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This article addresses the problem of how to visually estimate the pose of a rescue

unmanned surface vehicle (USV) using an unmanned aerial system (UAS) in marine

mass casualty events. A UAS visually navigating the USV can help solve problems with

teleoperation and manpower requirements. The solution has to estimate full pose (both

position and orientation) and has to work in an outdoor environment from oblique view

angle (up to 85◦ from nadir) at large distances (180m) in real-time (5Hz) and assume

both moving UAS (up to 22ms−1) and moving object (up to 10ms−1). None of the 58

reviewed studies satisfied all those requirements. This article presents two algorithms for

visual position estimation using the object’s hue (thresholding and histogramming) and

four techniques for visual orientation estimation using the object’s shape while satisfying

those requirements. Four physical experiments were performed to validate the feasibility

and compare the thresholding and histogramming algorithms. The histogramming had

statistically significantly lower position estimation error compared to thresholding for all

four trials (p-value ranged from ∼ 0 to 8.23263 × 10−29), but it only had statistically

significantly lower orientation estimation error for two of the trials (p-values 3.51852 ×

10−39 and 1.32762 × 10−46). The mean position estimation error ranged from 7 to

43 px while the mean orientation estimation error ranged from 0.134 to 0.480 rad.

The histogramming algorithm demonstrated feasibility for variations in environmental

conditions and physical settings while requiring fewer parameters than thresholding.

However, three problems were identified. The orientation estimation error was quite large

for both algorithms, both algorithms required manual tuning before each trial, and both

algorithms were not robust enough to recover from significant changes in illumination

conditions. To reduce the orientation estimation error, inverse perspective warping will

be necessary to reduce the perspective distortion. To eliminate the necessity for tuning

and increase the robustness, a machine learning approach to pose estimation might

ultimately be a better solution.

Keywords: visual pose estimation, visual localization, heterogenousmulti-robot team, search and rescue robotics,

field robotics, computer vision, marine robotics, aerial robotics
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1. INTRODUCTION

Using a UAS to visually navigate a rescue USV to victims can help
responders during marine mass casualty events. First responders
lack the manpower to effectively address marine mass casualty
events during which it is not uncommon to have 80 victims
in the water at the same time. While rescue USVs can help,
teleoperation is problematic due to the lack of depth perception
when USV is far away and the manpower requirements, and
global positioning system (GPS) waypoint navigation is not
precise enough as exact GPS coordinates of the victims are
unknown and victims might drift with waves and currents. A
UAS can visually navigate the USV to the victims by using
visual feedback eliminating the need for teleoperation or GPS-
based navigation as was shown in our previous work presented
in Dufek et al. (2017), Karnan et al. (2017), Xiao et al. (2017), and
Dufek and Murphy (2018). Such a heterogeneous multi-robot
team of a UAS and a USV is illustrated in Figure 1.

Visual navigation requires visual pose estimation of the USV
which can be generalized to visual pose estimation of any fast
moving object using UAS leading to the following problem
statement: Visually estimate the pose of a fast maneuvering
object using moving UAS, relative to UAS’s image frame of
reference, in an outdoor environment from an oblique view angle
at large distances in real-time. In this article, a USV is taken

as an instance of this object. The solution must satisfy working

environment requirements, vehicular requirements, physical
settings requirements, and desired output requirements. The

working environment requirements are that the solution must
work in an outdoor water environment where the rescues are

being performed. Vehicular requirements are that the solution
must work for moving UAS and moving USV. Small inexpensive
UAS that would be used in rescue application (e.g., DJI Inspire 1)
can move at speeds of up to 22m s−1. Rescue- USVs (e.g.,
EMILY) can move at speeds of up to 22m s−1 and make abrupt
maneuvers with turn rate of up to 180 ◦ s−1. The physical settings
requirements are that the solution must work at a large distance
between UAS and USV and at an oblique view angle. The radius
of marine mass casualty event rescue operations is typically
180m. This distance causes the spatial resolution of the USV to
be very low as illustrated in Figure 2 implicating that fiducial
markers encoding full pose (e.g., AprilTag) would not be visible.
The UAS might be operated above shore while USV is in the
water causing the oblique view angle of up to 85◦ from nadir. The
desired output requirements are that the output should be full
pose (both position and orientation) and it should be updated in
real-time (at least 5Hz) to enable the visual navigation. While it
might be beneficial to use multiple UAS as well as to estimate the
pose of multiple objects simultaneously, for the sake of simplicity,
it is assumed in this paper that there is only a single UAS and it is
estimating the pose of a single object.

The contributions of this article are addressing a problem
of how can a moving small UAS visually estimate the position
and orientation of a fast maneuvering object, relative to UAS’s
image frame of reference, in an outdoor environment from an
oblique view angle at large distances in real-time, that previous
work failed to fully address, analyzing this problem on an

FIGURE 1 | DJI Inspire 1 (UAS) assisting EMILY (USV) using visual feedback.

FIGURE 2 | The spatial resolution of the object in the UAS view might be very

low.

example of a life-saving USV, proposing a method satisfying
all the introduced requirements, and comparing two algorithms
for solving this problem. First, this work addresses a problem
defined above that none of the 58 reviewed studies fully covered.
Second, it presents an analysis of this problem and justifies why
some approaches would not work. Third, it presents a hue-
based visual pose estimationmethod consisting of two algorithms
for visual position estimation and four techniques for visual
orientation estimation. Fourth, it compares two algorithms,
thresholding and histogramming, for visual position estimation
combined with one technique for orientation estimation in four
physical experiments.

The rest of this article is organized as follows. Section 2
discusses related work in visual pose estimation of an object
from UAS and identifies gaps and opportunities in research,
most notably the lack of solution satisfying all the requirements
discussed above. Section 3 presents two algorithms for position
estimation (thresholding and histogramming) and four shape
analysis techniques for orientation estimation. Section 4 details
implementation of those algorithms on a laptop using C++ and
OpenCV and describes platforms used for the implementation.
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Section 5 introduces experimental methodology to determine
pose estimation error relative to manually annotated ground
truth and presents results from four physical trials comparing
thresholding and histogramming. Section 6 discusses reasons
histogramming algorithm is better than thresholding (it can
better model the object under local illumination conditions),
points out problems with the proposed algorithms (particularly
large orientation estimation error, necessity of tuning, and low
robustness to significant illumination changes), examines how
the experiments could have been improved (most notably testing
for robustness in addition to precision), and indicates machine
learning would be suitable to explore for future work. Finally,
section 7 summarizes the article.

2. RELATED WORK

Fifty-eight studies from the robotics and computer vision
scientific literature were reviewed. While all the eight
requirements introduced in section 1 were partially addressed by
those studies, none satisfied all the requirements combined. The
studies were classified to seven categories depending on what
was the object for which the visual pose estimation using UAS
was done: UGV (27 studies), car (9 studies), person (7 studies),
landing platform (7 studies), standalone fiducial marker (3
studies), another UAS (2 studies), and other objects (3 studies).
There were no studies on visual pose estimation of USV from
UAS. All the categories except UGV category were limited in
scope to only those studies where the visual pose estimation was
done outdoors.

Each study was evaluated using eight criteria to validate if
the particular study satisfied the requirements introduced in
section 1. To validate the working environment requirements,
one criterion was evaluated: (1)Were the experiments performed
indoors or outdoors? To validate the vehicular requirements, two
criteria were evaluated: (1) Was the UAS static or moving? (2)
Was the object static or moving? To validate physical settings
requirements, three criteria were evaluated: (1) Was the distance
between UAS and the object short or long (distance is considered
short for the purpose of this review if less than or equal 30m)?
(2) Was a fiducial marker used or not? (3) Was the view from
UAS nadir or oblique? To validate desired output requirements,
two criteria were evaluated: (1) Was just a position estimated
or full pose (both position and orientation)? (2) Was the output
generated real-time (i.e., updating at least at 5Hz)? Table 1 lists
all the studies and for each, it shows which criteria were satisfied.

A UAS has been used to visually estimate the pose of UGV in
27 studies relying on fiducial markers and the nadir view or only
tested indoors at a short distance. Majority of those studies (20
out of 27) relied on a fiducial marker mounted on the UGV and
assumed the nadir view (Dixon et al., 2001; Cognetti et al., 2014;
Aranda et al., 2015; Harik et al., 2015a,b, 2016, 2017; Hausman
et al., 2015, 2016; Laiacker et al., 2015; Rosa et al., 2015; Byun
et al., 2016; Cantelli et al., 2016; Santana et al., 2016; Wang et al.,
2016, 2017; Araar et al., 2017; Battiato et al., 2017; Gomez-Avila
et al., 2018; Harikumar et al., 2018). Four studies assumed an
oblique view, but still relied on fiducial markers mounted on

the UGV (Rao et al., 2003, 2004, 2005, 2006). Only three studies
estimated pose of UGV without any fiducial markers. Gao et al.
(2014) proposed a method to track UGV from UAS, but only
the position was estimated (not orientation) and the method was
only tested indoors at a short distance. Chen et al. (2016) also
estimated position only (no orientation) of UGV with UAS flying
directly above at a short distance looking nadir in an indoor
experiment. Hoang et al. (2017) proposed a method to track a
UGV, but it was tested only indoors at a short distance (1.5m).

A UAS has been used to visually estimate the pose of cars in
nine studies estimating position only or requiring the nadir view
(Siam and ElHelw, 2012; Siam et al., 2012; van Eekeren et al.,
2015; Ma et al., 2016; Watanabe et al., 2016; Askar et al., 2017;
Chen et al., 2017; Kim et al., 2017; Kaufmann et al., 2018). All
those studies except Watanabe et al. (2016) only estimated the
position and not orientation. The distance between the UAS and
the car/cars was relatively long, but at the same time, cars are
large objects so the object’s spatial resolution was still relatively
high. Four of those studies (Ma et al., 2016; Chen et al., 2017;
Kim et al., 2017; Kaufmann et al., 2018) used static UAS and
the proposed methods required known ground reference points
in the environment. For three studies (Ma et al., 2016; Chen
et al., 2017; Kim et al., 2017), pedestrians were tracked as well,
but the methods were not real-time. Ma et al. (2016) and Chen
et al. (2017) assumed the nadir view and constant altitude. For
Watanabe et al. (2016), orientation was estimated, but the nadir
view was assumed and the distance between UAS and the car
was short. Van Eekeren et al. (2015) used very high resolution
images (116Mpx) from high altitude.While the viewwas oblique,
the very high altitude caused the view to appear very close to
nadir. This method also required a 3D reconstruction to get the
target’s height and only worked with cars moving faster than
10 kmh−1.

A UAS has been used to visually estimate the pose of a person
in seven studies estimating position only on short distances
(Lim and Sinha, 2015; Bian et al., 2016; Mendonça et al., 2016;
Monajjemi et al., 2016; Cheng et al., 2017; Lee et al., 2018; Liu
et al., 2018). In those studies, only the position was estimated
(not orientation) and the person was close to the UAS. The
method proposed in Lim and Sinha (2015) additionally required
the person’s height. For Mendonça et al. (2016) and Monajjemi
et al. (2016), the target person was assumed to be static. For
Mendonça et al. (2016), the nadir view from UAS was assumed.

A UAS has been used to visually estimate the pose of a landing
platform during an autonomous landing of a UAS in seven
studies relying on fiducial markers, the nadir view, and short
distances (Medeiros et al., 2015; Kim et al., 2016; Lee et al., 2016;
Cabrera-Ponce andMartinez-Carranza, 2017; Collins et al., 2017;
Junaid et al., 2017; Patruno et al., 2018). All of those studies
assumed the nadir view and used a fiducial marker on the landing
platform. All the experiment were done on a short distance since
for autonomous landing the visual pose estimation of a landing
platform is only done in the final stages of landing. All the studies
except two (Kim et al., 2016; Lee et al., 2016) used static landing
platform. All studies except three (Medeiros et al., 2015; Collins
et al., 2017; Patruno et al., 2018) estimated only position and
not orientation.
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TABLE 1 | The requirements violations for the 58 reviewed studies.
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Dixon et al., 2001 UGV ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 6

Rao et al., 2003 UGV ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ 5

Rao et al., 2004 UGV ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ 5

Rao et al., 2005 UGV ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ 5

Rao et al., 2006 UGV ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ 5

Cognetti et al., 2014 UGV ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 6

Gao et al., 2014 UGV ✕ ✓ ✓ ✓ ✕ ✓ ✕ ✓ 3

Aranda et al., 2015 UGV ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 6

Harik et al., 2015a UGV ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 6

Harik et al., 2015b UGV ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 6

Hausman et al., 2015 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Laiacker et al., 2015 UGV ✓ ✓ ✕ ✕ ✕ 10m ✕ ✓ ✓ 4

Rosa et al., 2015 UGV ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ 6

Byun et al., 2016 UGV ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓ 6

Cantelli et al., 2016 UGV ✓ ✓ ✓ ✕ ✕ 5m ✕ ✓ ✓ 3

Chen et al., 2016 UGV ✕ ✓ ✓ ✕ ✕ ✓ ✕ ✓ 4

Harik et al., 2016 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Hausman et al., 2016 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Santana et al., 2016 UGV ✓ ✓ ✓ ✕ ✕ 1m ✕ ✓ ✓ 3

Wang et al., 2016 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Araar et al., 2017 UGV ✕ ✓ ✕ ✕ ✕ ✕ ✓ ✓ 5

Battiato et al., 2017 UGV ✓ ✓ ✕ ✕ ✕ 10m ✕ ✕ ✓ 5

Harik et al., 2017 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Hoang et al., 2017 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Wang et al., 2017 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Gomez-Avila et al., 2018 UGV ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✓ 4

Harikumar et al., 2018 UGV ✓ ✓ ✓ ✕ ✕ 10m ✕ ✓ ✓ 3

Siam et al., 2012 Car ✓ ✓ ✓ ✓ ✓ 70m ✓ ✕ ✓ 1

Siam and ElHelw, 2012 Car ✓ ✓ ✓ ✓ ✓ 70m ✓ ✕ ✓ 1

van Eekeren et al., 2015 Car ✓ ✓ ✓ ✓ ✓ 500m ✓ ✕ ✓ 1

Ma et al., 2016 Car ✓ ✕ ✓ ✕ ✓ 70m ✓ ✕ ✕ 4

Watanabe et al., 2016 Car ✓ ✓ ✓ ✕ ✕ 30m ✓ ✓ ✓ 2

Askar et al., 2017 Car ✓ ✓ ✓ ✓ ✓ 70m ✓ ✕ ✓ 1

Chen et al., 2017 Car ✓ ✕ ✓ ✕ ✓ 70m ✓ ✕ ✕ 4

Kim et al., 2017 Car ✓ ✕ ✓ ✓ ✓ 50m ✓ ✕ ✕ 3

Kaufmann et al., 2018 Car ✓ ✕ ✓ ✓ ✓ 100m ✓ ✕ ✓ 2

Lim and Sinha, 2015 Person ✓ ✓ ✓ ✓ ✕ 10m ✓ ✕ ✓ 2

Mendonça et al., 2016 Person ✓ ✓ ✕ ✕ ✕ 10m ✓ ✕ ✓ 4

Bian et al., 2016 Person ✓ ✓ ✓ ✓ ✕ 10m ✓ ✕ ✓ 2

Monajjemi et al., 2016 Person ✓ ✓ ✕ ✓ ✕ 30m ✓ ✕ ✓ 3

Cheng et al., 2017 Person ✓ ✓ ✓ ✓ ✕ 5m ✓ ✕ ✓ 2

Lee et al., 2018 Person ✓ ✓ ✓ ✓ ✕ 30m ✓ ✕ ✓ 2

Liu et al., 2018 Person ✓ ✓ ✓ ✓ ✕ 14m ✓ ✕ ✓ 2

(Continued)
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TABLE 1 | Continued
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Medeiros et al., 2015 Landing

platform
✓ ✓ ✕ ✕ ✕ 10m ✕ ✓ ✓ 4

Kim et al., 2016 Landing

Platform
✓ ✓ ✓ ✕ ✕ 10m ✕ ✕ ✓ 4

Lee et al., 2016 Landing

platform
✓ ✓ ✓ ✕ ✕ 10m ✕ ✕ ✓ 4

Cabrera-Ponce and

Martinez-Carranza, 2017

Landing

platform
✓ ✓ ✕ ✕ ✕ 5m ✕ ✕ ✓ 5

Collins et al., 2017 Landing

platform
✓ ✓ ✕ ✕ ✕ 22m ✕ ✓ ✓ 4

Junaid et al., 2017 Landing

platform
✓ ✓ ✕ ✕ ✕ 5m ✕ ✕ ✓ 5

Patruno et al., 2018 Landing

platform
✓ ✓ ✕ ✕ ✕ 5m ✕ ✓ ✓ 4

Feng et al., 2007 Standalone

Fiducial

marker

✓ ✕ ✕ ✕ ✕ 10m ✕ ✕ ✓ 6

Cho et al., 2016 Standalone

Fiducial

marker

✓ ✓ ✕ ✓ ✓ 200m ✕ ✕ ✓ 3

Hinas et al., 2017 Standalone

Fiducial

marker

✓ ✓ ✕ ✕ ✕ 30m ✕ ✕ ✓ 5

Liu and Feng, 2018 UAS ✓ ✓ ✓ ✓ ✕ 30m ✓ ✕ ✓ 2

Wang et al., 2018 UAS ✓ ✕ ✕ ✓ ✕ 5m ✓ ✓ ✕ 4

Máthé et al., 2016 Railway

semaphore
✓ ✓ ✕ ✓ ✕ 5m ✓ ✕ ✓ 3

Koo et al., 2017 Jellyfish ✓ ✕ ✕ ✕ ✕ 10m ✓ ✕ ✓ 5

Liu et al., 2017 General

objects
✓ ✓ ✕ ✕ ✕ 15m ✓ ✕ ✓ 4

Violationsperrequirement 22 17 18 37 49 35 30 4

The distance between the UAS and the object was considered large if more than 30m. The numerical distance is only listed for outdoor studies and it was estimated from particular

study’s figures if not explicitly reported. A study was considered real-time if the update rate was more than 5Hz. The last column lists the total number of requirements violations for

a particular study. The last row lists the total number of studies that violated a particular requirement. The studies are grouped by the object for which the visual pose estimation was

done. The groups are ordered by group size. Inside a single group, studies are ordered by year and then by first author last name. Green tick indicates the corresponding study satisfies

corresponding requirement and red cross otherwise.

A UAS has been used to visually estimate the pose of a
standalone fiducial marker in three studies assuming static object
and estimating position only (Feng et al., 2007; Cho et al., 2016;
Hinas et al., 2017). Two studies (Feng et al., 2007; Hinas et al.,
2017) assumed the nadir view and were tested on a short distance.
In addition, Feng et al. (2007) assumed a static UAS. A UAS has
been used to visually estimate the pose of another UAS in two
studies estimating position only or not running in real-time and
tested only on a short distance (Liu and Feng, 2018; Wang et al.,
2018). Bothmethods did pose estimation on a short distance. The
method proposed by Wang et al. (2018) was not real-time and
bothUASs were static. Liu and Feng (2018) estimated the position
only and not the orientation.

Finally, a UAS has been used to visually estimate the pose
of three kinds of other objects in three studies all assuming
static object, estimating position only, and testing only on a
short distance. Máthé et al. (2016) estimated pose of railway
semaphores, Koo et al. (2017) estimated pose of jellyfish in the
water, and Liu et al. (2017) estimated pose of general objects.
All those studies estimated only position (not orientation) on
a short distance and assumed static objects. All except Máthé
et al. (2016) assumed the nadir view. All except Koo et al. (2017)
assumed a constant distance between UAS and objects, making
specific assumptions about object sizes. Koo et al. (2017) also
assumed static UAS. Máthé et al. (2016) had view fixed in a single
horizontal plane looking forward.
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None of the 58 reviewed studies satisfied all the requirements
introduced in section 1. The 58 studies had one or more of the
requirement violations: indoor experiments only (22 studies),
static UAS (17 studies), static object (18 studies), the nadir view
only (37 studies), short distance less than 30m between UAS
and the object (49 studies), fiducial markers (35 studies), not
estimating full pose including both position and orientation (30
studies), or not real-time with update at least 5Hz (4 studies).

3. APPROACH

The review of the literature indicates that a method is needed for
visual pose estimation, that would satisfy all the requirements:
working outdoors, moving UAS, moving object, oblique view
angle, large distance more than 30m, no fiducial markers,
estimating full pose including both position and orientation,
and real-time update rate of more than 5Hz. The approach
taken in this article is based on the object’s blob hue that is
relatively invariant compared to the object’s blob brightness,
convexity, size, inertia ratio, features, or motion. Two algorithms
for position estimation are presented. The first algorithm,
thresholding, consists of seven steps applied for each video
frame: blur, HSV conversion, value histogram equalization,
thresholding, erosion, dilation, and contours detection. The
second algorithm, histogramming, first takes user input to
construct a hue histogram model of the object and then
applies six steps on each video frame: blur, HSV conversion,
value histogram equalization, hue histogram backprojection,
thresholding on saturation and value, and CamShift algorithm
for finding and tracking objects. Shape analysis is used for
orientation estimation assuming the major axis of the object’s
blob indicates the object’s blob heading. A total of four techniques
for estimation of the principal axis of a blob are examined: line
fitting, rectangle fitting, principal component analysis (PCA), and
ellipse fitting.

The problem of visually estimating the pose of an object can be
decomposed into two parts, position estimation and orientation
estimation, where input for both are video frames from the UAS.
The input is a sequence of n video frames F(t), t ∈ [1 . . n] taken
from a UAS with resolution w × h,w ∈ N, h ∈ N. The UAS is
flying at altitude a above ground level and the UAS camera angle
is α from nadir. A frame is defined as F(t) = ((R,G,B)u,v), u ∈

[1 . .w] , v ∈
[

1 . . h
]

,R,G,B ∈ [0 . . 255]. For the visual position
estimation, the output is the coordinates of the centroid of the
object’s blob, x(t) = (x(t), y(t)), in UAS 2D image coordinate
system, {I}, at time t. For the visual orientation estimation,
the output is an angle between the object’s blob heading and
horizontal line, θ(t), in UAS 2D image coordinate system, {I}, at
time t. Then, the pose at time t is a tuple (x(t), θ(t)). The physical
configuration of the problem is depicted in Figure 3.

The object’s blob has to be first identified in the video
frame, however, identification using the object’s blob brightness,
convexity, size, inertia ratio, features, or motion is problematic
as those attributes are not invariant; however, object’s blob
hue is relatively invariant and can be exploited. The object is
represented as a blob of pixels in the UAS video frame F(t). To

FIGURE 3 | The physical configuration of the problem. {I} is UAS 2D image

coordinate system with axes Xi and Yi . F (t) is UAS video frame at time t with
resolution w× h. a is UAS altitude above ground level. α is UAS camera angle

from nadir. (x(t), y(t)) is the object’s blob position, that is the centroid of the

object’s blob in the coordinate frame {I}. θ (t) is the object’s blob orientation,

that is the angle between the object’s blob heading and horizontal line (axis Xi )
in the coordinate frame {I}.

reliably identify this blob, some invariant property of this blob
relative to changing t has to be identified.

The brightness of the blob representing the object in the
video frames F(t) is not invariant in t because of the outdoor
environmental conditions, particularly weather and sun. The
brightness may change frequently depending on the weather and
the relative pose of the object, UAS, and the sun. An example of
weather affecting brightness are clouds that might temporarily
cast shadows on the object. An example of the relative pose
influence on the brightness is when the object that faces the UAS
with its non-illuminated side changes its pose in a way that it now
faces the UAS with its sun illuminated side as shown in Figure 4.
In the figure, the brightness of a USV’s blob changes as the USV
completes a turn. The USV first displays its non-illuminated side
making its blob look dark (left) and then after completing the
turn, it displays the sun-illuminated side making its blob look
bright (right). Another example is when the sun is in the field
of view of the UAS’s camera causing the white balance distortion
in the video frames as can be seen in Figure 5. Consequently, the
USV’s color is very similar to the color of the surrounding water.

The convexity and concavity of the blob representing the
object in the video frames F(t) is not invariant in t because of the
outdoor environmental conditions, particularly water occlusions
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FIGURE 4 | Object’s blob brightness may vary significantly in the video frames F (t) with varying t because of the outdoor environmental conditions.

FIGURE 5 | The illumination conditions may change with the relative position

of the UAS, object, and sun.

and shadows. The object might be temporarily partially occluded
by water (waves or wake) or shadows causing the convexity and
concavity of the blob to change over time.

The size of the blob representing the object in the video frames
F(t) is not invariant in t due to the oblique view angle α causing
the distance from the UAS to change. The apparent size of the
object in the image may change frequently depending on the
distance of the object from the UAS and the relative pose of the
object to the UAS. If the object moves away from the UAS, its size
will decrease and vice versa as can be seen in Figure 6. In this
figure, the relative size of the USV on the left is much larger than
on the right because the USV is closer to the camera. Therefore,
a priori assumptions about the object’s blob size in video frames
cannot be made.

The ratio of the minimum inertia to maximum inertia of
the blob representing the object in the video frames F(t) is not
invariant in t due to the oblique view angle α causing the object’s
shape to change. The inertia ratio of the blob depends on the
relative orientation of the object relative to the UAS. Taking a
cylindrical object such as a USV as an example, if such object is
facing toward the UAS, its blob will be circular (inertia ratio will
be high), however, If it is turned sideways, its blob will be elliptical
(inertia ratio will be low) as shown in Figure 7. On the left side
of the figure, USV has a high inertia ratio comparing to the low
inertia ratio on the right because it faces the camera.

Visual features of the blob representing the object in the
video frames F(t) are not invariant in t due to the potentially

large distance between the object and the UAS. The object’s
blob might start relatively close to the UAS and then move
very far (up to 180m) causing the features to be lost with
low spatial resolution. In the extreme case, the object’s blob
might be featureless due to the large distance between the object
and the UAS causing the spatial resolution might be very low
as illustrated in Figure 2. The figure shows DJI Phantom 3
Professional video feed with resolution 2,132 × 1,200 px with
USV being approximately 100m away. As can be seen in the
close-up view, the spatial resolution of USV is very low (about
10 cmpx−1). The USV appears as a circle with the radius of only
5 px. The USV’s image blob area is only about 80 px taking only
0.003% of the image.

The motion of the blob representing the object in the video
frames F(t) is not invariant in t due to the motion of the UAS.

The UAS motion causes two problems. First, the motion of the
object in the real world does not correspond to the motion of the

object’s blob in the video frames. For example, if both the object

and the UAS are moving at the same speed in the same direction,

the object’s blob will be static in the video frames. Second, the
UAS motion causes the background to move as well as shown

in Figure 8. In the figure, two adjacent video frames from a

moving UAS (on the left) were subtracted to reveal anything
that moved in between those frames (on the right). It can be
seen, that the USV (green circle) moving in the real world was
not the only object that moved between the frames. The electric
power pole (top red circle), the debris in the water (bottom
red circle), the fence, and the parked cars all moved between
the frames as well even though they were stationary in the real
world. This background movement is not uniform due to the
parallax effect. The parts of the background closer to the UAS
will appear to move faster than the parts of the background
further away.

The hue of the blob representing the object in the video frames
F(t), unlike the brightness, convexity, size, inertia ratio, features,
or motion, is relatively invariant in t and can be exploited. This
assumes the object has a combination of colors that is unique in
the UAS view. Those colors can then be exploited in identifying
the object’s blob. While the saturation and value of a particular
color might change with illumination, hue should be relatively
invariant. This hue-based approach satisfies all the requirements
discussed in section 1. The assumption about the uniqueness of
colors is reasonable for rescue USVs and might be reasonable for
other objects as well.
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FIGURE 6 | Object’s blob size may differ significantly in the video frames F (t) with varying t because of the oblique view angle.

FIGURE 7 | The ratio of the minimum inertia to maximum inertia of the object’s blob may differ significantly in the video frames F (t) with varying t because of the

oblique view angle.

FIGURE 8 | Moving UAS causes the stationary background to appear moving in the video frames.

There are two challenges with using the hue of the blob
representing the object for the identification, non-uniformity of
the object’s color and difficulty to specify particular hue. First, the
color of the object might not be uniform. For example, EMILY,
a rescue USV, is mostly red but has many non-red parts on
its surface. The object’s color non-uniformity might cause that
the object is represented by multiple blobs of different colors in
the video frames. This might be a problem because the smaller
color blobs might disappear and appear with changing spatial
resolution as the object moves away or toward the UAS. This
problem can be alleviated by using Gaussian blur convolution

filter to diffuse the color of the smaller color blobs into the
bigger color blobs as illustrated in Figure 9. The USV on the
left side of the figure is composed of multiple color blobs. After
the application of Gaussian blur convolution filter, smaller blobs
are blended into bigger blobs as can be seen on the right side of
the figure. The Gaussian filter can be applied by convolving the
original image with a Gaussian kernel as follows:

g(i, j) =
∑

k,l

f (i+ k, j+ l)G(k, l)
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FIGURE 9 | The color of the object might not be uniform which can be alleviated by Gaussian blur convolution filter.

FIGURE 10 | Flowcharts for the thresholding and histogramming algorithms.

Where g is the new image, f is the original image andG(k, l) is the
Gaussian kernel defined as follows:

G(k, l) =
1

2πσ 2
e
− k2+l2

2σ2

Where k is the distance from the origin in the
horizontal axis, l is the distance from the origin in the
vertical axis, and σ is the standard deviation of the
Gaussian distribution.

The second challenge is that specific hue is difficult to
define in conventional RGB color space used by regular UAS
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visual cameras. The RGB values might be different in all three
coordinates and still represent the same hue. It is also problematic
to recognize changes in the saturation and intensity of a
particular hue. An object with the specific hue under the varying
intensity of illumination will have different saturation and value
leading to different RGB values. The solution to this problem is
the conversion to HSV color space. The HSV color space specifies
a color in terms of hue, saturation, and value. In this color space, a
hue can be specified independently from its saturation and value,
which both change with illumination changes. Given an RGB
image, the HSV can be calculated as follows:

V = max (R,G,B)

S =

{

V−min (R,G,B)
V if V 6= 0

0 otherwise

H =











60(G−B)
V−min (R,G,B)

if V = R
120+60(B−R)
V−min (R,G,B)

if V = G
240+60(R−G)
V−min (R,G,B)

if V = B

Where R is the red channel, G is the green channel, B is the blue
channel, H is hue, S is saturation, and V is value. If H < 0, then
H is adjusted to H = H + 360.

3.1. Two Position Estimation Algorithms
Two algorithms for position estimation are introduced. The first
is thresholding based on HSV thresholds and contour detection.
The second is histogramming based on hue histogram model of
the object, its backprojection, and CamShift tracking algorithm.
Input for both algorithms are the video frames F(t) from UAS
and the output is the object’s position x.

While thresholding and CamShift have been used for vision-
based object tracking before, the basic sequence of steps has been
extended to address the challenges discussed at the beginning
of section 3 and requirements discussed in section 1. The basic
steps for thresholding application to object tracking are the actual
thresholding and contours detection. Some studies also used
erosion and dilation after thresholding step (Rosin and Ellis,
1995; Intille et al., 1997; Rosin, 2009; Seenouvong et al., 2016).
The basic steps for object tracking based on CamShift are the
conversation to HSV color space, hue histogram backprojection,
and CamShift itself (Chen et al., 2012; Kamate and Yilmazer,
2015). The additional steps discussed below and their order are
proposed by the authors specifically for the problem in hand.

3.1.1. Thresholding

The first, more naive, algorithm is based on thresholding of
HSV values. Each input video frame F(t) from UAS goes
through a series of seven steps: blur, HSV conversion, value
histogram equalization, thresholding, erosion, dilation, and
contours detection. This processed is schematized in the left
flowchart in Figure 10. The final result of this series is the
estimated x taken as the centroid of the largest area contour found
in the last step.

The first and second step is Gaussian blur convolution filter
and conversion to HSV color space as discussed above. The third
step is histogram equalization on value plane of HSV to increase
the global contrast in the video frame. The resulting image can be
defined as:

g(i, j) = H′(f (i, j))

Where g is the new image, f is the original image, and H′ is the
integral of the normalized histogram H of the image f . H′ can be
calculated as follows:

H′(l) =
∑

0≤k<l

H(k)

The fourth step is the application of binary thresholding to
identify pixels lying within the specified range of HSV values.
The result is a binary threshold map where true signifies that the
corresponding pixel is within the specified range of HSV values,
and false otherwise. An example of a binary threshold map can
be seen on the left side of Figure 11. The binary threshold map is
created as follows:

g(i, j) = Tmin ≤ f (i, j) ≤ Tmax

Where g is the resulting binary threshold map, f is the original
image, Tmin is the lower range, and Tmax is the upper range.

The fifth step is the application of erosion morphological
convolution filter to filter out noise. The binary threshold map
inherently contains noise. The erosion sets to false a specified
number of true pixels that border with false pixels in the binary
threshold map by using minimum function in the convolution
kernel. It ultimately deletes very small dispersed clusters of true
pixels and leaves just larger clusters. The resulting image can be
defined as:

g(i, j) = min
{(l,k)|λ(l,k) 6=0}

f (i+ k, j+ l)

Where g is the new image, f is the original image, and λ is
the structuring element defining the shape of the neighborhood
defined as:

λ(i, j) =

{

1 if (i, j) is in the neighborhood

0 otherwise

The sixth step is the application of dilation morphological
convolution to amplify the remaining clusters, smooth shapes,
and fill-in possible holes in the clusters. The dilation sets to
true a specified number of false pixels that border with true
pixels in the binary threshold map by using maximum function
in the convolution kernel. The holes might occur due to non-
uniformity of the object’s surface and illumination effects in the
environment. An example of a binary threshold map after the
application of erosion and dilation can be seen on the right side
of Figure 11. The resulting image can be defined as:
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FIGURE 11 | Erosion and dilation filters can be applied to the binary threshold map (Left) to filter out noise, smooth shapes, and fill-in holes (Right).

FIGURE 12 | The backprojection of the object’s histogram model and

subsequent application of CamShift.

g(i, j) = max
{(l,k)|λ(l,k) 6=0}

f (i+ k, j+ l)

Where g is the new image, f is the original image, and λ is the
structuring element defining the shape of the neighborhood.

The final, seventh, step is determining contours in the binary
threshold map to identify blobs using the method proposed
in Suzuki and Be (1985). Contours are boundaries of self-
contained clusters of true pixels in the binary threshold map. The
contours are found by following borders between true and false
pixels in the binary map. Each contour then represents a single
blob. In the case there is more than a single blob, the one with the
largest area is selected. Then the x is computed as the centroid of
this largest blob.

3.1.2. Histogramming

The second algorithm is based on the construction of the
hue histogram model and CamShift algorithm (Bradski, 1998).
The main idea is to use a hue histogram instead of a simple
hue range and then apply CamShift on backprojection of this
hue histogram. This algorithm constructs hue histogram at
the beginning using user’s input and then takes each video
frame through a series of six steps: blur, HSV conversion,
value histogram equalization, hue histogram backprojection,
thresholding on saturation and value, and CamShift algorithm
for finding and tracking objects. This processed is schematized in
the right flowchart in Figure 10.

Before the visual position estimation can begin, a hue
histogram model of the object must be constructed using a user’s

selection of the object. This procedure is done only once in the
beginning and not for every video frame. User input is required
to select the object in the video frame. A hue histogram model
is then constructed for the selected area. The hue histogram
divides the entire hue range into a predefined number of non-
overlapping bins of the same size. Each bin corresponds to
a specific range of hue values. The model is constructed by
counting for each bin how many pixels in the selected area are
within the hue range of that bin. The histogram is only built
for hue because the saturation and value of the object may
change with variations in illumination. After the hue histogram is
constructed, each input video frame F(t) from UAS goes through
a series of six steps. The final result of this series is the estimated
x taken as the centroid of the area found by CamShift.

The first three steps are the same as for the thresholding
algorithm presented in section 3.1.1: Gaussian blur convolution
filter, conversion to HSV color space, and value histogram
equalization. The fourth step is the calculation of the hue
histogram backprojection to identify how well each pixel in

F(t) fits the histogram distribution using the method proposed

in Swain and Ballard (1990). The result is a greyscale map of the
same dimensions as F(t), where each pixel’s value signifies how

much this pixel’s hue is represented in the histogram as shown
in Figure 12. This is calculated from the histogram by finding
how many samples are in the histogram bin corresponding to
the pixel’s hue. The number of the samples is then normalized
by dividing it by the number of samples in the bin with the most
samples. The fifth step is the computation of binary threshold
on saturation and value in order to filter out the pixels with low
saturation and value. This binary threshold is computed on the
original video frame independently of the backprojection. Only
the pixels lying in the predefined range of saturation and value
are set to true in this binary threshold map. This map is then
joined with the backprojection map using logical and operation.
This sets all the pixels that are false in the binary threshold map
to 0 in the backprojection map while keeping everything else
intact. This effectively filters out the pixels that do not belong to
the specified saturation and value range from the backprojection.
The sixth step is the application of CamShift algorithm (Bradski,
1998) for finding and tracking objects to find and track the area
of the maximum pixel density. CamShift works on a principle of
an imaginary window that iteratively slides toward the weighted
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centroid of all the pixels in that window. The size and rotation
of the window dynamically adapt in each step. The algorithm
eventually converges to a local maximum density area and tracks
it as can be seen in Figure 12. In the figure, the green cross
represents the centroid of the window found by CamShift. Since
the value of the pixels in the backprojection correspond to the
probability that given pixel belongs to the object, CamShift finds
the group of pixels with the highest local probability of belonging
to the object. The centroid of the window is then taken as the
position of the object, x.

3.2. Shape Analysis for Orientation
Estimation
The orientation estimation is based on the analysis of the shape
of the object’s blob. It is assumed that the major axis of the
object’s blob indicates the object’s blob heading. This assumption
is reasonable for USVs as they usually have the major axis
going from stern to bow facing the direction of movement. Four
techniques for estimation of the principal axis of a blob were
examined: line fitting, rectangle fitting, principal component
analysis (PCA), and ellipse fitting. The ellipse fitting had the
lowest orientation estimation error in preliminary experiments
and therefore was the only one used in the final experiments
presented in section 5.

The first technique was to fit a line through the blob using
linear regression. The regression analysis method of least squares
was used. It uses the M-estimator method to find the best fitting
line by iteratively applying the weighted least-squares algorithm.
It finds the line minimizing the sum of the squares of residuals,
∑

i
r2

2 . A residual ri is defined as the distance between the original
point i and the point on the fitted line approximating the original
point i. This technique is more suitable for fitting a line to
multiple data points and did not work well for a blob, where all
the points are immediately adjacent to each other.

The second technique was to fit a rectangle with the minimum
possible area that would still enclose the entire blob. An
algorithm proposed in Freeman and Shapira (1975) was used.
This algorithm first determines the minimal-perimeter convex
polygon enclosing the points (i.e., convex hull). Then, it selects
the minimum area rectangle containing this polygon. The idea
was that the rectangle’s major axis should correspond to the
object’s major axis. Unfortunately, this technique was not very
accurate. The rectangle would sometimes fit in a way that the
object would be enclosed diagonally, so the orientation would be
estimated incorrectly.

The third technique was principal component analysis taking
the principal component as the major axis (Abdi and Williams,
2010). This technique finds the eigenvectors that are the principal
components of data points. The eigenvector with the highest
eigenvalue represents the major axis of the data. However, this
technique suffered from a similar problem as line fitting. It is
more suitable for multiple data points, but it did not work well
for a single blob where all the points are immediately adjacent to
each other.

The fourth technique was to fit an ellipse with the minimum
possible area that would still enclose the entire blob. The algebraic

distance algorithm was used (Fitzgibbon and Fisher, 1995). This
algorithm finds an ellipse enclosing the points while minimizing
the least-squares of distances of the points to the ellipse. The
major axis of the ellipse then approximates the major axis of
the blob. Unlike the rectangle fitting, ellipse does not have the
extra corners preventing the blob to fit diagonally. Therefore, this
approach worked better than fitting a rectangle and overall the
best from the four examined techniques. An example of the fitted
ellipse and the estimated orientation can be seen in Figure 12.
The green ellipse represents the ellipse fitted to the blob and the
yellow line is the major axis of this ellipse approximating the
blob orientation.

4. IMPLEMENTATION

The proposed approach was implemented to validate the
feasibility and to compare the two algorithms for position
estimation. Physical platforms used for implementation were a
USV (EMILY), a UAS (either DJI Phantom 3 Professional or
DJI Inspire 1), or a visual camera as a UAS substitute (GoPro
HERO4 Black). The software was implemented on a macOS
laptop computer in C++ using OpenCV library. The input was
either prerecorded video files or UAS live video stream.

The physical robot platforms used for implementation were
Hydronalix Emergency Integrated Lifesaving Lanyard (EMILY)
as the USV, and DJI Phantom 3 Professional or DJI Inspire 1 as
the UAS, or a GoPro HERO4 Black camera as a substitution for
UAS. EMILY is a fast rescue USV covered with a red flotation
device. It has maximum speed of 22m s−1 and size of 120 cm
length and 28 cm beam. It is designed to move through high surf,
currents, and swift water. EMILY can be seen in Figure 1. DJI
Phantom 3 Professional is a small (1.3 kg) inexpensive ($800)
quad-rotor UAS with 23min flight time. It is equipped with
a gimbaled visual camera that provides up to 4K resolution
with 94◦ field of view and 20mm focal length. The video is
streamed over 2.4GHz downlink to a ground controller in the
resolution of 720p at 30 frames per second (fps) with 220ms
latency. The controller can be equipped with optional DJI HDMI
Output Module to provide mini-HDMI video output. DJI Inspire
1 is a small (2.9 kg) inexpensive ($2000) quad-rotor UAS with
18min flight time. It is also equipped with a gimbaled visual
camera that provides up to 4K resolution with 94◦ field of view
and 20mm focal length. The video is streamed over 2.4GHz
downlink to a ground controller in the resolution of 720p at 30
frames per second (fps) with 220ms latency. The controller is
equipped with mini-HDMI video output by default. DJI Inspire 1
can be seen in Figure 1. GoPro HERO4 Black is a non-gimbaled
visual camera that provides up to 4 K resolution (at 30 fps) or up
to 240 fps (at 720p resolution) with 65–123◦ field of view and 17–
35 mm focal length. The video recordings are saved on a Micro
SD card or can be streamed over 2.4GHzWi-Fi.

The software was implemented in C++ using OpenCV library
and executed on a macOS laptop computer. The algorithms
presented in section 3 were implemented using the following
OpenCV functions with default parametrization except where
specified otherwise: The Gaussian blur was implemented using
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GaussianBlur function and kernel size was 21 × 21 px. The
conversion from RGB to HSV color space was implemented
using cvtColor function. The value histogram equalization
used equalizeHist function. For the thresholding algorithm, the
thresholds were computed using inRange function, the erosion
used erode function with kernel size 2 × 2 px and was applied
twice in a row, the dilation used dilate function with kernel size
16× 16 px and was applied twice in a row, and contour detection
used findContours function with simple chain approximation
mode (compressing horizontal, vertical, and diagonal segments
and leaving only their endpoints). For the histogramming
algorithm, the histogram was calculated using calcHist function
with histogram size 16, hue histogram backprojection was
computed using calcBackProject function, and CamShift was
applied using CamShift function with termination criterion
either 10 iterations or desired accuracy equal to 1, whichever
came first. For orientation estimation algorithms, line fitting
used fitLine function implementing the least-squares method
as a distance in the M-estimator with the default values for
sufficient accuracy, rectangle fitting used minAreaRect function,
the principal component analysis was done using PCA class,
and ellipse fitting used fitEllipse function. For both thresholding
and histogramming algorithms, HSV, and saturation and value
thresholds, respectively, were not fixed and were tuned for each
trial using implemented graphical user interface (GUI). The GUI
was also used to get user input for the construction of the
hue histogram in the case of the histogramming algorithm. The
code was executed a macOS laptop computer. The hardware
configuration of the laptop was the following: processor 2.5GHz
Intel Core i7-4870HQ (Turbo up to 3.7GHz), memory 16GB
1.600MHz DDR3, and no graphical processing unit acceleration.

The input was either video files recorded by UAS/camera
onboard or live video feed streamed from UAS. The prerecorded
input files were in either MP4 or MOV format. The live video
feed stream was used once with DJI Phantom 3 Professional.
Since this UAS was not equipped with the optional DJI HDMI
Output Module, the video feed had to be streamed from a control
tablet (Samsung Galaxy Tab S) connected via USB to the UAS
controller. An Android application Screen StreamMirroring was
used to stream the screen of the tablet over the Internet using
Real Time Streaming Protocol (RTSP). The stream parameters
were set to resolution of 640p at 30 fps, 2048 kbit s−1 bit rate, and
H.264 encoding.

5. EXPERIMENTS

The goals of the experiments were to validate the feasibility
of the proposed approach to visual pose estimation and
to compare the thresholding and histogramming algorithms.
Four physical trials were performed to measure the position
and orientation estimation error of the thresholding and
histogramming algorithms: Trial 1 in an outdoor environment
using moving camera and an extremely oblique view angle 85◦,
Trial 2 in an outdoor environment with moving UAS flying at
lower altitude (5–15 m), Trial 3 in an outdoor environment with
static UAS flying at higher altitude (30m), and Trial 4 in indoor

environment testing robustness under different viewpoints and
live video stream input. A position and orientation error relative
to ground truth were computed by comparing the position
and orientation output with manually annotated ground truth
position and orientation.

5.1. Experimental Methodology
The experiments tested the following hypothesis.H: The position
and orientation estimation error for histogramming will be
lower than the position and orientation estimation error for
thresholding when compared to manually annotated ground
truth. The materials used in the experiments were a USV
(EMILY), a UAS (DJI Phantom 3 Professional, DJI Inspire
1, or GoPro HERO 4 Black as a substitution for UAS), and
computing hardware (a laptop computer). Four physical trials
were performed and the details about those trials are summarized
in Table 2. The two metrics were a position and orientation
estimation error relative to manually annotated ground truth.

Trial 1 was an outdoor trial in a lake intended to test an
extremely oblique view angle (85◦) and used elevated (2m)
ground-based camera instead of a UAS. The GoProHERO4 Black
camera was handheld and moved to keep the USV in the field of
view, therefore the video was shaking and moving. The USV was
teleoperated at a speed of up to 4m s−1 in a way to frequently
change its distance (up to 23m) and orientation relative to the
camera. The trial was performed late in the afternoon (16:30)
with the sun being low over the horizon. The camera was facing
in the west general direction so the sun was sometimes in the
field of view of the camera causing challenges with the white
balance of the resulting video. The sky was clear so there were
no effects from clouds. The view from the camera looking at the
USV during this trial can be seen in Figures 4–7.

Trial 2 was an outdoor trial that used a low flying (5–15 m),
fast moving (up to 9m s−1) UAS frequently changing viewpoints
of a teleoperated USV. Both the USV and the UAS moved with
frequent changes in direction and speed (USV speed was up
to 5m s−1). The UAS was sometimes following the USV and
changed viewpoints frequently so the USV was viewed from
different sides. The distance between the UAS and USV change
frequently being up to 70m. The view angle from nadir also
changed frequently being up to 78◦. The relative position of the
UAS and the sun was also changing causing the USV to be visible
from both the sun-illuminated side and non-illuminated side.
The sky was clear so there were no effects from clouds. This trial
was done during Fort Bend County, TX, 2016 floods so the USV
was operated in flood water. The trial in progress can be seen
in Figure 1.

Trial 3 was an outdoor trial in a lake that used a high flying
(30m), stationary UAS flying over the shore and looking at the
USV at an oblique view angle of up to 73◦. The UAS was flying
directly above the shore while the USV was operated in GPS
waypoints mode at speeds of up to 2m s−1 far away in the water
causing the distance between theUAS and theUSV to be large (up
to 100m) and the view angle to be oblique (up to 73◦). The cloudy
weather caused the USV to transition from sun-illuminated areas
to shadows and back frequently. The site for the experiment was
the same as during Trial 1 with the camera facing in the same
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TABLE 2 | The trials varied in physical configuration and environmental conditions as can be seen from the parameters of the trials.

Trial 1 Trial 2 Trial 3 Trial 4

Date 03/28/2016 04/23/2016 05/10/2016 07/05/2016

Time 16:30 15:30 11:00 13:00

Location Lake Bryan,

Bryan,

Texas

Fort Bend County,

Texas

Lake Bryan,

Bryan,

Texas

College Station,

Texas

Outdoors ✓ ✓ ✓ ✕

Water type Lake Flood Lake N/A

USV Hydronalix

EMILY

Hydronalix

EMILY

Hydronalix

EMILY

Hydronalix

EMILY

USV control method Teleoperation Teleoperation GPS Waypoints N/A

USV speed Up to 4ms−1 Up to 5ms−1 Up to 2ms−1 0ms−1

UAS/Camera GoPro HERO4

Black

DJI Inspire 1 DJI Phantom 3

Professional

DJI Phantom 3

Professional

Video streaming ✕ ✕ ✕ ✓

UAS speed 0ms−1 Up to 9ms−1 0ms−1 Up to 1ms−1

Altitude (a) 2m 5 to 15 m 30m 0 to 1 m

View angle (α) Up to 85◦ Up to 78◦ Up to 73◦ Up to 90◦

Distance UAS to USV Up to 23m Up to 70m Up to 100m Up to 7m

Cloud cover Clear Clear Mostly Cloudy N/A

Wind ENE 13 kmh−1 N 7kmh−1 S 15 kmh−1 N/A

Temperature 23 ◦C 27 ◦C 28 ◦C 23 ◦C

Precipitation ✕ ✕ ✕ N/A

Green tick indicates the study was outdoors and red cross indicates the trial was not outdoors. For video streaming, it indicates if the trial used video streaming. For precipitation, it

indicates if the trial had any precipitation.

general direction, however, this time the trial was done in the
late morning (11:00) causing different illumination. The view
from the UAS looking at the USV during this trial can be seen
in Figure 2.

Trial 4 was performed in an indoor environment testing the
robustness under different viewpoints and using UAS live video
stream as input. There was a constant illumination from ceiling
fluorescent lamps. The USV was stationary, and the UAS was
carried around at speed up to 1m s−1 to observe the USV from
different angles and distances (up to 7m). Because the UAS was

carried, it was shaking and moving. The USV was placed on an
elevated platform so the altitude difference between the USV and

UAS was from 0 to 1 m causing the view angle to be up to 90◦.
The input video was streamed live at the resolution of 640p at 30

fps with 2048 kbit s−1 bit rate from the control tablet of the UAS
using RTSP (as described in section 4) to test the performance of

the algorithms on a live video stream input. Since a USV might
look different from different view angles, this trial tested if the
algorithms work correctly for all the possible viewpoints.

The methodology for each trial was to capture the USV
in operation using UAS/camera, take the video as input,
adjust parameters to local conditions, run both algorithms
(thresholding and histogramming), and compare the estimated
pose with ground truth. In each trial, a UAS/camera was used
to capture a video of a USV in operation. The video was either
recorded onboard UAS/camera (Trial 1, Trial 2, and Trial 3)
or live streamed (Trial 4). Before executing the algorithms,
the parameters (HSV thresholds for thresholding, and hue and

saturation thresholds for histogramming) were adjusted to local
conditions for each trial. Then, both algorithms for position
estimation (thresholding and histogramming) with ellipse fitting
algorithm for orientation estimation were executed on the video
frames to get the estimated pose. This estimated pose was
then compared with manually annotated ground truth pose to
compute the error.

The metric used for comparison of the estimated pose
with ground truth was composed from two parts, position
estimation error and orientation estimation error. Both the
position estimation error and the orientation estimation error
were computed relative to manually annotated ground truth.
The video frames were manually annotated for ground truth
USV’s blob centroid position xg(t) and ground truth USV’s
blob orientation (i.e., heading) θg(t) both in {I} for frame
F(t),∀t ∈ [1 . . n]. The particular algorithm’s output was
the estimated position of USV’s blob centroid xo(t) and the
estimated orientation of USV’s blob θo(t) in {I} for frame
F(t),∀t ∈ [1 . . n]. Then for a frame F(t), the position estimation
error was computed as ex(t) =

∥

∥xg(t)− xo(t)
∥

∥

2
and the

orientation estimation error was computed as eθ (t) = π

2 −
∣

∣

∣

∣θg(t)− θo(t)
∣

∣ − π

2

∣

∣. The final metric was mean, median, and
standard deviation of ex(t) and eθ (t) for t ∈ [1 . . n].

5.2. Results
While histogramming had statistically significantly lower
position estimation error compared to thresholding for all
four trials (p-value ranged from ∼ 0 to 8.23263 × 10−29), it
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only had statistically significantly lower orientation estimation
error for Trial 1 and Trial 3 (p-values 3.51852 × 10−39 and
1.32762 × 10−46, respectively). The mean position estimation
error for histogramming was quite low ranging from 7 px to
43 px. The mean orientation estimation error, on the other hand,
was quite large being in the best case 0.134 rad (histogramming
during Trial 1) and in the worst case even 0.480 rad (thresholding
during Trial 3). Table 3 summarizes mean, median, and standard
deviation of the position estimation error (ex) and orientation
estimation error (eθ ) for both histogramming and thresholding
for all four trials.

The main hypothesis, H, was divided into two hypotheses,Hx

for position estimation error metric (ex) and Hθ for orientation
estimation error metric (eθ ), and tested for statistical significance
using a t-test. The hypothesis for position estimation error was

Hx: The position estimation error for histogramming (e
(H)
x ) will

be lower than the position estimation error for thresholding

(e
(T)
x ). The hypothesis for orientation estimation error was Hθ :

The orientation estimation error for histogramming (e
(H)
θ

) will
be lower than the orientation estimation error for thresholding

(e
(T)
θ

). First, two-sample two-tailed f -test for equal variances
with 5% significance level indicated unequal variances for all the
cases. Then, two-sample one-tailed (left) t-test assuming unequal
variances (using Satterthwaite’s approximation) was used to test
the two hypothesis for all four trials leading to a total of eight
t-tests. The t-values were computed as follows:

t =
A− B

√

s2A
NA

+
s2A
NA

Where A and B are the sample means, sA and sB are the sample
standard deviations, and NA and NB are the sample sizes. Table 3
summarizes t-values and p-values for each hypothesisHx andHθ

for all four trials.
The t-test confirmed the statistical significance of the

hypothesis Hx for position estimation error metric (ex) on 5%
significance level for all four trials meaning histogramming had
statistically significantly lower position estimation error (ex)
compared to thresholding for all four trials. The null hypothesis

wasHx
0 : e

(H)
x = e

(T)
x and the alternate hypothesis wasHx

a : e
(H)
x <

e
(T)
x , where e

(H)
x and e

(T)
x were mean position estimation error of

histogramming and thresholding, respectively. The resulting p-
values were 2.24164 × 10−72, 8.23263 × 10−29, ∼ 0, 6.02253 ×

10−92 for Trials 1–4, respectively.
The t-test confirmed the statistical significance of the

hypothesisHθ for orientation estimation error metric (eθ ) on 5%
significance level for Trial 1 and Trial 3, but failed to confirm
the statistical significance of the hypothesis for Trial 2 and Trial
4. Therefore, histogramming had statistically significantly lower
mean orientation estimation error (eθ ) compared to thresholding
for Trial 1 and Trial 3, but the results for Trial 2 and Trial 4

were inconclusive. The null hypothesis was Hθ

0 : e
(H)
θ

= e
(T)
θ

and

the alternate hypothesis Hθ
a : e

(H)
θ

< e
(T)
θ

, where e
(H)
θ

and e
(T)
θ

were mean orientation estimation error of histogramming and
thresholding, respectively. The resulting p-values were 3.51852×
10−39, 6.97037× 10−1, 1.32762× 10−46, and 9.99999× 10−1 for
Trials 1–4, respectively.

The histogramming had a lower mean, median, and standard
deviation of the position estimation error (ex) compared with
thresholding. The mean of ex for histogramming was quite
low ranging from 7 to 43 px with median ranging from 6
to 27 px. On the other hand, the mean position estimation
error for thresholding was relatively high ranging 15 to 440 px
with median ranging from 9 to 51 px. The histogramming had
much lower standard deviation of ex (4 to 44 px) compared to
thresholding (51 to 434 px).

The mean orientation estimation error (eθ ) was relatively high
for both algorithms ranging from 0.134 rad for histogramming
in Trial 1 to 0.480 rad for thresholding in Trial 3. The median
of eθ was ranging from 0.037 rad for thresholding in Trial
4 to 0.271 rad for thresholding in Trial 3. The standard
deviation was also relatively large ranging from 0.163 rad for
histogramming in Trial 1 to 0.485 rad for thresholding in
Trial 1.

The update rate was higher for histogramming than
thresholding for all the Trials. The update rate value was
dependent on the video resolution. It was highest for Trial
4 (resolution 1, 024 × 640) being 11Hz for thresholding
and 14Hz for histogramming. It was lowest for Trial 3
(resolution 2, 132× 1, 200) being 2Hz for thresholding and 3Hz
for histogramming.

6. DISCUSSION

The histogramming algorithm had statistically significantly
lower position estimation error than thresholding when
compared with manually annotated ground truth (p-value
ranged from ∼ 0 to 8.23263 × 10−29), showed the feasibility
to variations in environmental conditions and physical
settings in three outdoor trials and one indoor trial, and
required one less parameter than thresholding. There were,
however, three problems. The orientation estimation error
was quite large for both algorithms (0.134 to 0.480 rad), both
algorithms required manual tuning, and both algorithms were
not robust enough to recover from significant changes in
illumination conditions. The experiments could have been
improved to measure the robustness of the algorithms in
addition to their precision by introducing a metric counting
the number of times particular algorithm completely lost
track of the object. Future work will focus on adapting
machine learning methods used for 6D pose estimation
to address the issues with the robustness and the need for
manual tuning.

6.1. Histogramming Algorithm Is Better
Than Thresholding for Position Estimation
The histogramming algorithm had a lower position estimation
error than thresholding due to its capability to create the object’s
model in local illumination conditions and to capture more
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TABLE 3 | The results of the four experiments listing the position estimation error, the orientation estimation error, and the update rate for both thresholding and

histogramming algorithms per each trial.

Trial 1 Trial 2 Trial 3 Trial 4

Location Lake Bryan,

Bryan,

Texas

Fort Bend County,

Texas

Lake Bryan,

Bryan,

Texas

Laboratory

Video resolution 1, 920× 1, 080 1, 920× 1, 080 2, 132× 1, 200 1, 024× 640

Observations 480 5, 934 6, 315 2, 249

Thresholds

Thresholding

Hue [0, 10] ∪ [160, 180] [0, 10] ∪ [160, 180] [0, 10] ∪ [160, 180] [0, 10]

Sat. [58, 255] [120, 255] [30, 255] [167, 255]

Value [81, 255] [100, 255] [10, 255] [50, 255]

Histogramming
Sat. [52, 255] [120, 255] [30, 255] [130, 255]

Value [10, 255] [100, 255] [10, 255] [10, 255]

Position estimation error (ex)

Thresholding

Mean 440px 15px 311px 100px

Median 51px 9px 10px 47px

SD 434px 51px 385px 126px

Histogramming

Mean 15px 8px 7px 43px

Median 13px 6px 6px 27px

SD 9px 5px 4px 44px

T-Value for Hx −21.458303 −11.13177414 −63.23634755 −21.01028455

P-Value for Hx 2.24164× 10−72 8.23263× 10−29 ∼ 0 6.02253× 10−92

Orientation estimation error (eθ )

Thresholding

Mean 0.462 rad 0.178 rad 0.480 rad 0.141 rad

Median 0.243 rad 0.099 rad 0.271 rad 0.037 rad

SD 0.485 rad 0.260 rad 0.477 rad 0.251 rad

Histogramming

Mean 0.134 rad 0.180 rad 0.365 rad 0.183 rad

Median 0.076 rad 0.119 rad 0.147 rad 0.044 rad

SD 0.163 rad 0.202 rad 0.427 rad 0.325 rad

T-value for Hθ −14.055826 0.515911 −14.345444 4.854452

P-value for Hθ
3.51852× 10−39 6.97037× 10−1 1.32762× 10−46

9.99999× 10−1

Update rate

Thresholding 5Hz 6Hz 2Hz 11Hz

Histogramming 7Hz 8Hz 3Hz 14Hz

Both the position estimation error and orientation estimation error are listed in terms of mean, median, and standard deviation, and t-value and p-value for hypothesis Hx and Hθ ,

respectively. The table also contains location of each trial, resolution of the input video, number of frames in the video (observations), and parameters (thresholds) of each algorithm that

were used for particular trial (Sat. is an abbreviation for saturation). Green and red are used to compare thresholding and histogramming. Red indicates higher error and green indicates

lower error. For p-value, green indicates statistical significance of corresponding hypothesis and red otherwise.

information about the hue distribution of the object. It showed
the feasibility to varying configurations and environmental
conditions in physical trials. It also required less parameter
tuning than thresholding and had a higher update rate.

The histogramming algorithm had statistically significantly
lower position estimation error than thresholding when
compared with manually annotated ground truth for two
reasons: it uses a hue model of the object created in local

illumination conditions and it can capture more information
about the hue distribution of the object than thresholding. First,
the histogramming algorithm creates a hue histogram model
of the object in local illumination conditions. In the case of the
thresholding algorithm, the hue threshold has to be set manually
and is not computed from the actual appearance of the object in
specific illumination conditions. There are four environmental
conditions that can change the appearance of hue: time of day,

Frontiers in Robotics and AI | www.frontiersin.org 16 May 2019 | Volume 6 | Article 42

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Dufek and Murphy Visual Pose Estimation of USV From UAS

time of year, weather, and surrounding environment colors
(water and the surrounding environment all reflect light onto the
object). Second, a hue histogram can capture more information
about the hue properties of the object compared to thresholding.
The thresholding algorithm only models the hue of the object as
a single range of acceptable hue values. On the other hand, the
histogramming algorithm works with the entire histogram of
hue specifying a hue distribution of the object of interest.

The histogramming algorithm showed feasibility for varying
configurations and environmental conditions in physical trials.
Despite the variations in trials, the mean position estimation
error for histogramming was still relatively low ranging from
7 to 43 px. The three outdoor field trials were performed at
three times of year (March, April, May), three times of day
(11:00, 15:30, 16:30), in two water types (lake and flood water),
using two control modes of the USV (teleoperation and GPS
waypoints), with USV speed ranging from 2 to 5ms−1, with three
UASs/camera platforms (DJI Phantom 3 Professional, DJI Inspire
1, GoPro HERO4 Black), with UAS speeds of up to 9m s−1, at
altitudes ranging from 2 to 30 m, at view angles ranging from
73 to 85◦, at distance between UAS/camera and UAS of up to
100m, with two different weather conditions (clear and mostly
cloudy sky), at three different relative positions of UASs/cameras
(an extremely oblique view from static camera yawing to follow
the USV, UAS following the USV, stable UAS above shore), and
with both the sun-illuminated side and non-illuminated side of
the USV being visible. In addition to the three outdoor trials,
one indoor trial tested the position estimation from different
viewpoints with the view angle of up to 90◦ from nadir.

The histogramming algorithm had one less parameter than
thresholding and therefore required less manual tuning. The
thresholding required to manually set all three HSV thresholds.
The histogramming algorithm only required to set saturation and
value thresholds.

The histogramming algorithm had a higher update rate than
thresholding in all the trials. This indicates a higher efficiency
of the histogramming algorithm compared to thresholding.
Nevertheless, the update rate for both algorithms was enough to
enable visual navigation.

6.2. Limitations of Proposed Method
A total of three problems with the proposed method were
identified. First, the orientation error was quite high due to the
oblique view angle. Second, both algorithms required manual
tuning before each mission. Third, the algorithms were not
robust to significant illumination changes.

The orientation estimation error was quite large for both
thresholding and histogramming ranging from 0.134 to 0.480
rad because of perspective distortion caused by the oblique view.
Because of the oblique view angle, the shape of the object is
not constant and may vary depending on the relative pose of
the object to the camera. In the extreme case (object faces the
camera and is it is far away), even a cylindrical object might have a
circular profile having no significant major axis. This is illustrated
in Figure 2 where a USV’s blob is circular making it hard to
estimate the orientation by shape analysis. For this reason, an

inverse perspective warping will probably be necessary to reduce
the perspective effects introduced with an oblique view angle.

Both thresholding and histogramming required manual
tuning for local conditions requiring to adjust three and two
parameters, respectively. The thresholding required setting HSV
thresholds and histogramming required setting saturation and
value thresholds and selecting the object before the visual pose
estimation could start. If those parameters were set incorrectly, it
would likely lead to a complete failure. For example, if the lower
saturation threshold was set higher than the object’s saturation,
the object would be filtered out. On the other hand, if the lower
saturation threshold was set too low, it would fail to filter out
parts of the environment with similar hue, but lower saturation.

While histogramming algorithm had relatively low position
estimation error (mean ranging from 7 to 43 px), when it
loses track of the object due to significant illumination changes,
it is very unlikely to recover by itself and human input is
required to reselect the object to rebuild the histogram model.
The reason is that the algorithm cannot adapt to significant
changes in illumination conditions during a single mission.
The illumination conditions may change very abruptly with
changes in the relative position of all UAS, the object, and sun.
For example, the camera may face the sun distorting white
balance in the entire view as can be seen in Figure 5. This
causes the object’s color to be very similar to the color of
water violating the assumption that the object’s color is unique
in the environment. Another example is presented in Figure 4

illustrating how significantly can illumination conditions change
during a single run. A method based on machine learning might
lead to better robustness to illumination changes and might
require less manual tuning before each mission.

6.3. Improving Experiments and Machine
Learning for Future Work
The experiments could have been improved by introducing
an additional metric that would reflect robustness to changing
illumination conditions. Additionally, not all the experiments
used UAS and not all were outdoors as one trial used a camera
instead of UAS and one trial was indoors. The future work
will focus on exploring machine learning methods to increase
robustness to changing illumination conditions and reduce the
need for manual parameter tuning.

An additional metric could have been introduced to test for
robustness to changing illumination by reflecting how many
times did a particular algorithm completely fail and required a
manual change of parameters to recover. Since the parameters
of the algorithms were tuned before each trial, the results
reflected the precision of the algorithms rather than their general
robustness to changing conditions. To test for robustness, each
experiment would be started with default parameters and the
metric would count how many times those parameters had to be
changed to keep the track of the object.

The experiments could have been improved by using a UAS in
all the trials and by performing all the trials outdoors. Only two of
the four trials were performed outdoors with a UAS and moving
USV. Trial 1, while outdoors, used a visual camera instead of
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UAS. However, this provided a good challenge since the view
angle was extremely oblique (about 85◦) due to very low altitude
(2m). The camera was not stabilized in any way and was hand-
held and moving to keep the USV in the field of view. Trial 4 was
performed indoors and the USV was not moving. However, this
enabled to cover different viewpoints around the USV. The UAS
was carried around the USV in the way to cover all the possible
view angles.

The aim of future work will be to explore machine learning
methods for visual pose estimation with a goal to increase
robustness to illumination changes and eliminate the need
for manual tuning. There is a large body of work on visual
tracking of objects, however, those methods generally do not
estimate orientation. There is very active research on visual
6D pose estimation of objects, however, those methods are
usually used for robotic manipulation and are done indoors
at a very short distance (e.g., objects placed on a table and
camera on a manipulator). Most of those methods use depth
information from RGB-D cameras, but some use only monocular
RGB cameras. The state of the art methods using monocular
RGB cameras are Do et al. (2018), Li et al. (2018), Tremblay
et al. (2018). The goal of the future work will be to explore if
those methods can be adapted to the problem in hand. Machine
learning methods might improve robustness while eliminating
the need for manual parameter tuning.

7. SUMMARY

This article focused on the problem of visual pose estimation of
USV from UAS with the following requirements:

• The operating environment is an outdoor water environment.
• Both UAS and USVs are moving (up to 22 and 10m s−1,

respectively).
• The UAS is looking at the scene at an oblique view angle (up to

85◦ from nadir) from large distance (up to 180m).
• The output has to be full pose (both position and orientation)

provided in real-time (more than 5Hz).

The presented approach was based on the object’s hue
invariance. Two algorithms for position estimation were
presented: thresholding and histogramming. Shape analysis was
used for orientation estimation assuming the major axis of the
object’s blob indicates the object’s blob heading. Four techniques
for estimation of the principal axis of a blob were examined: line
fitting, rectangle fitting, principal component analysis (PCA), and
ellipse fitting.

Four physical experiments were performed to validate the
feasibility of the proposed approach for visual pose estimation

and to compare the thresholding and histogramming algorithms.
A position and orientation error relative to ground truth
were computed.

The histogramming algorithm had a lower position estimation
error, showed feasibility for varying environmental conditions
and physical settings, and required fewer parameters than
thresholding. However, three problems were identified. The
orientation estimation error was quite large for both algorithms,
both algorithms required manual tuning, and both algorithms
were not robust enough to recover from significant changes in
illumination conditions.

To conclude, the histogramming algorithm with ellipse
fitting for orientation estimation should be good enough if
enhanced with an inverse perspective warping to reduce the
orientation estimation error and if no significant changes
in illumination are expected as demonstrated by the low
position estimation error (7 to 43 px). If there are significant
lighting changes, manual input might be necessary to recreate
the hue histogram. To increase the robustness to significant
lighting changes without the necessity to recreate the hue
histogram, a machine learning approach might ultimately be a
better solution.
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