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The recent publication of the σ1R crystal structure is an important cornerstone for the
derivation of more accurate activity prediction models. We report here a comparative
study involving a set of more than 25,000 structures from our internal database that had
been screened for σ1R affinity. Using the recently published crystal structure, 5HK1,
two new pharmacophore models were generated. The first one, 5HK1–Ph.A, was
obtained by an algorithm that identifies the most important receptor-ligand interactions
including volume restrictions enforced by the atomic structure of the recognition site.
The second, 5HK1–Ph.B, resulted from a manual edition of the first one by the fusion of
two hydrophobic (HYD) features. Finally, we also docked the database using a high
throughput docking technique and scored the resulting poses with seven different
scoring functions. Statistical performance measures were obtained for the two models,
comparing them with previously published σ1R pharmacophores (Hit Rate, sensitivity,
specificity, and Receiver Operator Characteristic) and 5HK1–Ph.B emerged as the best
one in discriminating between active and inactive compounds, with a ROC-AUC value
above 0.8 and enrichment values above 3 at different fractions of screened samples.
5HK1–Ph.B also showed better results than the direct docking, which may be due to
the rigidity of the crystal structure in the docking process (i.e., feature tolerances in the
pharmacophore model). Additionally, the impact of the HYD interactions and the penalty
for desolvating ligands with polar atoms may be not adequately captured by scoring
functions, whereas HYD groups filling up such regions of the binding site are entailed in
the pharmacophore model. Altogether, using annotated data from a large and diverse
compound collection together with crystal structure information provides a sound basis
for the generation and validation of predictive models to design new molecules.

Keywords: sigma-1, crystal structure, 5HK1, pharmacophore model, docking, virtual screening

INTRODUCTION

The sigma-1 receptor (σ1R) is an intracellular chaperone protein, expressed in CNS regions and
known to regulate Ca2+ signaling and cell survival. The σ1R gene encodes a 24 kDa protein of 223
amino acids anchored to the endoplasmic reticulum (ER) and plasma membranes (Maurice and Su,
2009). The σ1R sequence has no homology with other mammalian proteins and is structurally and

Abbreviations: 2/3D, 2/3-Dimensional; EF, Enrichment Factor; HR, Hit Rate; HYD, Hydrophobic; HBA, Hydrogen
Bond Acceptor; PI, Positive Ionizable; AR, Aromatic Ring; HYD-AR, Hydrophobic Aromatic; ROC, Receiver Operator
Characteristic; ROC-AUC, Area under the ROC curve; σ1R, Sigma-1-Receptor; TRP, Sensitivity; TNR, Specificity; ECFP,
extended connectivity fingerprints; FCFP, functional class fingerprints.
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functionally different from other target classes. The σ1R is
also unique in that it exerts molecular chaperone activity and
interacts with diverse proteins to modulate their functions.
Accordingly, the σ1R is involved in many physiological functions,
including inter-organelle signaling (Su et al., 2010). Its activity
can be regulated by ligands in an agonist/antagonist manner
(Hayashi et al., 2011). Just as examples, the σ1R modulates
opioid analgesia through physical protein-protein interactions,
with σ1R antagonists enhancing and σ1R agonists inhibiting the
antinociceptive effect of opioids, and σ1R antagonists reproduce
the pain-protective phenotype of σ1R knockout mice when
administered to wild-type mice (Zamanillo et al., 2013).

Until its recent crystallization, little was known about the
σ1R 3-dimensional (3D) structure and the rational design of
σ1R modulators mostly relied on ligand-based approaches. Based
on a series of diphenylalkylamines, a first 2D-pharmacophore
model (Glennon–Ph) for the σ1R was designed in the early
90’s (Glennon et al., 1994) consisting in a positive ionizable
(PI) group (i.e., a basic amino group) and two opposite
hydrophobic (HYD) regions at 2.5–3.9 Å and 6–10 Å without
any angle constrain (Figure 1). This qualitative model has been
very useful as a guide to medicinal chemists for the design
of new ligands. In 2004, a Sybyl 3D-pharmacophore model
(Gund–Ph) was derived based on the alignment of PD144418,
spipethiane, haloperidol and (+)-pentazocine (Gund et al.,
2004). It consists in an aromatic region and a nitrogen atom
that acts as hydrogen bond acceptor, as primary requirement
for binding, and a polar feature representing an oxygen or
sulfur atom as secondary binding interaction. In 2005, Langer’s
group developed a 3D-pharmacophore model (Langer–Ph) based
upon 23 structurally diverse molecules with σ1R Ki values
between 10 pM and 100 µM (Laggner et al., 2005). The
model was generated with the HypoGen algorithm of Catalyst
(Catalyst 4.9, 2003) and it consists in one PI and four HYD
features (Figure 1). The model is in good agreement with
Glennon’s one but lacks the secondary polar binding region of
Gund–Ph. Another HypoGen derived model (Zampieri–Ph) was
published in 2009 using a series of 31 benzo[d]oxazol-2(3H)-one
derivatives (Zampieri et al., 2009). The model contains one
hydrogen bond acceptor (HBA), two hydrophobic aromatic
features (HYD-AR), one HYD feature and one PI group. It
is also in agreement with Glenon–Ph concerning distances
among the PI feature and any HYD group, but it includes an
additional polar/hydrogen bond acceptor feature as hypothesized
by Gund. Langer–Ph and Zampieri–Ph share feature type and
number (except for the additional HBA and the differentiation
of one HYD to aliphatic HYD). Reported distances from the
PI group to HYD features are similar, but not so much as
it regards to their disposition and angles. Using the MOE
Pharmacophore Elucidation routine, Wünsch’s group aligned a
training set of 66 spirocyclic derivatives to generate an additional
pharmacophore model (Oberdorf–Ph) with four annotation
points: aromatic, HYD, PI and HBA (Oberdorf et al., 2010).
In 2012, another σ1R 5-features model for a series of 32
N-substituted azahexacyclododecanols was developed using the
Phase program provided in Maestro (Banister et al., 2012). Its
composition of HYD, PI and HBA features is in accordance

with previous published models, but again with particular
pairwise distances and angles. In summary, all the available
pharmacophoric models share the presence of a PI and several
HYD features with variations in distances and angles, and all of
them, except Glenon’s and Langer’s ones include the presence
of a polar group.

The first σ1R homology model was published in 2011 by
Pricl’s group (Laurini et al., 2011). It was built taking as reference
non-overlapping segments of four crystalized proteins with
≥30% sequence identities to the σ1R. The N-terminal domain
(residues 1–16) was built de novo and the four fragments were
joined, generating and ranking alternative models for the loop
portions in each junction zone. This initial 3D model was then
subjected to refinement by molecular dynamics and a putative
binding site was identified. The refined σ1R homology model
was then used for docking and binding affinity determination
of a series of bioactive ligands and reference σ1R ligands via
the MM/PBSA methodology, as well as for the design of new
ligands and their ranking for receptor affinity (Laurini et al., 2012,
2013). Later on, another σ1R homology model was published,
with results based on only the cold-active aminopeptidase, (PDB
code 3CIA), also used by Pricl’s group among template structures,
wherein two distinct but closely proximal binding sites were
suggested from docking studies of pentacycloundecylamines
using MOE (Geldenhuys et al., 2013).

In 2016, the first crystal structure of the human σ1R was
published in complex with two ligands, PD144418 and 4-
IBP (Schmidt et al., 2016). More recently the same group
reported co-crystallization with additional compounds (Schmidt
et al., 2018). The crystal structure shows an overall trimeric
receptor arrangement, with a single transmembrane helix in each
protomer, and each protomer binding a single ligand molecule.
The single-pass transmembrane architecture was surprising
in view of the widely accepted two-pass transmembrane
architecture, compatible with or suggested from fluorescent tags
and immunocytochemistry (Aydar et al., 2002; Hayashi and Su,
2007), radioiodinated photoprobe (Fontanilla et al., 2008) or
solution circular dichroism-nuclear magnetic resonance (Ortega-
Roldan et al., 2015) studies, although a single transmembrane
segment close to the N-terminus and coded by exon 2 had already
been suggested from the very beginning by hydropathy analysis of
the amino acid sequence (Hanner et al., 1996; Kekuda et al., 1996;
Seth et al., 1997; Prasad et al., 1998).

Taking advantage of the information and resolution provided
by the X-ray crystallographic structure, we explored its
contribution to the prediction of binding affinities in virtual
screening conditions compared to previous pharmacophore
models. To this aim we developed two new σ1R pharmacophore
models using the structural information revealed by the crystal
structure, which was also used for docking studies in several
conditions. Additionally we reproduced most of the published
σ1R pharmacophore models and compared their performance
in front of a fraction of our chemical database, experimentally
assayed for σ1R affinity, containing more than 25,000 unique
structures. To the best of our knowledge this is the first time
that such a large compound dataset is used for establishing the
predictive value of σ1R models.
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FIGURE 1 | (A) Langer–Ph. (B) Glennon–Ph; (C) Comparison of 5HK1–Ph.A (without exclusion spheres) with Langer–Ph (yellow).

MATERIALS AND METHODS

Protein Preparation
The recently crystalized σ1R structure (PDB = 5HK1) was
prepared using Discovery Studio 16 (Dassault Systèmes BIOVIA,
2016a). Sulfate ions and oleoyl-glycerol molecules were removed,
as well as all waters, since no key water molecules were observed
within the binding site. Incomplete side chains were added, the
structure was typed with the CHARMm forcefield and atoms
were ionized according to the predicted pK at pH = 7.4, using
the ‘calculate protein ionization and residue pK’ protocol. The
charge of Asp126 was set to zero, allowing a hydrogen bond with
the charged Glu172 as previously hypothesized (Schmidt et al.,
2016). Subunit B of the trimeric structure was selected for further
calculation as it shows the lowest average isotropic displacement.
However, very similar results should be obtained using any of the
other two subunits, as the RMSD of the 3 subunits superimposed
by C-alpha pairs of residues within 5 Å distance to the ligand has a
value of 0.25 between chains A and B and of 0.18 between chains
B and C (RMSD superimposed using the whole chains is a bit
higher due to the different bending of the helices).

Ligand Databases Collection and
Preparation
All in-house characterized compounds for σ1R binding together
with their data were retrieved from ESTEVE’s internal Activity
Base database (IDBS, 2016). This made up a total of 25,676
unique structures. Compounds were obtained in the neutral
form, as salts had been already striped in the registration
process. Then a 3D multiconformational database was built

with Catalyst as implemented in Discovery Studio 2016,
using the BEST methodology (Smellie et al., 1995; Kirchmair
et al., 2006). 3D conformational generation was launched
from Pipeline Pilot 2016 (Dassault Systèmes BIOVIA, 2016b).
Special attention was given to correctly retain the stereochemical
information of the compounds. Both chirality options were
included in the conformation generation process for racemic
mixtures. In the case of enantiomeric mixtures with grouped
stereocenters, Catalyst is not able to take the stereochemistry-
related information into account for conformer generation.
Hence, different 3D entries for each of those compounds with
the stereochemical combination defined by the stereo-groups
were created, generating conformations specifically for each of
them and joining them afterward with the same compound
identifier. Compounds with fused cyclopropyl groups as well
as some substituted cyclobutyl derivatives cannot be treated by
the BEST algorithm. In this case conformations were built by
systematic search using a default torsion increment of 60 for
sp3-sp3 and sp3-sp2 bonds and of 180 for sp2-sp2, followed by
minimization using the MMFF force field. The final database
generated, consisting of 3,707,672 conformers, was used as input
for pharmacophoric screening.

Additionally a second multiconformational database of the
same compounds, but ionized, was built. To do so, basic pKa
constants were calculated for all compounds using both ACD-
classic and ACD-Galas (ACD/Labs, 2014). A Pipeline Pilot
protocol was designed to generate a pool of different ionization
states for each compound, by protonating basic points with
pKa values above 5 or unprotonating acidic points below 5
successively on the previous state, and adding the resulting
ionized structure to the pool. The protocol was run for the
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ACD-classic and ACD-Galas generated values, and both output
structures were merged and duplicate ionization states removed.
Finally, the same procedure described above was followed,
obtaining a new database with 7,573,004 conformers.

For the purpose of this work, structures were classified as
actives when their Ki value was equal or under 1 µM (18.6%
of the samples; 4766 structures) or as inactives in the contrary
cases or when Ki values had not been determined because their
percentage inhibition at 1 µM was under 50% (81.4% of the
samples; 20,910 structures).

Pharmacophore Generation
The receptor-ligand pharmacophore generator job implemented
in Discovery Studio 16 was run on the prepared subunit B
of the σ1R with the co-crystallized ligand PD144418 to obtain
5HK1–Ph.A. The algorithm (Sutter et al., 2011) generates
pharmacophore models from the features that correspond to
the receptor-ligand interactions, identifying in a first step all
ligand features and pruning then those features that do not
match the protein-ligand interactions. It additionally places as
well excluded volumes to represent the steric aspect of the
protein. 5HK1–Ph.B was built modifying 5HK1–Ph.A in the
Discovery Studio interface using the available pharmacophore
edition functionalities, specifically the averaging, the tolerance
edition tool, and the feature customization functionality which
was used to exclude certain substructures from the amidine
and guanidine default mapping definition of PI that did not
show basicity following the prediction of both ACD-classic
and ACD-Galas (ACD/Labs, 2014). Langer–Ph, developed in
Catalyst, now included in the Discovery Studio platform, was
reproduced thanks to the definitions, coordinates, tolerances
and weights included in its publication (Laggner et al., 2005).
Zampieri–Ph and Banister–Ph were reproduced deriving the
feature positions that fulfill the published distances and angles
and setting a default constrain radius of 1.6Å for the features.
In the case of Zampieri–Ph, the angle of the projection point of
the HBA feature was not reported, thus no location constrain was
set for that projection point to avoid filtering out any hits of the
original Zampieri–Ph. Regarding Banister–Ph, although it was
built with the Phase program, Catalyst equivalent features were
set for the different pharmacophoric points. In the case of the
HBA and the Aromatic Ring (AR) features, as no directionality
information was described, again the projection points of
those features were left without location constrains. Gund–Ph,
originally built using the Sybyl package, was reproduced in
Discovery Studio using the given coordinate points (Gund et al.,
2004). To be as accurate as possible in replicating the original
features, the default tail definition of the Catalyst HBA feature
was modified, accepting only the mapping to nitrogen atoms.
Thus, the new HBA feature could be used to map the nitrogen
location and the provided projection point of the hydrogen bond
between the nitrogen and the receptor. To solve the issue of
two normal vectors defining the AR, and understanding them as
an attempt to map a pi-pi stacking from both sites of the ring,
two Catalyst pharmacophores were built: one with the projection
point on one side and the other with the projection on the other,
requiring the fitting of both pharmacophores at the same time.
Again a default constrain radius of 1.6 Å was set for all features

except for the HBA projection point where the default radius is
2.2 Å. Oberdorf–Ph could not be reproduced, as no distances,
angles or feature coordinates were provided by the authors.

Screening Methods
The generated multiconformational database with 3,707,672
conformers was screened with the Ligand Pharmacophore
Mapping protocol launched from the Pipeline Pilot 2016 interface
(Dassault Systèmes BIOVIA, 2016b), were each conformation
was mapped separately and only the best mapping solution was
returned for each of them, keeping finally only the mapped
conformation with the best FitValue for each compound. Further,
typical virtual screening conditions were used in the calculation:
the omission of any feature was not allowed, and both rigid fit
between each ligand conformation and the pharmacophore, as
well as flexible fit, where slight conformational modifications are
allowed to better fit the pharmacophore, were applied. In the case
of the Langer–Ph, the published affinity prediction conditions
were also used for screening, using the published weights and
setting in this case the maximum number of omitted features to
any. In the case of Gund–Ph to achieve the double directionality
of the aromatic feature, we screened compounds first with
a pharmacophore having the AR pointing to the direction
of Tyr103, as determined after the pharamacophore-receptor
alignment: Gund-up–Ph, and then we filtered the resulting
conformations in place and without fitting, with a second
pharmacophore equal to Gund-up–Ph but with the inverted
projection point of AR.

For the docking studies, the LibDock program (Diller and
Merz, 2001; Rao et al., 2007) implemented in Discovery Studio 16
was used, taking the prepared subunit B of the 5HK1 structure
and the generated multi-conformational database of ionized
compounds. A Site Sphere of 10 Å centered on the crystallized
PD144418 ligand was defined and the docking grid was calculated
using 1000 hotspots. No minimum cut-off value was set for the
LibDockScore and up to 100 ligand poses could be saved for
each ligand, but a filter requiring a charge interaction of the
output poses with Glu172 was established to lower the number of
possible solutions, as this interaction is the strongest interaction
found in the crystallized structure (Schmidt et al., 2016) and
mutation of Glu172 has been proven to abolish binding (Seth
et al., 2001). Additionally, to ensure a proper orientation of
the ligand, a hydrogen bond as part of the electrostatic salt-
bridge interaction was also required (Bissantz et al., 2010).
Finally poses with unfavorable interactions were filtered out. The
remaining LibDock settings were left to their default values, and
to score the resulting poses, the following seven scoring functions
as implemented in Discovery Studio 16 were used: LigScore1,
LigScore2 (Krammer et al., 2005), PLP1, PLP2 (Gehlhaar et al.,
1995), Jain (Jain, 1996), PMF (Muegge and Martin, 1999), and
PMF04 (Muegge, 2006).

Human Sigma-1 Receptor Radioligand
Assay
The binding properties of the 25,676 compounds to human
σ1R were studied in transfected HEK-293 membranes
using [3H](+)-pentazocine (Perkin Elmer, NET-1056) as the
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radioligand. The assay was carried out with 7 µg of membrane
suspension, [3H]-(+)-pentazocine (5 nM) in either absence or
presence of either buffer or 10 µM haloperidol for total and
non-specific binding, respectively. Binding buffer contained
Tris-HCl (50 mM, at pH 8). Plates were incubated at 37◦C for
120 min. After the incubation period, the reaction mix was
transferred to MultiScreen HTS, FC plates (Millipore), filtered
and plates were washed (3 times) with ice-cold Tris–HCl (10 mM,
pH 7.4). Filters were dried and counted at approximately 40%
efficiency in a MicroBeta scintillation counter (Perkin-Elmer)
using EcoScint liquid scintillation cocktail. The distribution of
activities obtained is indicated in Table 1.

Evaluation of Screening Performance
For evaluating the effectiveness of the different models,
well-known metrics were used. The Enrichment Factor (EFx%)
measures the density of active compounds that can be found at
a given fraction of the model-ordered database in comparison
to a random selection. It is calculated by Equation (1), where
Activesx%

Selected is the number of active compounds found
at top x% of the database screened, following the model
ranking; Nx%

Selected is the number of compounds at top x%
of the database; ActivesTotal is the number of active ligands
in entire database; and Ntotal is the number of compounds
in the entire database. A major drawback of the Enrichment
Factor, that turns it unsuitable for comparison of screening
performance among different databases, is its dependency on
the ratio between active and inactive compounds. However,

TABLE 1 | Experimentally determined σ1R affinity range distribution of
compounds in the dataset of 25,676 unique structures used for virtual screening
and validation of the different models.

σ1R affinity range, Ki (nM) #compounds

<50 1620

50–100 707

100–150 430

150–200 298

200–250 235

250–300 165

300–350 110

350–400 114

400–450 127

450–500 99

500–550 91

550–600 96

600–650 93

650–700 120

700–750 135

750–800 107

800–850 84

850–900 50

900–950 54

950–1000 31

>1000 20,910

it allows a ranking of different models for the same database
(Truchon and Bayly, 2007).

EFx%
=

Activesx%
Selected/N

x%
Selected

ActivesTotal/Ntotal
(1)

The Hit Rate (HRx%) corresponds to the ratio of known hits
found within the top x% and it is defined as the quotient of the
real EF and the ideal EF (Hamza et al., 2012).

Sensitivity (TPR) is the fraction of correctly identified active
compounds within the selected top x%.

Specificity (TNR) is the fraction of correctly identified inactive
compounds within that x%.

The Receiver Operator Characteristic (ROC) curve plots
sensitivity (true positive rate) versus specificity at all possible
selection thresholds (Fawcett, 2006). The area under its curve
(ROC-AUC) is a practical and objective way of measuring the
performance of screening models, being independent of the
balance of active and inactive compounds present in the database.
ROC-AUC values range from 0.0 to 1.0, with 0.5 meaning
random selection.

Similarity Calculations
Extended-Connectivity Fingerprints (Rogers and Hahn,
2010), Functional-Class Fingerprints and MDL public keys
(Durant et al., 2002) as implemented in Pipeline Pilot
were used as structural descriptors. All pairwise Tanimoto
distances among compounds of each set were calculated and
statistical values and histogram frequencies were obtained with
implemented protocols.

RESULTS

As a first step, a new σ1R pharmacophore model based on
the receptor-ligand interactions observed in the 5HK1 crystal
structure was automatically built. Only four out of the ten
pharmacophoric features present in PD144418 were chosen by
the algorithm as being the most characteristic and selective ones.
Those were one PI feature and three HYD features, two on one
side of the PI with distances from 7 to 13 Å and one on the
other side at 3.7 Å ± 0.8 Å. The PI feature stands for the ionic
interaction between the amine of PD144418 and Glu172 and
Asp126; the HYD on one side for the hydrophobic interaction of
the propyl chain with Ile124 and His154; and the two other HYD
features for the interactions of the phenyl ring and the methyl
with Leu182, Tyr206, and Ile178. These features together with
the excluded volumes constituted the new σ1R pharmacophore
model 5HK1–Ph.A (Figure 2).

Comparing 5HK1–Ph.A with previously described models,
we found that it perfectly matched the distances of Glennon–Ph.
Langer–Ph just differed by having one additional HYD feature,
while distances and angles were almost in perfect overlap with
the new model (an RMS displacement of 1.1 Å if disregarding the
additional HYD1 feature, Figure 1). This supports the feasibility
of building ligand-based global models that account for receptor
interactions, as well as HypoGen’s model building power when a
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FIGURE 2 | New pharmacophore model 5HK1–Ph.A based on receptor-ligand interactions. The model consists in one PI feature (red), three HYD features (blue),
and twenty-one Excluded Volumes (gray).

proper diverse training set with a wide activity range is selected.
The fact that the additional HYD feature present in Langer–Ph
(HYD1) was not necessary for σ1R binding, and could be replaced
by other non-hydrophobic chemical groups, had already been
observed for some of our σ1R ligand families. For example, in a
series of 4-aminotriazole derivatives (Díaz et al., 2015), the HYD1
feature was reported not to be covered by high affinity ligands;
instead, triazole nitrogen atoms were present in that region.

To further determine whether HYD1 and its position may
be dispensable (although it can account for the interaction of
particular compound families), Langer–Ph was displaced and
positioned into the σ1R active site in two different ways. As a
first option the within Discovery Studio available pharmacophore
alignment algorithm was used. The second strategy entailed a
rigid fitting of PD144418 into the pharmacophore, allowing the
omission of one feature, followed by the displacement of the
fitted structure to its crystallographic position, displacing at the
same time the pharmacophore itself. In both cases, HYD1 turned
out to be located directly over Tyr103. This implies that the
conformation of a ligand that fulfills the geometrical disposition
of the five features that make up the Langer–Ph would be
positioned in a way that would at least initially clash with the
crystallized σ1R (Figure 3).

Going over to the remaining pharmacophore models that have
in common the presence of an additional polar feature, Gund–Ph
differed mainly by the absence of a HYD feature next to the
PI and by the so-called secondary binding region defined by
the presence of an oxygen or sulfur atom. After a rigid fit of
Gund–Ph to the crystallized PD144418 model, we found that the
AR did coincide with one of the HYD features of 5HK1–Ph.A
(Figure 4). Looking at the receptor, we observed that Tyr103
was actually pi-stacking with the phenyl ring of the ligand, thus

the aromatic feature in this position captured a ligand-receptor
interaction, although only in one direction, since there was no
other aromatic ring facing the phenyl from the other site. As
for the directionality of the hydrogen bond established by the
nitrogen, it reflected the interaction of the basic amine that
may receive a hydrogen atom from either Glu172 or Asp126. In
comparison to Langer–Ph, there was no HYD feature on the other
site of the PI. Finally, the polar feature, defined in this case by the
presence of an oxygen or sulfur atom, can be found in ligands
such as PD144418, which was among those used to derive the
pharmacophore, but it did not reflect a binding interaction, as the
oxygen of the isoxazole ring does not show any polar interaction
with the receptor.

Regarding Zampieri–Ph, no more than two features could
be aligned simultaneously to 5HK1–Ph.A when using the
pharmacophore alignment algorithm. Only one of the solutions
remained within the binding site region delimited by the
exclusion volumes after the alignment, but in this case the
location of the HBA would partially collapse with Tyr103 and
the crystallized PD144418 would not fulfill more than two
features in that disposition (Figure 5). On the other hand, a
rigid fit of PD144418 was only achieved allowing the omission
of two features, and when displacing the solution that mapped
the PI feature to the crystallographic position of the ligand,
space constrains could be observed for the non-fitted HYD and
HYD-AR features of the pharmacophore.

Finally, all Banister–Ph features were mapped by PD144418
except for the HBA, although with a considerable low FitValue
(Figure 6). An HBA in the specified position might represent a
second polar interaction with Glu172, but this interaction was
particular to the chemistry used to derive the model and does
not seem to be always required for binding. The HYD feature
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FIGURE 3 | Langer–Ph positioned in the active site of the σ1R. Note that HYD1 collapses with Tyr103 (in yellow).

next to the PI having an equivalent location to 5HK1–Ph.A
or to Langer–Ph was missing, but instead a second HYD that
might stand for interactions with other hydrophobic aminoacids
(Phe107) was found.

Visualizing the five pharmacophore models overlapped in
the σ1R binding site (Figure 7), we can conclude that they
all have identified the important ionic interaction (PI), and
coincide in placing a HYD or HYD aromatic site that has
turned out to be the space defined by residues Tyr103, Leu105,
Leu95, Tyr206, Leu182, and Ala185 and delimited by helices α4
and α5. More ambiguity was observed in the location of the
other HYD region, which is not defined in Gund–Ph and has
different placements in Banister’s and Zampieri’s models. Only
Langer–Ph and the new structure-derived 5HK1–Ph.A place
it at the bottom of the β-barrel, near Asp126. Regarding the
polar feature present in three of the models, it might likely
reflect regions where a polar group can be tolerated rather than
necessary interactions for binding.

In order to experimentally validate and test the performance
of the different models, a 3D multiconformational database of
25,676 unique structures was built. They belong to ESTEVE’s
internal compound library and have been characterized over the
years for σ1R binding (displacement of [3H]-(+)-pentazocine in
HEK-293 membranes transfected with human σ1R (DeHaven-
Hudkins et al., 1992)). The compound dataset comprises
compounds within all the affinity ranges, as indicated in Table 1.
It is worth noting that almost half of the compounds considered

active for the σ1R (Ki < 1 µM) are high affinity compounds
with Ki< 100 nM.

The resulting multiconformational database (3,707,672
conformers) was screened with the five pharmacophore models
applying both rigid and flexible fit. In the case of Langer–Ph,
affinity prediction conditions were also tested. In the case of
Gund–Ph two options were considered: compounds fulfilling
just the directionality of the aromatic feature pointing to
Tyr103 (Gund-up–Ph) and compounds with an aromatic
feature accessible from both sites, which corresponds to
the original definition (Gund–Ph). We then calculated for
all the models the sensitivity, specificity, enrichment values
and hit rates at 1, 5, and 10% of the database, and the area
under the ROC curve (ROC-AUC). Results are displayed in
Table 2 and Figure 8. Gund’s and Zampieri’s models failed to
discriminate actives from inactives, having ROC-AUC values
scarcely above 0.5. Both Gund–Ph and Gund-up–Ph were
equally unsatisfactory, probably due to the model simplicity,
since both active and inactive compounds were equally able
to fit the pharmacophore (high sensitivity and low specificity
values), both with similar FitValues translating in enrichment
factors around 1. Zampieri–Ph, on the contrary, had a low
true positive rate, suggesting that the hypothesized features
in the specified arrangement were not fulfilled by a high
percentage of σ1R binders. The very low enrichment factors
tending to 1 already at the 10% of the ranked compounds
indicates that inactive compounds suited the model almost as
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FIGURE 4 | (A) Gund–Ph positioned in the active site of the s1R by rigid ligand alignment. The AR features capture the pi-stacking with Tyr103, but there is no
aromatic side chain on the other side for the interaction on the opposite direction; (B) Gund–Ph (yellow) overlapped with 5HK1–Ph.A.

well as active ones. Both facts, together with the difficulties
in the pharmacophore-receptor alignment, may indicate that
the lack of success shown by ROC-AUC values was due to a
feature disposition that does not geometrically map the key
σ1R-ligand interactions.

On the other hand, Langer–Ph, Banister–Ph and the new
5HK1–Ph.A behaved approximately equal in discriminating
active versus inactive compounds, either by applying rigid or
flexible fit, with an almost equal poor to fair accuracy based

on ROC-AUC values around 0.7. They differed, however, in
their sensitivity to specificity ratio. Banister–Ph had a high
sensitivity, being able to recover around 80% of the hits,
but at the cost of selecting many false positive compounds.
Although the final area under the ROC curve was quite fair,
enrichment factors up to 10% of the ranked compounds were
barely above one. Accordingly, the presence of the features
in the reported positions with a tolerance radius of 1.6 Å
seems to be common to active compounds and fair enough to
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FIGURE 5 | (A) Zampieri–Ph place in the σ1R binding site resulting from alignment with 5HK1–Ph.A. HBA collapses partially with Tyr103 and the crystallized
PD144418 does not fulfill more than 2 features; (B) Placement resulting from the rigid fit of PD144418 to Zampieri–Ph and displacement of the whole set to the
crystallographic position of the ligand. Space constrains can be observed for the non-fitted HYD and HYD-AR features.

FIGURE 6 | Banister–Ph positioned in the binding site by rigid ligand-fit and displacement. The HYD under the PI might stand for interactions with other HYD
aminoacids, mainly with Phe107 (in yellow).

distinguish them from inactives, but the predictability is low
when considering only compounds with the best adjustments
to reported distances and angles. Oppositely, Langer–Ph and
5HK1–Ph.A managed high specificity values, with lower though
acceptable true positive rates and enrichment factors between
2 and 3. Thus, both models were able to differentiate between
actives and inactives, both globally and considering only best

fitting compounds. In fact, 5HK1–Ph.A surpassed Langer–Ph in
enrichment and hit rate values, with an average hit rate above
fifty percent up to a 10% of ranked compounds, meaning that
five to six out of each 10 compounds selected by the model
show affinity for the σ1R. In general, flexible fits seemed to
perform slightly better in terms of ROC-AUC but not when
looking at enrichment factors. This small difference may be
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FIGURE 7 | Visualization of the five pharmacophore models (Langer, Gund, Zampieri, Banister and 5HK1-Ph.A) overlapped in the binding site. Location spheres are
only shown for 5HK1–Ph.A.

TABLE 2 | Area under the ROC curve, sensitivity, specificity, enrichment factors and hit rates at 1%, 5% and 10% of screened compounds using six different
pharmacophore models, with both rigid and flexible fit.

ROC
AUC

Sensitivity
(TPR)

Specificity
(TNR)

EF1% EF5% EF10% HR1% HR5% HR10%

5HK1–Ph.A 0.65 0.45 0.84 3.44 3.00 2.66 63.8 55.6 49.3

5HK1–Ph.A flex. 0.66 0.5 0.80 3.40 2.79 2.43 63.1 51.7 45.1

Langer–Ph 0.67 0.53 0.80 2.10 2.04 2.04 38.9 37.8 37.8

Langer–Ph flex. 0.71 0.65 0.76 2.41 2.15 2.10 44.7 39.9 38.9

Langer–Ph AffPred.a 0.73 1.97 1.93 1.91 36.5 35.8 35.4

Gund–Ph 0.52 0.71 0.34 0.94 0.81 0.85 17.5 14.9 15.8

Gund–Ph flex. 0.51 0.74 0.33 0.90 0.99 0.88 16.7 18.4 16.3

Gund-up–Ph 0.52 0.78 0.31 0.92 0.88 0.88 17.1 16.3 16.3

Gund-up–Ph flex. 0.52 0.8 0.3 0.82 0.84 0.91 15.2 15.6 16.9

Zampieri–Ph 0.51 0.16 0.87 1.66 1.28 1.18 30.8 23.7 21.9

Zampieri–Ph flex. 0.52 0.21 0.83 1.68 1.33 1.15 31.2 24.7 21.3

Banister–Ph 0.71 0.79 0.63 1.30 1.34 1.60 24.1 24.9 29.7

Banister–Ph flex. 0.76 0.82 0.61 1.30 1.16 1.35 24.1 21.5 25.0

5HK1–Ph.B 0.85 0.94 0.63 3.17 3.17 3.10 58.8 58.8 57.5

5HK1–Ph.B flex. 0.83 0.95 0.59 2.43 2.67 2.56 45.1 49.5 47.5

a In the case of Langer–Ph affinity prediction conditions have also been tested.

due to the higher number of compounds fitting the model
thanks to this flexibility, conferring some advantage over random
at higher fractions of selected compounds. Finally, Langer–Ph
under affinity prediction conditions showed comparable results
to Langer–Ph using a flexible fit.

Taking into consideration the binding site region (mainly
built by amino acids exerting apolar interactions with the ligand)
and receptor-ligand interactions automatically retrieved in the
5HK1–Ph.A, we suspected that the two contiguous HYD features
could be due to the nature of the ligand complexed in the
crystal structure rather than to a real requisite for σ1R binding.
Therefore we decided to modify 5HK1–Ph.A in order to average
the two mentioned HYD features into a new one, placed at
their center. This was done by increasing the tolerance to 3
Å to allow the fitting of any compound amenable to HYD
interactions at that region, but without exceeding the surface
delimited by the excluded volumes. Further, the tolerance of the

HYD feature at the other site of the PI group was increased to
2.2 Å, which approximately corresponds to the available receptor
cavity, and excluded volumes were left the same. Additionally the
PI feature was customized to exclude certain substructures from
the amidine and guanidine default PI definition. With all these
parameters a new pharmacophore, 5HK1–Ph.B, was generated
(Figure 9) and used to screen the same 3D multiconformational
database applying again both rigid and flexible fit. The new
results and statistical measures can be found as well in Table 2
and Figure 8. We found that by merging the two HYD
features sensitivity increased to optimal values (around 0.95),
which means that 5HK1–Ph.B is able to recognize almost all
binders and without a substantial decrease, neither in precision
nor in specificity, in comparison to the previous models. The
higher sensitivity translated into a ROC-AUC value above 0.8,
indicating a good statistical accuracy. Rigid fit surpassed flexible
fit. Further enrichment factors and hit rates of the new models
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FIGURE 8 | Enrichment plots for the six evaluated pharmacophore models for
the first 10% of selected samples.

at screening percentages below 10% of the database are quite
comparable to the best ones obtained previously. This leaves
5HK1–Ph.B as the best σ1R pharmacophore model among those
assayed in this study in light of our internal, experimental
in vitro data.

In addition to the pharmacophore models it was deemed
interesting to perform a docking-based virtual screening using

the coordinates of the crystal σ1R structure. For that purpose
the 25,676 compounds were ionized for pH values greater than
5 to generate a new conformational database with 7,573,004
conformers that were docked using LibDock (Diller and Merz,
2001; Rao et al., 2007) as described in the experimental section.
As shown in Table 3, the docking process was able to differentiate
active from inactive compounds with fair ROC-AUC values
around 0.77 for the different scoring functions, providing better
sensitivity than specificity. That is, it generated more false
positives than false negatives. The main difference among the
scoring functions was found in enrichment values in the first
10% of ranked compounds, where -PMF04, LigScore2_Dreiding
and Jain achieved the higher values. With the best scored pose of
σ1R ligands (obtained with -PMF04), receptor-ligand interaction
analysis was performed (Figure 10). It can be appreciated
that, together with Glu172, other aminoacids such as Met93,
Tyr103, Phe107, Tyr120, Leu182, and Ala185 are important for
ligand recognition.

When comparing pharmacophore-based and docking-base
screenings, pharmacophore search using 5HK1–Ph.B
outperformed docking results in all evaluated parameters.
5HK1–Ph.A also showed a better performance than docking
when looking at enrichment values, although with an opposite
sensitivity-specificity profile. This may be due to the rigidity of
the crystal structure in the docking process, as opposed to the
feature tolerances in the pharmacophore model. Additionally,
the importance of the HYD interactions characteristic of the σ1R
and the penalty for desolvating ligands with polar atoms may
be not well captured by the tested scoring functions, whereas
the pharmacophore model directly requires HYD groups to fill
those regions up.

Finally, to assess the value of the 5HK1–Ph.B model
not only in terms of effectiveness but also in its potential

FIGURE 9 | 5HK1–Ph.B pharmacophore.
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TABLE 3 | Area under the ROC curve, sensitivity, specificity, enrichment factors and hit rates at 1, 5, and 10% of ranked compounds after docking and scoring by seven
different scoring functions.

ROC-AUC EF1% EF5% EF10% HR1% HR5% HR10%

-PLP1 0.77 1.74 1.99 2.18 32.3 36.9 40.3

-PLP2 0.77 1.72 2.1 2.14 31.9 38.9 39.7

-PMF 0.76 1.3 1.72 1.9 24.1 31.9 35.2

-PMF04 0.77 2.81 2.34 2.27 52.1 43.4 42.1

Jain 0.78 1.87 2.3 2.4 34.7 42.7 44.5

LigScore1_Dreiding 0.74 1.51 1.6 1.82 28 29.7 33.8

LigScore2_Dreiding 0.75 2.62 2.36 2.2 48.6 43.8 40.8

–PMF04 shows the best results throughout the different indicators. Sensitivity (TPR): 0.85 Specificity (TNR): 0.59.

FIGURE 10 | Aminoacids exerting favorable interactions with σ1R ligands with the best pose scored by –PMF04. Together with Glu172; Met93, Tyr103, Phe107,
Tyr120, Leu182, and Ala185 are important for ligand recognition.

to capture diversity, we calculated all pairwise Tanimoto
similarities for different subgroups of compounds, as depicted
in Table 4 and Figure 11. Three structural descriptors were
used: Extended-Connectivity Fingerprints and Functional-Class
Fingerprints with diameters four and six (that is maximal
distance in bond length considered for the generation of the
atom-centered substructural features encoded), and the MDL
public keys implemented in Pipeline Pilot. Out of those pairwise
distances, the average, median and mode distance values were
also determined. Four subgroups were devised: (i) all the 25,676
compounds in the library; (ii) all the active compounds; (iii) the
first 10% of selected compounds by the 5HK1–Ph.B model; and
(iv) the true active compounds within this 10%. As reference
values for a selection of analogs we considered 88 active analogs
of the σ1R antagonist in clinical development (S1RA; E52862)
(Díaz et al., 2012) as well as the first 88 ranked compounds
by the 5HK1–Ph.B model. We first found that calculated

distances of both Extended-Connectivity and Functional-Class
fingerprints with diameter six exhibited slightly greater distances
than those calculated with diameter four, and both of them
returned higher values than those determined using MDL Public
Keys. Interestingly, however, the same conclusions can be drawn
with all of them: active compounds among the library are very
diverse, with average, median and mode distances quite close
to those exhibited by the whole library, which confirms the
structural variety of σ1R binders. The same degree of diversity
was also observed for the first 10% compounds selected by the
5HK1–Ph.B model, considering actives and inactives or only
active compounds among the selected. In fact, statistical values
obtained for the true positives among this 10% were almost
equal to the values obtained for all the actives in the library. It
is remarkable that the first 88 active compounds ranked by the
model were able to reach high average distances, whereas the 88
analogs of S1RA showed clearly lower values. This reinforces the
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TABLE 4 | Average (µ), median (Me), and mode (Mo) pairwise Tanimoto distance values for five different subgroups: 88 analogs of the lead compound S1RA (E52862);
the first 10% of selected compounds by the 5HK1–Ph.B model; the true active compounds within this 10%; all database compounds; all active compounds
in the database.

ECFP_6 ECFP_4 FCFP_6 FCFP_4 MDLPublicKeys

µ Me Mo µ Me Mo µ Me Mo µ Me Mo µ Me Mo

S1RA Analogs (88) 0.63 0.66 0.67 0.55 0.56 0.50 0.57 0.59 0.50 0.45 0.45 0.50 0.18 0.17 0.11

First 88 actives 0.85 0.87 0.89 0.82 0.84 0.86 0.82 0.85 0.86 0.76 0.78 0.75 0.42 0.44 0.50

First 10% 0.87 0.87 0.88 0.83 0.84 0.83 0.84 0.85 0.83 0.77 0.78 0.80 0.45 0.46 0.50

TP in the 10% 0.86 0.87 0.88 0.83 0.84 0.83 0.83 0.84 0.83 0.76 0.77 0.75 0.45 0.47 0.50

All database 0.89 0.89 0.89 0.86 0.87 0.86 0.86 0.87 0.86 0.82 0.82 0.80 0.52 0.52 0.50

All actives 0.86 0.87 0.88 0.82 0.84 0.83 0.83 0.84 0.83 0.76 0.77 0.75 0.45 0.46 0.50

FIGURE 11 | Analysis of the diversity of the compounds with σ1R affinity compared to the diversity of the whole database and compared as well with the diversity
shown by the analogs of a lead compound. The diversity obtained by the pharmacophore selection (C) is comparable to that of the whole database (A). A, All library
compounds; B, Active compounds in the library; C, first 10% of selected compounds by the 5HK1–Ph.B model; D, True positives within this 10%; E, 88 analogs of
S1RA (E52862); F, First 88 ranked compounds by the 5HK1–Ph.B model.

aforementioned ability of 5HK1–Ph.B to discriminate binders
even when there are high structural differences among them.

DISCUSSION

After the publication of the σ1R crystal structure, a new avenue
was open for the derivation of accurate models, either by
generating new receptor-ligand derived pharmacophore models
or by using it for docking studies. In order to show how this
information could help in the design of new σ1R ligands we
decided to use it for the generation of new pharmacophoric
models of general applicability. Two models were developed:
The first one, 5HK1–Ph.A, was obtained by an algorithm
that identifies the most important receptor-ligand interactions
including as well excluded volumes based on atom location on
the protein. The second, 5HK1–Ph.B, resulted from a manual
edition of the first one mainly by merging two HYD features that
we thought match the particular structure of one co-crystallized
ligand more than specific requirements of the binding site.

In order to compare these new models with the information
provided by previously published σ1R pharmacophore models

(Langer–Ph, Gund–Ph, Zampieri–Ph, Banister–Ph), we carried
out a study involving a set of 25,676 structures of our internal
database that had been experimentally screened for σ1R affinity
in a binding assay of [3H]-(+)-pentazocine displacement and
displayed a wide range of activities and structural diversity.

All the pharmacophoric models assessed identified the
important ionic interaction (PI) of ligands with Glu172 and
placed a HYD or HYD aromatic site in the same region
that turned out to be the space defined by residues Tyr103,
Leu105, Leu95, Tyr206, Leu182, and Ala185 and delimited
by helices α4 and α5. More ambiguity was observed in the
location of the other HYD region, which is not defined
in Gund–Ph and has different placements in Banister’s and
Zampieri’s models. Only Langer–Ph and the new structure-
derived 5HK1–Ph.A and 5HK1–Ph.B place it at the bottom of
the β-barrel, near Asp126.

Finally, we also docked the ionized database using a high
throughput docking technique and scored the resulting poses
with seven different scoring functions. With the best scored pose
of σ1R ligands obtained with the best scoring function (-PMF04),
receptor-ligand interaction analysis was performed and it was
determined that, together with Glu172, other aminoacids such
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as Met93, Tyr103, Phe107, Tyr120, Leu182, and Ala185 are
important for ligand recognition.

Statistical performance measures were obtained with all the
models generated, including Hit Rate (ratio of known hits found
within the top x%), sensitivity (fraction of correctly identified
active compounds), specificity (fraction of correctly identified
inactive compounds) and the area under the Receiver Operator
Characteristic Curve (ROC-AUC, which plots the true positive
rate against the false positive rate at descending model’s scores).
When comparing all these parameters throughout the different
models, 5HK1–Ph.B emerged as the best model to discriminate
between active and inactive compounds, with a ROC-AUC value
above 0.8 and enrichment values above 3 at different fractions of
screened samples. This means that 5HK1–Ph.B could be used
with the highest confidence in relation to any of the previously
available models either in the design of new σ1R ligands or in
the virtual screening of large compound collections, where an
increased hit-rate ratio is expected.

When comparing pharmacophore-based with docking-based
screening, the receptor derived pharmacophore 5HK1–Ph.B
showed better results than the direct docking to the receptor.
The superior performance of the pharmacophore screening is
not absolutely unexpected as it has already been reported for
other targets (Chen et al., 2009) and could be explained by
the rigidity of the crystal structure in the docking process, that
could be implicitly compensated by the feature tolerances in the
pharmacophore model. Additionally, HYD interactions are very
relevant in the σ1R binding region and the penalty for desolvating
ligands with polar atoms could be not well captured by the
docking scoring functions. On the contrary, the pharmacophore
model directly requires HYD groups to fill up those regions of
the binding site.

It is important to note that σ1R binds a remarkable variety of
small molecules with high affinity (<100 nM), as already shown
in the literature (Almansa and Vela, 2014). The results reported
here were obtained using an internal database of drug-like as
well as CNS-oriented molecules with experimentally determined
affinities using a homogenous procedure, both for active and
inactive compounds. Many of them were generated in the context
of Medicinal Chemistry σ1R programs and hence the database
contains many diverse scaffolds where small modifications within
congeneric series may abolish activity. This situation is not
frequently encountered since models are usually generated or
validated based on one or a few chemical families active on
the target, in front of assumed inactives or decoys obtained by
diversity selection of drug-like compounds (Réau et al., 2018).
Altogether, the use of a large and diverse compound collection
together with accurate structural information provides a sound
basis for the generation and validation of predictive models to
design new molecules.

While writing this manuscript, a 3D-QSAR model for a pooled
dataset of known σ1R antagonists from five structurally diverse
chemical families, with 147 compounds for model development
and 33 compounds for model validation, has been published
(Peng et al., 2018). Interestingly, the X-ray crystal structure
of the human σ1R in complex with PD144418 was used to
derive the pharmacophore model needed for the structural

alignment of the compounds. With this alignment procedure,
a predictive 3D-QSAR model for σ1R antagonists was obtained
and further validated by virtually screening the DrugBank
database of FDA approved drugs. Two approved drugs with
high and previously unknown σ1R affinities were identified
(diphenhydramine and phenyltoloxamine; Ki = 58 and 160 nM,
respectively). Despite the constrained applicability domain of
3D-QSAR to the range of binding affinities and chemical space
of the training set ligands, the publication demonstrates as
well the success in the use of the X-ray structure for model
development, allowing the identification of new drug leads prior
to the resource-demanding tasks of chemical synthesis and
experimental biological evaluation.

Finally, it is important to note that classification of σ1R ligands
as agonists or antagonists has been often based on their opposing
or counteracting effects on biological systems including cell lines,
primary cultures and animals (Cobos et al., 2008; Maurice and
Su, 2009; Entrena et al., 2016). Little is known in terms of
specific structural features or specific receptor conformations
when agonists or antagonists are bound. Ligand-mediated
conformational changes distinctive for agonist and antagonist
ligands were observed when some reference σ1R ligands
were assayed in a σ1R fluorescence resonance energy transfer
(FRET)-based biosensor (Gómez-Soler et al., 2014). FRET data
also support distinctive interactions as some σ1R antagonists
stabilize high-molecular-weight oligomers, while certain agonists
suppress oligomerization (Mishra et al., 2015). However, the
agonist-bound crystallizes similarly to the antagonist-bound
σ1R, and the overall conformation of the receptor does not
significantly differ, except for a 1.8 Å shift of helix α4 found when
compared the (+)-pentazocine-bound relative to the PD 144418-
bound structure (Schmidt et al., 2018). Thus, current structural
data are insufficient to comment substantively on the impact of
identified receptor-ligand interactions on the functional nature
of assayed ligands. This will doubtless be an important area for
future research. Going further, elucidation of distinct ligand-
driven conformations and regulation of homo-/heteromerization
states is poised to be an important area for σ1R structural biology.
Importantly, the advent of structural data now allows more
rational construct design and analysis for computational work.
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