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Determining the target genes that interact with drugs—drug–target interactions—plays

an important role in drug discovery. Identification of drug–target interactions through

biological experiments is time consuming, laborious, and costly. Therefore, using

computational approaches to predict candidate targets is a good way to reduce

the cost of wet-lab experiments. However, the known interactions (positive samples)

and the unknown interactions (negative samples) display a serious class imbalance,

which has an adverse effect on the accuracy of the prediction results. To mitigate

the impact of class imbalance and completely exploit the negative samples, we

proposed a new method, named DTIGBDT, based on gradient boosting decision

trees, for predicting candidate drug–target interactions. We constructed a drug–target

heterogeneous network that contains the drug similarities based on the chemical

structures of drugs, the target similarities based on target sequences, and the known

drug–target interactions. The topological information of the network was captured by

random walks to update the similarities between drugs or targets. The paths between

drugs and targets could be divided into multiple categories, and the features of each

category of paths were extracted. We constructed a prediction model based on gradient

boosting decision trees. The model establishes multiple decision trees with the extracted

features and obtains the interaction scores between drugs and targets. DTIGBDT is a

method of ensemble learning, and it effectively reduces the impact of class imbalance.

The experimental results indicate that DTIGBDT outperforms several state-of-the-art

methods for drug–target interaction prediction. In addition, case studies on Quetiapine,

Clozapine,Olanzapine, Aripiprazole, and Ziprasidone demonstrate the ability of DTIGBDT

to discover potential drug–target interactions.

Keywords: drug–target interaction prediction, class imbalance, ensemble learning, path category-based features,

gradient boosting decision tree

INTRODUCTION

Computational prediction of drug–target interactions (DTIs) plays a key role in drug discovery
and repositioning (Chen et al., 2015; Yu et al., 2015, 2017b). Drugs exert their functions by
interacting with various targets, of which genes are one important group. Through binding,
drugs can either enhance or inhibit the expressions of genes and thereby affect disease processes
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(Overington et al., 2006; Yu et al., 2016; Santos et al., 2017).
However, in most cases, drugs may cause multiple side-effects
because they can interact with several unintended targets. The
identification of targets that interact with drugs by biological and
chemical experiments is very laborious and expensive (Langley
et al., 2017). Therefore, many studies have attempted to predict
DTIs by using computational methods, to reduce the workload
and costs in providing candidate DTIs for biologists to verify
(Ding et al., 2017a,b, 2019; Shen et al., 2017).

Several prediction methods concentrate primarily on
incorporating information from drug–target homogeneous
networks (Mei et al., 2012; Xu et al., 2014a,b, 2016; Li et al.,
2015; Hao et al., 2017; Yu et al., 2017a). For example, Bleakley
and Yamanishi constructed a support vector machine (SVM)
framework named BLM, which is based on a bipartite local
model, to predict DTIs (Bleakley and Yamanishi, 2009).
However, because this method is trained with a large-scale
bipartite graph model, high computational power is needed.
Mei et al. analyzed DTI features from neighbors and predicted
novel interactions (Mei et al., 2012); it is difficult to obtain
enough neighbor information for this method. Ezzat et al. and
Luo et al. incorporated topological information by applying a
random walk on the homogeneous network and used graph
regularized matrix factorization to calculate the propensities of
DTIs (Ezzat et al., 2017; Luo et al., 2017). However, the accuracy
of the results may be influenced when the features are projected
into low-dimensional space, because some valuable information
may be lost. Hao et al. proposed a method based on non-linear
integral of similarity measurements (Hao et al., 2017). Although
this method showed good performance, its accuracy depended
heavily on the similarity measurements. DTI prediction has been
treated as a binary classification problem in Lee’s methods (Lee
and Nam, 2018). The features of drugs and targets that were
used for training a k-nearest-neighbors model were weighted
by random walks. However, the known and unknown DTIs
have a serious class imbalance, which has an adverse impact
on prediction accuracy. In DDR, which was applied by Olayan
et al., path category-based feature vectors were constructed to
incorporate the topological information of the network, and a
random forest was used for DTI prediction (Olayan et al., 2017).
Random forest does not perform as well as in classification
when it solves the regression problem, because it cannot yield a
continuous output.

In this work, in order to further improve the accuracy of
DTI prediction and mitigate the impact of class imbalance,
we propose a novel computational method named DTIGBDT.
We construct a drug–target heterogeneous network to extract
features. A gradient boosting decision tree (GBDT)-based
prediction model is used for calculating the propensities of
interactions. We compare our approach with other prediction
methods using various performance measurements: the results
show that DTIGBDT outperforms the other methods.

MATERIALS AND METHODS

Our goal is to predict novel (that is, unknown) interactions
between drugs and targets. In order to integrate the information
of various connections and the node attributes, we construct

a drug–target heterogeneous network. We then design a novel
prediction model based on GBDT for the network, to obtain
the interaction scores of drug–target pairs. The higher the
score, the more likely they are to interact (Zou et al., 2015;
Zeng et al., 2017a).

Dataset for DTI Prediction
We obtained the drug–target interaction data from a published
work (Luo et al., 2017). In this dataset, there are 1923 known
DTIs, involving 708 drugs from DrugBank 5.0 (Wishart et al.,
2017) and 1,412 targets from HPRD 9.0 (Keshava Prasad et al.,
2008). For each pair of drugs and each pair of targets, we
also extracted the similarities between them from these two
databases. The similarity between two drugs was calculated by
using the Tanimoto coefficient (Francesco et al., 2010), based on
their chemical structures. The similarity between two targets is
measured by the Smith-Waterman score (Wenhui et al., 2014),
based on their primary sequences.

Heterogeneous Network-Based
Feature Extraction
Construction of Drug–Target Heterogeneous Network
We defined a set of DTIs, which consists of a set of drugs D
and a set of targets T, where D = {d1, d2,..., dm} includes m
drug nodes, and T = {t1, t2,..., tn} contains n target nodes.
The drug–target network can be considered as a heterogeneous
network, which is constructed by a drug network and a
target network. In these two networks, we added an edge
to connect two drug nodes or two target nodes when the
similarity between them were >0. Furthermore, the edge was
weighted by the similarity between the two nodes. The edge
between a drug and a target represented a known DTI and was
weighted by 1. This heterogeneous network can be represented
as in Figure 1A.

The interactions between D and T could also be represented
as a matrix Y where Yij is 1 if drug di and target tj are
observed to interact and 0 otherwise. The set of similarities
between drugs was represented by SDǫRm

∗m and the set
of similarities between targets was represented by STǫRn

∗n.
The element values in SD or ST are in the range of
[0, 1] which represents how similar drugs or targets are to
each other.

Similarity Calculation Based on Network and

Selection of k Neighbors
Random walk with restart, a network diffusion algorithm, has
been widely used to analyze complex biological network data
(Köhler et al., 2008; Tong et al., 2008; Berger et al., 2010; Li and
Patra, 2010; Xu et al., 2016; Cheng et al., 2018b; Gao et al., 2018).
Random walk can consider the topological information of the
network to fully analyze the potential associations between nodes.
We conduct random walks on the drug and target networks
separately, to extract the topological information of the networks.
Based on these similarities, we select the kmost similar neighbors
for each node.

We take the drug network as an example to illustrate the
random walk procedure. We defined a matrix ND, in which each
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FIGURE 1 | Algorithm flow of DTIGBDT. (A) Construct the heterogeneous network. (B) Random walk on drug network and target network, respectively. (C) Select

most similar k neighbors. (D) Get feature vectors for each drug–target pair. (E) Train the DTIGBDT with the feature vectors.

element ND (i, j) describes the probability of a transition from di
to dj.

ND

(

i, j
)

=
SD(i, j)

∑

j′ SD(i, j
′)

(1)

where SD(i, j) represents the similarity between two drugs, di and
dj. Next, we defined a matrix Wt

DǫRm
∗m where Wt

D(i, j) is the
probability that the walker reaches dj from di after t iterations

in the random walk process. The matrixWDt can be calculated as
Equation (2).

Wt+1
D = (1− a)NDW

t
D + aW0

D (2)

where parameter a is the restart probability. The matrix W0
D can

be initialized by Equation (3).

W0
D

(

i, j
)

=

{

1, i = j
0, i 6= j

(3)
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The convergence condition of the random walk procedure is
‖ Wt

D − Wt−1
D ‖1 < 10−6. After the condition is satisfied, the

converged probability Wt
D(i, j) can be regarded as a similarity

score between two drugs. This score incorporates the topological
information in the drug network and is used to update the weight
of the edge between diand dj. Next, we selected the kmost similar
neighbors of di based on the similarities. We obtained the matrix
KDǫRm

∗k where the ith row stores the kmost similar neighbors of
di. Similarly, we conducted randomwalk on the target network to
obtain the similarity matrixWt

T(i, j)ǫR
n∗n and the matrix of the k

most similar neighbors, KTǫRn
∗k (Figures 1B,C).

Path Category-Based Features
Based on the assumption that similar drugs can usually interact
with the same target and vice versa, we extracted an 18-
dimensional feature vector based on the path category for
each drug–target pair. In this study, we worked with the path
categories whose lengths are 2 and 3 (but not longer than that,
because of the computational cost). If we limit paths to start at the
drug nodes and end at the target nodes, there are only two path
categories with length 2. These two categories can be denoted as
C1: (D–D–T) and C2: (D–T–T), where D represents a drug node
and T represents a target node. The four categories with paths of
length 3 are C3 :(D–T–T–T), C4 :(D–D–T–T), C5 :(D–D–D–T),
and C6 :(D–T–D–T). We considered these six categories of paths
to predict whether the drug can interact with the target. In this
process, we started from a given drug di to reach a given target
tj through a specific path category Ch, where h is selected from
{1, 2, 3, . . . , 6}. We only considered paths that pass through the
k nearest neighbors of di or tj. We denoted the set of such paths
as Rijh. Next, for the qth path pq between di and tj, we calculated
a weight s by multiplying all weights on the edges of path pq as
Equation (4).

s
(

i, j, h, q
)

=
∏

∀ex∈pq

wx (4)

where exis the xth edge of pq, and wx is the weight of the edge.

We defined three matrices V1ǫR
i∗j∗h, V2ǫR

i∗j∗h, and V3ǫR
i∗j∗h,

to store the features between di and tj under each path category
Ch. V1(i, j, h) is the sum of the s-values in set Rijh. V2(i, j, h) is
the maximum s-value in set Rijh, and V3(i, j, h) is the number of
paths in the set.

V1

(

i, j, h
)

=
∑

∀pq∈Rijh

s(i, j, h, q) (5)

V2

(

i, j, h
)

= max
∀pq∈Rijh

(s
(

i, j, h, q
)

) (6)

V3

(

i, j, h
)

= num∀pq∈Rijh

(

p
)

(7)

We combined the three matrices into a new matrix Vf ǫR
i∗j∗(3∗h),

where the row Vf (i, j) represents the feature vector of di and tj
(Figure 1D).

We take the drug–target pair (d7, t3) in Figure 1A as an
example to describe the process of heterogeneous network-
based feature extraction. The paths from d7 to t3 are shown

in Figure 2A, and the values of s for each path are listed in
Figure 2B. There are two paths in the set R733, p1: d7-t5-t2-t3 and
p2: d7-t5-t4-t3, and the values of s for these paths are 0.03 and
0.05, respectively. V1(7,3,3) is set as the sum of these s-values,
0.08. V2(7,3,3) is set as the maximum of them, 0.05. V3(7,3,3) is
set as the number of the paths, 2.

In terms of the fifth type of path categories C5, there is only
one path p1: d7-d3-d2-t3 in the set R735, and the s of p1 is
0.02. Therefore, V1(7,3,5) and V2(7,3,5) are both set as 0.02 and
V3(7,3,5) is set as 1. Similarly, we can compute the features for
the other path categories. As a result, the rows which represent
the feature vectors of (d7, t2) in matrixV1,V2,V3 are set as (0.16,
0.16, 0.08, 0.08, 0.02, 1), (0.16, 0.16, 0.05, 0.05, 0.02, 1), and (1, 1,
2, 2, 1, 1), respectively (Figure 2C). Finally, these three vectors are
combined into a single vector ofVf , namelyVf (7,3) (Figure 2D).

DTI Prediction Model Based on GBDT
In our dataset, there are only 1,923 known drug–target
interactions, while more than 300,000 interactions are unknown,
which causes a serious class imbalance. Aiming to reduce the
impact of class imbalance and make full use of the negative
samples in the dataset, we constructed an ensemble learning
model based on GBDT (Ye et al., 2009), and refer to it
as DTIGBDT.

The feature of a drug–target pair (di, tj) is denoted by a vector
Vf (i, j). Let Xi,j = {x1,x2. . . ,xz} represent z subsets of Vf (i, j), xk
was obtained by randomly sampling some of the features from
Vf (i, j). For each element in Xi,j, we built a decision tree model
that is used for predicting the potential DTIs. In this way, we
obtained a set Ti,j = {T1, T2. . . , Tz} that denotes z decision
trees. Finally, we obtained the interaction score of the pair by
summing the score of all decision trees. This can be calculated
as Equation (8).

score
(

i, j
)

=
1

z

z
∑

k=1

λkTk(xk) (8)

where Tk(xk) represents the score of the decision tree Tk.
λk is used to adjust the contribution of Tk. The greater the
value of score(i, j), the more likely di is to interact with tj.

We thereby obtained a matrix ŶǫRm
∗n where Ŷij= score (i, j)

(Figure 1E). We used the negative log-likelihood to calculate the
loss of DTIGBDT.

loss =
∑

i,j

log(1+ exp(−2YijŶij)) (9)

where Yi,j is the actual interaction between di and tj. We defined
the objective function as Equation (10).

min L
(

Ŷ
)

= loss+ λ||Ŷ|| (10)

The first term is the loss of DTIGBDT. The second term is the
regular term to prevent overfitting, and λ is the regularization
parameter for adjusting this term’s contribution. The converged
Ŷ is the interaction score matrix, which can be calculated
by Figure 3.
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FIGURE 2 | Feature vector calculation of d7-t3. The edges between drug nodes or target nodes are weighted by the similarities between two nodes. The edges

between drugs and target nodes represent the known DTIs and are weighted by 1. (A) Paths between d7 and t3. (B) The s-values of all the paths. (C) Three types of

path feature vectors. (D) Connection of three feature vectors.

EXPERIMENTAL EVALUATION AND
DISCUSSION

Performance Evaluation Metrics
To evaluate our method and the state-of-the-art methods for
DTI prediction, we performed five-fold cross validation (Cheng
et al., 2015; Chen et al., 2017; Lin et al., 2017; Wei et al., 2017a,
2018; Zeng et al., 2017b; Bu et al., 2018; Su et al., 2018; Xu
et al., 2018b,c). All known DTIs were randomly divided into five
subsets with equal size, and the same operation was applied to
the unknown interactions (Liu et al., 2017; Zhang et al., 2017;
Zeng et al., 2018). In each cross-validation trial, a subset of known
DTIs and another subset of unknown DTIs were selected in turn
as the test set, while the remaining DTIs were used for training
a prediction model. The known and unknown interactions were
regarded as the positive and negative samples, respectively. After
the prediction is performed, each sample was given a predicted
score which represents the propensity of the drug to interact with
the target. The positive and negative samples were ranked by their
score. The higher the positive samples were ranked, the better was
the prediction performance.

For a given threshold δ, if the score of a positive sample was
>δ, it was considered as a true positive sample (TP), and if the
score was <δ, it would be considered as a false negative sample
(FN). If the score of a negative sample was lower than δ, it would

be regarded as a true negative sample (TN). If the score was <δ,
it would be regarded as a false positive sample (FP). We obtained
a receiver operating characteristic (ROC) curve (Streiner and
Cairney, 2007) by calculating the true positive rates (TPRs) and
false positive rates (FPRs) for various values of δ.

TPR =
TP

TP + FN
FPR =

FP

TN + FP
(11)

The areas under the ROC curves (AUCs) were used to evaluate
the performance of each method (Lobo et al., 2008; Cheng et al.,
2014, 2018a; Dao et al., 2018; Feng et al., 2018; Nie et al., 2018;
Tang et al., 2018; Xu et al., 2018a; Yang et al., 2018). It is generally
believed that the closer the value of AUC is to 1, the better
the performance is. However, in the case of imbalanced data,
AUPR (the area under the precision–recall curve) can provide
a more valuable metric (van Laarhoven et al., 2011; Saito and
Rehmsmeier, 2015; Patel et al., 2017; Sahiner et al., 2017; Wei
et al., 2017b; Jiang et al., 2018a,b). Therefore, we also used AUPR
as another measurement to evaluate the performance of each
method. The precision–recall curve was constructed by precision
rates and recall rates, which are defined as Equation (12).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(12)
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FIGURE 3 | Algorithm for predicting the potential drug–target interactions.

In addition, biologists usually select the top section of the
prediction result for a wet-lab experiment to further validate. As a
result, the accuracy of the top k candidates is more important for
discovering novel DTIs. We demonstrate the recall rates within
the top k (k = 50, 100, 150, 200, 250, 300) candidates to reveal
how many of these positive samples are identified successfully.

Comparison With Other Methods
We compared DTIGBDT with four state-of-the-art methods for
DTI prediction, including GRMF (Ezzat et al., 2017), DTINet
(Luo et al., 2017), Lee’s method (Lee and Nam, 2018), and
DDR (Olayan et al., 2017). We describe these methods in more
detail below.

GRMF: This method proposed a matrix factorization-based
model to predict novel DTIs. The drug–target interaction matrix
Y were decomposed into two low-rank latent feature matrices
A (for drugs) and B (for targets) by using the SVD algorithm.
Alternating least squares was used to iteratively update A and B.

The optimization problem can be described as:

min
A,B

‖Y − ABT‖2F

+ λl
(

‖A ‖ 2
F+ ‖B‖2F

)

(13)

+ λdTr
(

AT
L̃dA

)

+ λtTr(B
T
L̃tB)

where L̃d and L̃t are the normalized graph Laplacians that were
computed based on the similarities between drugs or targets. λl,
λd, and λt are parameters that adjust the contribution of the
terms. The interaction score Ŷi,j of drug di and target tj can be
calculated as:

Ŷi,j = aib
T
j (14)

where ai is the ith row of A and bj is the jth row of B.
DTINet: Heterogeneous data sources provide diverse

information for DTI prediction, so Luo et al. integrated four
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types of drug similarities and three types of target similarities.
The random walk with restart algorithm was applied to extract
the topological information of the drug network and the target
network, and the result of the algorithm was a matrix SD.
The low-rank model SD ≈ XWT used X to represent the
corresponding low-dimensional feature vector of each drug.
Similarly, the low-dimensional feature vectors of targets could
be calculated and were represented by a matrix Y . Let P denote
the interactions between drugs and targets; matrix Z can then be
calculated by Equation (15).

XZYT ≈ P (15)

The interaction score between drug di and target tj was defined
as follows:

score
(

i, j
)

= xiZy
T
j (16)

where xi is the ith row of X and is the feature vector of di, and yj
is the jth row of Y and is the feature vector of tj.

Lee’s method: In this method, each drug was represented by
a bit vector, in which each bit suggests whether a specific sub
molecular structure is contained by the drug. In addition, Lee
et al. constructed a model based on random walk with restart to
extract the topological information of the drug–drug interaction
network. The rows of the matrix Fd were used to store the bit
vectors of each drug and a matrix Nd was defined to denote the
result of the random walk. The final representation of drug di,
denoted by νdi , was calculated by Equation (17):

νdi = Nd
i ∗ Fdi (17)

where Nd
i and Fdi are the ith row of Nd and Fd, respectively.

Similarly, Lee et al. can calculate a vector νtj to represent the

target tj. The feature vector of the drug–target pair (di, tj) can be

obtained by connecting νdi and νtj . On the basis of the Euclidean

distance between each pair of drug and target, a k-nearest-
neighbor model was trained to infer whether a target interacted
with the drug.

DDR: DDR constructed a drug-target heterogeneous graph
that contains the known DTIs with multiple drug similarities
and target similarities. A non-linear similarity fusion method
was performed to obtain the optimized drug similarities and the
target similarities. For each drug–target pair, DDR constructed
a path-category-based feature, which integrates the sum of the
paths’ weight and the maximum weight of the paths. A random
forest-based model was performed to analyze the potential
associations between each drug–target pair with these features.

Several parameters may influence the performance of
DTIGBDT, including the restart probability a, the number of
neighbors k, and the regularization parameter λ. The ranges
of a, k, and λ are set to {0.2,0.4,0.6,0.8}, {10,20,30,40,50},
and {0.01,0.1,1,10}, respectively. The results of cross validation
showed that our method achieves the best performance when a
= 0.4, k = 30, and λ = 0.1. For fair comparison, the parameters
of the other methods were also adjusted to obtain their best
performance (n = 600, k = 5 in DDR; r = 0.8 in Lee’s method;
η = 0.5, d = 0.1, t = 0.1, l = 2 in GRMF; and λ = 1,
r = 0.8 in DTINet). The performance of each method was
obtained by using the optimum parameters in each case. The
ROC curves and precision–recall curves of all these methods are
shown in Figure 4.

TABLE 1 | P-values between DTIGBDT and other methods based on AUCs and

AUPRs.

DDR Lee’s method DTINet GRMF

P-values based on

AUC

2.3732e-04 5.1773e-08 4.9252e-03 4.3850e-02

P-values based on

AUPR

7.5153e-14 8.0531e-23 9.8030e-15 6.1235e-09

FIGURE 4 | ROC curves and precision–recall curves of DTI prediction by different methods.
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DTIGBDT achieves the best performance (AUC = 0.877,
AUPR = 0.129), and it achieves 2.3% higher AUC and 4.3%
higher AUPR than the second-best method, GRMF. Comparing
to DTINet, DTIGBDT achieves 7.3% higher AUC and 5.7%
higher AUPR. Both GRMF and DTINet have applied a low-
rank model to reduce the dimension of the drug features and
target features. However, a great deal of valuable information
may be lost in this process. Lee’s method does not perform
well because it only used the same quantities of negative
samples as that of the positive samples to train the k-nearest-
neighbormodel andmost of the negative samples were discarded.
The AUC and AUPR of DTIGBDT are 11.6% and 9.7%
higher than Lee’s method, respectively. DDR shows the worst
performance because its’ prediction model fails to accurately
estimate the interaction scores, and the AUC and AUPR of
DTIGBDT are 12.9 and 6.6% higher than DDR, respectively.
The superior performance of DTIGBDT is mainly due to
our model based on GBDT that completely exploits all the
negative samples.

We performed a paired t-test to evaluate whether
DTIGBDT’s performance (AUC and AUPR) is significantly
better than that of other methods (Ruxton, 2006). The
p-values are listed in Table 1. These statistical results
show that DTIGBDT achieves a significantly better
performance than all other methods at the significance
level 0.05.

A higher recall value for the top k reveals that more positive
samples are identified successfully. The average recall values of
all drugs, for various k values, are shown in Figure 5. DTIGBDT
outperforms the other methods at each of the k cutoffs, and
successfully identified 78.1% of the positive samples in the top 50,
82.1% in the top 100, and 90.9% in the top 200. GRMF achieved
the second-best performance, for which identified 73.1% in the
top 50, 77.5% in the top 100, and 86.1% in the top 200. DTINet
identified 68.1% in the top 50, 72.2% in the top 100, and 79.9%
in the top 200. Lee’s method identifies 52.9% in the top 50,
66.8% in the top 100, and 79.4% in the top 200, which is
worse than DTINet but better than DDR. DDR suffers the worst

performance, which only identified 59.1% positive samples in the
top 50, 71.4% in the top 100, and 75.1% in the top 400.

Case Studies on Five Drugs
To demonstrate the ability of DTIGBDT to discover potential
DTIs, we used it to predict novel drug-related targets. We
performed DTIGBDT for all the drugs. All the known DTIs were
used to train the model, and the prediction results are listed in
Supplementary Table 1. In particular, we executed case studies
on five drugs, including Quetiapine, Clozapine, Olanzapine,
Aripiprazole, and Ziprasidone. The top-ranked five candidate
targets for each drug were collected and listed in Table 2. To
confirm these novel interactions, we consulted several reference
databases and the biomedical literature to support them.

DrugBank (Wishart et al., 2017) is a database with annotated
cheminformatics resources which combines detailed drug data
with target information. As shown in Table 2, 10 of the 25 novel
interactions were reported in DrugBank, which confirms the
drugs were indeed interacted with the targets. CheMBL (Gaulton
et al., 2016) contains the binding and functional information
of drug-like bioactive compounds and the information of their
binding targets. Three of the 25 interactions were contained
in CheMBL, indicating that these drugs can interact with their
candidate targets. KEGG (Kanehisa and Goto, 2000) is another
useful database dealing with genomes, biological pathways,
drugs, and chemical substances. There are 15 interactions that
can be found in KEGG, which suggests the expression of the
genes can be upregulated or downregulated by the drugs. For
example, the drugAripiprazole can act as a potentiator to enhance
the expression of the target gene GABRA1 in combination with
another drug Phenobarbital.

In addition, a database named UniProt (Consortium, 2014),
which collects the protein sequence and function information
from research literature, is used to find whether a drug can
interact with a specific target; this database includes two
interactions. Specifically, the expression of two target genes,
GABRG3 and GABRA4, can be reduced by drug Olanzapine to
inhibit the activity of extracellular ligand-gated ion channels.

FIGURE 5 | The average recalls across all the tested drugs at different top k-values.
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TABLE 2 | Top-ranked five candidates of five drugs.

Drug name Rank Target name Evidence

Quetiapine 1 GABRA1 DrugBank, KEGG

2 SLC6A4 literature (Sugawara et al., 2015)

3 KCNH2 literature (Hong et al., 2018)

4 PTGS1 DrugBank

5 SCN5A literature (Serge and Charles, 2008)

Clozapine 1 GABRG3 KEGG, CheMBL

2 GABRR2 DrugBank

3 GABRR1 DrugBank

4 GABRG2 KEGG,

5 GABRA1 CheMBL

Olanzapine 1 GABRG3 KEGG, UniProt

2 GABRB2 KEGG

3 GABRR2 DrugBank,

4 GABRA4 UniProt

5 GABRB3 Literature (Filatova et al., 2017)

Aripiprazole 1 GABRA1 KEGG, DrugBank

2 GABRA3 KEGG, CheMBL

3 GABRG3 KEGG

4 GABRB3 KEGG

5 GABRD KEGG, DrugBank

Ziprasidone 1 GABRA1 KEGG, DrugBank

2 GABRG1 KEGG

3 GABRD KEGG, DrugBank

4 GABRR2 KEGG

5 GABRB1 KEGG, DrugBank

The novel DTIs are proved by other existing evidence (public databases or literature) and

the supporting databases are listed in the evidence.

Finally, four novel interactions, which are labeled with
“literature,” were confirmed by some of the published literature
that can be found in PubMed (McEntyre and Lipman, 2001).
These drugs were confirmed that they can enhance or inhibit the
expressions of their candidate genes. For instance, Sugawara et al.
found that drug Quetiapine can decrease the DNA methylation
level of the promoter region of the gene SLC6A4 (Sugawara et al.,
2015). Case studies suggests that DTIGBDT has powerful ability
to discover the potential drug-interacted targets.

CONCLUSIONS

In this paper, we proposed a novel method, DTIGBDT, for
predicting the target genes that interact with drugs. We
incorporated topological information from the heterogeneous
interaction network, and the feature vectors between the drug–
target pairs were constructed based on the path categories. A
GBDT-based model was constructed for predicting candidate

target genes, and it can mitigate the impact of class imbalance
by completely exploiting the negative samples. The results of
5-fold cross-validation experiments confirm the superiority of
DTIGBDT for DTI prediction. The case studies on five drugs
further prove the ability of our model to discover the potential
interactions. Therefore, DTIGBDT is a powerful tool which
may provide reliable candidate target genes for subsequent
identification of actual drug–target interactions with wet-lab
experiments. In the future, we will develop our methods on
parallel platforms (Zou et al., 2013; Guo et al., 2018) for handling
the big data problem.
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