induced by endogenous and synthetic cannabinoids on gastric 
cancer cells (Ortega et al., 2016). CP-55,940 and AEA induce 
similar apoptotic effects, whereas Meth-AEA is more effective at 
inducing necrosis through transient and rapid apoptosis.

The benzo[c]chromene JWH-133 (Table 1), structurally related 
to ∆8-THC, has been chosen for studying the mechanism of action 
of synthetic nonpsychotic cannabinoids on breast cancer growth 
and metastasis due to its selectivity for CB2R (Qamri et al., 2009).

Interestingly, dexanabinol and nabilone (Table 1), synthetic 
analogues of THC, are the two synthetic molecules that have 
further progressed in the clinic. While nabilone is approved in 
certain countries for the treatment of chemotherapy-induced 
nausea and vomiting (Ware et al., 2008; Velasco et  al., 2016; 
Badowski, 2017), dexanabinol is currently in clinical trials for the 
management of brain cancer (A Phase 1 Study of Dexanabinol 
in Patients With Advanced Solid Tumours, ClinicalTrials.gov; 
Dexanabinol in Patients With Brain Cancer, ClinicalTrials.gov). 
It is interesting to highlight that dexanabinol acts as an NMDA 
(N-methyl-D-aspartate) receptor antagonist and an inhibitor of 
the activity of nuclear factor kappa B (NF-kB) not binding CB1R 
and CB2R. Therefore, its antitumor molecular mechanisms could 
be mediated through the aforementioned targets (Striem et al., 
1997; Jüttler et al., 2004).

Moreover, CB2R agonists have been the focus of molecular 
targets associated with photodynamic therapy (PDT) agents for 
developing target-specific PDT photosensitizers. In this sense, 
IR700DX-mbc94, a conjugate between a phthalocyanine dye and 
the CB2R inverse agonist SR144528, showed significant activity 
in the malignant astrocytoma cell line (Zhang et al., 2014). 
Another strategy is the co-administration of CB2R agonist and 
a PDT photosensitizer; synergic effects between the PDT agent 
IR700DX-6 T and JWH-133 have been observed in triple-
negative breast cancer tumors (Zhang et al., 2018a).

Considering that GPR55 promotes cancer cell proliferation, 
peptide binders of GPR55 have been prepared and studied to 
inhibit the proliferation of EHEB and DeFew cells, two GPR55-
positive B-lymphoblastoid cell lines (Mangini et al., 2017). These 
peptide binders are used as substitute tools for an antibody-based 
therapy strategy, since there is a lack of humanized monoclonal 
antibodies for this receptor.

IN SILICO ADMET PROFILE

Besides their activity and antiproliferative profile, pharmacokinetic 
aspects should be considered in selecting cannabinoid scaffolds 

for further development towards the oncology scenario. In this 
context, we have estimated the drug-likeness of the previously 
listed molecules.

ADMET properties were predicted using QikProp, integrated 
in the Maestro software (Schrödinger, LLC, New York, 2019) and 
the admetSAR web server (Cheng et al., 2012; Dong et al., 2018; 
Yang et al., 2018). Selected parameters are shown in Table  2. 
These calculations provide a common parameterization of 
physicochemical descriptors that allows comparison of ADMET 
profiles, which is a useful criterion for chemical probe selection 
for further development.

According to our in silico calculations, most of the 
cannabinoids analyzed herein follow the Lipinski and 
Jorgensen pharmacokinetic rules (Lipinski, 2001; Jorgensen 
and Duffy, 2002). It is interesting to underline that our results 
are consistent with the experimental ADMET parameters 
published for some of these cannabinoids (Grotenhermen, 
2003; Stout and Cimino, 2014; Zendulka et al., 2016). As 
shown in Table 2, the prediction of human oral absorption, 
blood–brain barrier permeability, bioavailability, human 
intestinal permeability, or binding to human serum albumin 
suggests that these cannabinoids have an appropriate drug 
profile. However, solubility as well as metabolic and toxicity 
parameters of specific compounds such as JZL184, LV50, 
JWH-015, or 3a fall outside the range predicted for FDA-
approved small-molecule drugs (Hansen et al., 2009; Zhu et al., 
2009; Xu et al., 2012; Li et al., 2014). Certain cannabinoids of 
phytogenic and synthetic nature may inhibit the activity of 
one or more cytochrome P450 isoforms (Table 2). Since these 
enzymes are involved in over 70% of human drug metabolism 
(Guengerich, 2008), their interactions with cannabinoids can 
affect drug clearance, consequently enhancing toxicity. This 
should be especially taken into account when combining these 
cannabinoids with other chemotherapy agents. Consequently, 
when moving forward toward the clinic, selected cannabinoids 
could be discarded for pharmacokinetic issues.

PERSPECTIVE

The first report on the antitumor activity of phytocannabinoids 
was published over four decades ago (Munson et al., 1975). 
Nevertheless, it is only in recent years that interest in these 
properties has grown. In addition to the well-established 
palliative effects of cannabinoids in cancer therapy, cannabinoids 
have attracted attention as possible anticancer drugs. There 
is a growing body of evidence showing that endogenous, 
phytogenic, and synthetic cannabinoids, and modulators of 
endocannabinoid biosynthesis, inhibit proliferation of a wide 
spectrum of tumor cells. In this report, we aim to provide a 
perspective of the current drug development scenario of 
cannabinoid-based antitumor strategies and their potential 
pathway to the clinic.

Endogenous cannabinoids and their synthetic derivatives 
have widely exhibited their ability to modulate cell proliferation, 
angiogenesis, and metastasis in a number of cancer cell types. 
However, concerning their possible exogenous application 
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TABLE 2 | Physicochemical descriptors of selected compounds as calculated using QikProp (integrated in Maestro, Schrödinger, LLC, New York, 2019) and the admetSAR web server (Cheng et al., 2012; Dong et al., 
2018; Yang et al., 2018).

Compd QPlogSa QlogBBb QPlogKhsac QPPCacod % 
Abs.e

hERG
Blockagef

AMES
Toxicityg

Carcinogenicityh Acute 
oral 

toxicityi

LD50
j CYP substrate/inhibitionk

CYP3A4 CYP2C9 CYP2D6

AEA −6.20 −1.56 0.58 890 100 weak inhibitor non-toxic non-carcinogenic III 1.52 substrate/
non-inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

Met-AEA −5.02 −1.09 0.47 2,268 100 weak inhibitor non-toxic non-carcinogenic III 1.65 substrate/
non-inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

ACEA −4.72 −0.44 0.75 3,486 100 weak inhibitor non-toxic non-carcinogenic III 2.24 substrate/
non-inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

4g −6.18 −1.39 0.60 1,097 100 weak inhibitor non-toxic non-carcinogenic III 1.99 substrate/
non-inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

5c −5.18 −0.96 0.22 2,443 100 weak inhibitor non-toxic non-carcinogenic III 1.43 substrate/
non-inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

THC −6.64 −0.10 1.24 4,475 100 weak inhibitor non-toxic non-carcinogenic III 2.59 substrate/
non-inhibitor

substrate/
inhibitor

non-substrate/
non-inhibitor

CBD −6.11 −0.49 1.06 2,437 100 weak inhibitor non-toxic non-carcinogenic III 2.50 substrate/
inhibitor

substrate/
inhibitor

non-substrate/
non-inhibitor

CBG −6.19 −0.84 1.08 2,045 100 weak inhibitor non-toxic non-carcinogenic III 2.29 substrate/
inhibitor

non-substrate/
inhibitor

non-substrate/
non-inhibitor

CBC −7.13 −0.42 1.29 3,569 100 weak inhibitor non-toxic non-carcinogenic III 2.55 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

Quercetin −2.89 −2.41 −0.34 18 52 weak inhibitor non-toxic non-carcinogenic II 3.02 non-substrate/
inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

Morin −2.85 −2.34 −0.35 20 53 weak inhibitor non-toxic non-carcinogenic II 3.08 non-substrate/
inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

BCP −6.22 1.04 0.96 9,906 100 weak inhibitor non-toxic non-carcinogenic III 1.43 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

SR141716 −8.78 0.44 1.22 3,812 100 weak inhibitor non-toxic non-carcinogenic III 2.54 substrate/
non-inhibitor

non-substrate/
inhibitor

non-substrate/
inhibitor

AM-251 −9.02 0.47 1.27 3,812 100 weak inhibitor non-toxic non-carcinogenic III 2.54 substrate/
non-inhibitor

non-substrate/
inhibitor

non-substrate/
inhibitor

WIN55,212-2 −6.26 0.01 1.03 4,869 100 strong inhibitor non-toxic non-carcinogenic III 2.47 substrate/
inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

JWH-015 −6.04 0.02 1.10 4,893 100 weak inhibitor toxic non-carcinogenic III 2.52 substrate/
non-inhibitor

non-substrate/
non-inhibitor

substrate/
non-inhibitor

CP-55,940 −6.49 −1.78 0.89 399 100 weak inhibitor non-toxic non-carcinogenic III 2.08 substrate/
inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

JWH-133 −9.22 0.94 1.65 9,906 100 weak inhibitor non-toxic non-carcinogenic III 2.13 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

Nabilone −7.08 −0.81 1.24 1,348 100 weak inhibitor non-toxic non-carcinogenic III 2.54 substrate/
non-inhibitor

substrate/
inhibitor

non-substrate/
non-inhibitor

Dexanabinol −7.25 −0.93 1.28 1,430 100 weak inhibitor non-toxic non-carcinogenic III 2.51 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

(Continued)
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TABLE 2 | Continued

Compd QPlogSa QlogBBb QPlogKhsac QPPCacod % 
Abs.e

hERG
Blockagef

AMES
Toxicityg

Carcinogenicityh Acute 
oral 

toxicityi

LD50
j CYP substrate/inhibitionk

CYP3A4 CYP2C9 CYP2D6

HU-331 −5.35 −0.62 0.65 1,536 100 weak inhibitor non-toxic non-carcinogenic III 2.34 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

PM49 −5.46 −1.19 0.45 507 96 weak inhibitor non-toxic non-carcinogenic III 2.54 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

10 −6.27 −0.78 0.59 1,599 100 weak inhibitor non-toxic non-carcinogenic III 2.65 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

3a −1.96 −0.71 −0.66 342 78 strong inhibitor non-toxic non-carcinogenic III 2.55 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

PF-3845 −7.26 −0.41 0.81 976 100 weak inhibitor non-toxic non-carcinogenic III 2.83 substrate/
inhibitor

non-substrate/
inhibitor

non-substrate/
non-inhibitor

MNF −3.49 −1.21 0.20 91 79 weak inhibitor non-toxic non-carcinogenic III 2.42 substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
inhibitor

JZL184 −4.99 −1.40 0.30 217 77 weak inhibitor toxic non-carcinogenic III 2.68 substrate/
inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

LV50 −6.41 −0.43 0.56 1,706 100 weak inhibitor toxic non-carcinogenic II 2.65 substrate/
inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

URB597 −5.35 −1.31 0.34 321 89 weak inhibitor non-toxic non-carcinogenic III 2.15 non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

non-substrate/
non-inhibitor

Physicochemical descriptors calculated by QikProp: aPredicted aqueous solubility [-6.5/0.5]. bPredicted log of the brain/blood partition coefficient [-3.0/1.2]. cPrediction of binding to human serum albumin (-1.5–1.5). dApparent Caco-2 
cell permeability [nm s-1, intestinal drug permeability, < 25 poor, > 500 excellent]. QikProp predictions are for non-active transport; eHuman oral absorption in the GI [< 25% is poor]; [range of 95% of drugs].
Toxicity parameters calculated with the admetSAR prediction tool: fPredicted hERG blockade: compounds are classified according to the previously published approach as strong inhibitors (IC50 < 1 µM) or “non-blockers” exhibiting 
moderate (1–10 µM) and weak (IC50 > 10 µM) inhibitors (Marchese Robinson et al., 2011). gAMES mutagenicity predictions are based on the previously published benchmark data set (Hansen et al., 2009; Xu et al., 2012). 
hCarcinogenic potency is divided into three classes, labeled as “danger,” “warning,” and “non-required,” according to the TD50 (median toxic dose) values. Carcinogenic compounds with TD50 ≤ 10 mg/kg body wt/day were assigned as 
“danger,” those with TD50 > 10 mg/kg body wt/day were assigned as “warning,” and non-carcinogenic chemicals were assigned as “non-required” (Lagunin et al., 2009; Li et al., 2015).
iCompounds are classified into four categories based on the criterion of the US EPA (Category I contains compounds with LD50 values less than or equal to 50 mg/kg; Category II contains compounds with LD50 values greater than 50 
mg/kg but less than 500 mg/kg; Category III includes compounds with LD50 values greater than 500 mg/kg but less than 5000 mg/kg; Category IV consists of compounds with LD50 values greater than 5000 mg/kg) (Li et al., 2014). 
jPredicted median lethal dose (LD50) in rat model (acute toxicity in mol/kg) (Zhu et al., 2009).
kMetabolism parameters from admetSAR: Molecules were classified as substrate or non-substrate, and inhibitor or non-inhibitor of the different CYP450 isoforms, according to the previously published classification (Carbon-Mangels 
and Hutter, 2011; Cheng et al., 2011a, Cheng et al., 2011b).
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for cancer treatment, their lipid nature along with possible 
alterations of the metabolism of the endocannabinoid system 
may decrease the pharmaceutical interest for this family. In fact, 
eicosanoid degradation can trigger handling difficulties as well as 
chemical stability issues.

On the other hand, phytocannabinoids and their synthetic 
analogues are further moving toward the bedside as potential 
antitumor agents. The natural occurring scaffold has been the 
most explored for their antiproliferative potential. As previously 
summarized, compounds isolated from Cannabis such as 
THC or CBD can reduce tumor growth in vitro and in vivo 
through different mechanisms depending on the cancer type. 
Remarkably, pilot studies and early-phase clinical trials indicate 
positive results regarding the survival of glioblastoma patients 
upon treatment with combinations of the aforementioned 
phytocannabinoids (A Pilot Study of Dronabinol for Adult 
Patients With Primary Gliomas, ClinicalTrials.gov; TN-TC11G 
(THC+CBD) Combination With Temozolomide and Radiotherapy 
in Patients With Newly-Diagnosed Glioblastoma, ClinicalTrials.
gov; Guzmán et al., 2006).

Besides its promising anticancer potential, the 
pharmacokinetics of CBD should be taken carefully in the 
oncological field. This compound can inhibit the cytochrome 
isoform CYP3A4 (Zendulka et al., 2016), which may alter the 
metabolism of other drugs when used in combination. This is 
especially relevant due to the current use of drug cocktails for 
cancer treatment.

In line with these findings, it is interesting to underline 
the promising cannabis entourage effect. Synergic antitumor 
responses have been observed upon cancer treatment with 
cannabis botanical preparations (Blasco-Benito et al., 2018), 
exhibiting better results than pure phytocannabinoids 
administrated separately. Therefore, cannabinoid combinations 
may provide an improved antiproliferative strategy for cancer 
management.

Due to intellectual property pharmaceutical aspects, synthetic 
derivatives of phytogenic cannabinoids such as dexanabinol are 
also at advanced preclinical stages for the potential treatment of 
solid tumors (A Phase 1 Study of Dexanabinol in Patients With 
Advanced Solid Tumours, ClinicalTrials.gov; Dexanabinol in 
Patients With Brain Cancer,” ClinicalTrials.gov).

Moreover, the cannabinoid–quinones analyzed herein also 
represent a promising chemotype for anticancer research. In 
addition to their multitarget antitumor actions, they present a 
suitable pharmacokinetic profile, being, in our opinion, a good 
drug-like prototype for further development. As commented, the 
putative cannabinoid receptor GPR55 is considered an emerging 
target in cancer therapy (Andradas et al., 2011). Thus, GPR55 
antagonists should be explored as antitumor drugs. Moreover, 
due to the overexpression of this receptor in specific tumors, 
compounds that specifically bind GPR55 might represent 
valuable tools as tumor-targeting agents for delivery of classical 
chemotherapeutic drugs. In this regard, the previously mentioned 
1,4-naphthoquinones, such as 3a, or naphthylfenoterols, such 
as MNF, could be interesting candidates for the pursuit of this 
cannabinoid anticancer approach.

Arylpyrazoles, aminoalkylindoles, and other cannabinoid 
derivatives such as napththyridine need additional antiproliferative 
in vitro and in vivo assays to be considered for further antitumor 
drug discovery stages. Endocannabinoid enzyme inhibitors such as 
URB597 and JZL184 should also be further explored since they may 
provide complementary anticancer strategies.

A major concern when considering new molecules as 
antitumor agents is their selectivity for cancer cells versus normal 
cells. Interestingly, phytocannabinoids such as ∆9-THC (Caffarel 
et al., 2006; Caffarel et al., 2008) and cannabinoid–quinones such 
as PM49 and 10 (Morales et al., 2013; Morales et al., 2015) have 
shown selective toxicity toward cancer cells versus their non-
transformed counterparts. This should be taken into account 
when selecting suitable entities for further development.

The role of the endocannabinoid system in carcinogenesis 
is not fully unraveled. Therefore, it is difficult to choose a 
specific cannabinoid chemotype for optimal anticancer drug 
development. Nowadays, major hopes are coming from 
phytocannabinoids and their synthetic derivatives since they 
are steps forward in the clinic race. However, parallel systematic 
exploration of promising scaffolds presenting optimized ADMET 
profiles along with diverse mechanistic antiproliferative effects 
will probably provide wider antitumor spectra.

In this perspective, we have been reporting cannabinoid-based 
scaffolds as single anticancer agents. However, over the last years, new 
anticancer strategies toward clinical translation of cannabinoids have 
been explored. Combinational therapy involving synergies between 
cannabinoids and other anticancer agents is one of these approaches 
(Gazzerro et al., 2010; Torres et al., 2011; Scott et al., 2017; López-
Valero et al., 2018; Zhang et al., 2018a). Such combined therapies 
allow targeting of tumor progression at different levels. Another 
strategy will be the use of cannabinoids in preventive conditions 
(Liu et al., 2010; Khan et al., 2018). Since inflammation is a common 
risk factor for cancer, and some cannabinoids have shown anti-
inflammatory properties, they could play a role in chemoprevention.
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