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Abstract—The article is about the methods of machine learn-
ing, designed for the detection of wildfires using unmanned aerial
vehicles. In the article presented the review of machine learning
methods, described the motivation part of machine learning usage
and comparison of fire and smoke detection is made. The research
was focused on machine learning application for monitoring task
with a restrictions according to scenarios of a real monitoring.
The results of experiments with demonstration of effectiveness of
detection are presented in the conclusion part.

I. INTRODUCTION

The last decade of technological progress characterized by
the widespread usage of unmanned aerial vehicles (UAVs): in
the US FAA by January 2018 registered 1 million drones for
commercial and personal use [1]. Logistic of goods, photo and
video filming, agriculture, telecommunications, construction,
security and rescue, these areas are needed in UAVs for
efficiency increasing [2], [3], [4]. The monitoring of a extended
and spread infrastructure is the most useful function of a
UAVs [5], [6]. Moreover, the monitoring process can be almost
completely automated.

Particularly, UAVs show their workability for the environ-
mental monitoring of forests for fire safety increasing [7].
Right now there are three main ways to detect the wildfire
source: fire towers, manned aerial vehicles and satellite moni-
toring. These methods have significant limitations that reduce
the monitoring efficiency. Fire towers have a limited view
range, and the accuracy of observation depends from weather
conditions and time of day. Piloted vehicles (helicopters and
airplanes) needed in the special expensive infrastructure. Also,
both of these methods have a human factor and risk to the
human life. Satellite observation allows you to automate data
collection, but the area of the wildfire for detection is too high.
By this time, large forces will be needed to eliminate the fire.
Satellite observation give the maximum advantage in strategic
preventive actions [8].

UAVs are mitigating all disadvantages of previous methods.
The drone fleet much more flexible for territory monitoring
with a different weather condition. Distribution of drones
around territory can be made in optimal way of price or time
[9]. The drone fleet equipped by thermal camera and air quality
sensors makes possible to recognize a smoke or wildfire source
at the early stage. The main advantage of UAVs is autonomy
and low cost against to existing wildfire detection methods
[10].

UAVs have been used as an additional monitoring tool
since the beginning of the 2010s [11]. Now UAVs are used
mainly for data collection: it needs semi-automated processing
by 2–4 operators to work during 18–25 days on monitoring
tasks [11]. To reduce that costs the automated processing is
needed. The task of monitoring in automatic mode leads to the
development of a computer vision (CV) system using various
detection methods. There are many well-known approaches for
detecting fire with photo- and video-processing: starting from
simple image processing to machine learning methods (ML)
[7], [12]. However, not all of these methods are suitable for
monitoring with drones. But usage of drones for fire security
regular monitoring needs a small source of wildfire detection.
When designing a monitoring system with computer vision,
one has to take into account the nuances and limitations that are
imposed by field conditions, lack of computing resources and
other features. There are a lot of limitation and restriction with
external conditions for computer vision, also lack of computing
resources and other features. For the widespread usage this
system should have an economical advantages.

At the beginning of the 21st century, there was a
widespread development of methods for fire detecting, but the
practical usage of UAVs for these tasks began only in last
years. For example, with NASA support in 2006 was demon-
strated a system for a real-time monitoring of wildfires with
UAVs [13]. In 2016-2018, the experiments about UAVs fleet in
detecting, localizing and measuring squares of wildfires tasks
were published [14], [15]. The computer vision applications
for that tasks were described in a several papers (e.g. [16],
[7], [17]).

But we still have a big gap between the research of a
computer methods and its implementation, especially with a
machine learning. And the main goal of this work is com-
parison of machine learning methods applied to the wildfire
monitoring tasks. The main focus of the research is on machine
learning methods, including deep learning methods cause this
class of artificial intelligence methods the most promising
for real-time monitoring tasks. The advantages of machine
learning methods against classical image processing methods
applied to monitoring are mentioned in the sections below.

Main points of article:

• The article considers classical methods of machine
learning and deep learning methods: Haar and LBP
cascades, Faster R-CNN, SSD, YOLO.
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• The methods are compared for aerial detection of
wildfires. The comparison parameters are the quality
of detection and performance.

• The conclusions about the applicability of the detec-
tion of fire or smoke are presented.

• The article is limited to the consideration of the mon-
itoring scenario using the UAV, outside the context of
the equipment parameters.

The paper is organized as follows. Section 2 provides an
analysis of machine learning methods for wildfire detection.
The comparison of smoke and fire detection is described in
section 3. In the section 4, the software implementation of
the described methods and their testing for fire detection tasks
with experimental results description are provided. And the
summary in the last section.

II. ANALYSIS OF MACHINE LEARNING METHODS

A. Benefits of Machine Learning

Early fire detection methods were based on classic image
processing methods. Classical methods are rather unreliable:
for example, methods based on color classification, and meth-
ods for detecting fire by analyzing its movement can produce
false-positive results in the presence of objects colored in
the color of the flame. Classical methods give high reliabil-
ity: for example, methods based on color classification, and
methods for detecting fire by movement analyzing can give
false-positive results with objects of flame color. In forest
monitoring tasks can be reflections of sunlight on the surfaces
of buildings, ponds and rivers. It should be added that the
standard recognition methods give a bad result for cases with
natural hindrance (fog, dust, etc.).

Machine learning techniques, on the other hand, can over-
come these disadvantages. The percentage of false detections
for some methods is less than 5%. In addition, deep learning
allows you to adapt the same methods for different monitoring
scenarios, without the need to rebuild the method itself: only
the appropriate data setsare needed for training. Several years
ago for the application of neural networks in practical tasks
the performance of existing equipment wasnt enough. At the
moment, the computing power that the neural network can
be deployed on common models of UAVs. Now there are
additional modules that can be placed on the UAV for the
neural networks usage [18].

B. Problems of the Monitoring Task

As part of the monitoring tasks, two large machine learning
tasks are resolved in computer vision: the task of classification
and the task of detection. The first task is simple: during
the solution, a specific class of objects is detected in the
image, without localizing the object. It seems that the use of
simple and computationally less costly methods will be more
effective for monitoring tasks with the help of UAVs. However,
pictures of forests can contain many objects of interest: for
example, in the case of several sources of fire or smoke.
This will cause the assignment of a class label to become
undefined. The second problem is that usually monitoring is
carried out at high altitudes (from 200–300 meters) and it
becomes impossible to pinpoint the location of the fire source,

only its approximate region. For quick action on fire fighting
this is critical, especially during dry seasons. And in fact, the
scenarios of the processes of classification and detection are
interrelated. In the future, only methods for object detection
will be considered.

Two factors determine the complexity of the task of object
detection. First, it is necessary to process a large number of
the proposed locations of the object. Secondly, the proposed
locations require clarification in order to obtain accurate lo-
calization. Because of this, detection methods have limitations
on speed, accuracy, and implementation complexity.

To train the model the labeled data is needed. In the context
of object recognition, labeled data is images with bounding
boxes (bounding the required object) with coordinates and a
class label. At the same time, it is necessary to avoid the
phenomenon of overfitting of the model on similar images,
since the model should work quite accurately in non-standard
situations (other than the training set).

As a rule, object recognition consists of three steps:

1) At the beginning, the model or algorithm is used
to generate areas of interest or proposals. Region
proposals are a large set of bounding boxes in the
original image.

2) Next, the visual parameters for each of the bounding
boxes are determined, and the presence of objects of
interest is evaluated.

3) At the post-processing stage, non-maximum suppres-
sion is performed — the combining of bounding
boxes associated with the same object [19].

There are several approaches to the generation of region
proposals: a selective search algorithm, the use of complex
visual parameters, the direct generation of regions of interest
using a sliding window. However, it is important to find a
balance between detection accuracy and computational com-
plexity: the more regions are generated, the higher the chance
to find an object, and the more expensive processing in the
real time. For example, the selective search algorithm, where
image pixels are grouped and assumptions based on clusters
of pixels are generated, are not applicable in tasks with limited
computing resources.

In the beginning, classical methods for detecting objects
will be considered. In these methods, the identification of
features is carried out by an algorithmic approach. These can
be gradient directions or pixel locations in a determined form.
Then these features are classified, the training method con-
siders the vectors of features as points in a multidimensional
space and searches the boundaries of surfaces in this space.
Thus, all objects associated with the same class will be on the
same side of boundaries.

Next will be considered several methods of deep learning
based neural networks. Classical ML methods provide lower
detection accuracy against deep learning, but require less
computational power, so we add to the comparison.

C. Haar Cascades

Haar cascades — this is a classic mathematical model
used to detect objects using machine learning [20]. The idea
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of the method is to identify and classify the characteristics
of the image. 3 types of features are defined: two-rectangle,
three-rectangle and four-rectangle features. The characteristic
value of two rectangles is equal to the difference between the
number of pixels in two rectangular areas. These areas can
be horizontal or vertical. The feature of the image of the three
rectangles is calculated as the sum of the pixels in the two side
rectangles minus pixels in the central rectangle. And finally,
for the four rectangles — this is the difference between the
rectangles along the diagonals.

After definition of features from positive and negative
images, the stage of training the classifier by the method
AdaBoost begins. The idea is to create a ”strong” classifier by
combining ”weak” classifiers. In this case, a ”weak” classifier
is created on the basis of a small number of features. Further,
the most important attributes are selected for classification
using AdaBoost.

The detection process is done by classifying sliding win-
dows. The classification is making with the decision tree
method or the cascade method. The window must move
through a sequence of weak classifiers and be detected. If the
window is rejected by one of the classifiers, the next classifier
is not activated, and the window is not detected.

D. Cascades of Local Binary Patterns

Local binary patterns (LBP) is a kind of visual descriptor
used for classification tasks [21]. LBP operator marks every
pixel of the image as a digit from 0 to 9. Next, the pixels are
compared with their neighbors by subtracting the center pixel
in the cell. Negative values are replaced by 0, positive ones —
by 1. Next, the cell is recorded as a binary clockwise sequence,
starting from the upper left corner. According to the features
from positive and negative images, the process of learning and
detection is making as in the previous paragraph.

E. Faster Region-based Convolutional Network

Faster R-CNN (Faster Region-based Convolutional Net-
work) implements object detection through deep learning [22].
The model is a modification of the Fast R-CNN model (and
Fast R-CNN is modification of R-CNN). There are three main
tasks for the original R-CNN method:

1) Search for regions with objects.
2) Image feature extraction using convolutional neural

network (CNN).
3) Using the support vector machine (SVM) for classi-

fying objects and clarifying the positions of regions
of interest.

The main problem for UAV is the high computational
resources on a board. For example, R-CNN uses the method
of selective search of regions, training takes up to 80 hours,
and the work time is tens of seconds. Fast R-CNN was able
to improve performance up to a few seconds by optimizing
the time with pooling proposals region. This became possible
due to a change in the architecture: first, the original image
is now fed to the input of a convolutional neural network; a
convolutional map of features is formed at the output. Second,
the method of selective region search uses a convolutional
feature map, and with the help of the RoI pooling layer, the

dimension of the feature vector is changed, and the vector
is transferred to the softmax layer to classify and refine the
position.

Faster R-CNN completely abandoned selective search. The
process of regions search is fully performed by the convolu-
tional neural network RPN (Region Proposal Network). The
resulting regions are further classified in the same way as in
Fast R-CNN.

RPN uses a neural network as a sliding window, the input
of a neural network is a feature map of intermediate layers.
The window moves along the map, and at the output transmits
a feature vector associated with two fully-connected layers for
the boxes — the box regression layer and the box classification
layer. For each window position, theK maximum of regions of
interest is predicted: the regression layer has 4K outputs for
coding the coordinates of the regions, and the classification
layer outputs 2K the probability of finding an object in the
region. K predicted number of regions of interest are called
anchors. Anchors are centered in the window and have a
different rectangular shape and size. For every anchor the
neural network samples the probability value, and keeps the
probabilities greater than the threshold value. As a result, the
selected anchors and feature maps are transferred to the Fast
R-CNN model.

F. Single Shot Multibox Detector

The SSD (Single Shot Multibox Detector) model is an
object recognition model that combines proposal regiones and
image parameters obtained by one deep neural network [23].
In this case, all pixels in the image are not resampled, and the
accuracy is not inferior to previous models.

The model accepts an image at the entrance and passes it
through several convolutional layers with different filter sizes
(10× 10, 5× 5, 3× 3). The neural network predicts bounding
boxes based on a map of features found in different positions.
Boxes are found by a special convolutional layer called an
extra feature layer with a 3 × 3 filter. The result is a set of
restrictive boxes that perform the same function as anchors in
the Fast R-CNN model. Box has 4 parameters: two coordinates
of the center (x, y), width and height.

To determine boxes at the end of the SSD model, non-
maximum suppression is used. After that, the Hard Negative
Mining (HNM) method is used to reduce false positives. HNM
allows you to reduce the number of negative boxes required for
learning by adding images that have a false positive to the set
of negative examples. Boxes are ranked by their probability,
and boxes with a highest probability are selected.

G. You Only Look Once

The YOLO model samples a image once, just like the
SSD model [24]. Next, the image processed modification
GoogLeNet or VGG. Several convolutional layers with ReLU
activation feature process a feature map. Full connected layers
and dimensional changes are the last stage of processing is
used to obtain a tensor.

Every vector from the grid contains information about:

• box center coordinates in the grid,
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• box size to the size of the initial image,

• box confidence indicator about choosing right object,

• coefficients indicating the probability of finding a
particular class in a particular box.

After calculating the tensor, vector of classes for every box
is compiled by multiplying the original vector by confidence
coefficient of a specific box. Next, for every class a comparison
with a threshold value is applied, and if class values are less
than the threshold, then the class is assigned a zero. The
boxes are sorted with respect to class, then non-maximum
suppression is performed. The result of detection for every
box is the maximum non-zero class.

Thanks to this architecture, YOLO has the ability to be
modified by shaping the number of convolutional layers. In
addition, the model is trained on general representations of
objects and allows usage in different situations.

H. Reasons for Methods Selection

First, these methods showed high detection probability.
Secondly, these methods have not been practically tested for
use in wildfire monitoring with help of UAVs. All the presented
methods are capable of detecting fire and smoke [25], [26],
[27], [28], [29].

Comparison of classic ML methods shows that the accuracy
of Haar and LBP cascades can be similar (about 80%) [30].
However, in the case of Haar cascades, it varies from 50% to
70%, while the accuracy of LBP cascades is stable.

Faster R-CNN and SSD models on the same datasets are
demonstrated that the difference in accuracy is small (mean
average precision for Faster R-CNN — 75.9%, for SSD —
80.0%) and speed of computation potentially allows the usage
of methods in real time (for Faster R-CNN — 20 FPS, for
different SSD versions — from 20 to 40 FPS) [23].

The reason for analysis of YOLO for solving the fire
detection problem is high performance and speed of object
detection. YOLO has mAP indicators similar to other methods
and allows to detect objects in real time. Also, there is a
light YOLO model — YOLO-tiny and its architecture contains
fewer layers than the original version. Due to this, performance
increases significantly and according to the developers of the
Darknet framework, it reaches a value of 220 FPS. However,
the detection accuracy of YOLO-tiny is lower.

III. DIFFERENCE IN FIRE AND SMOKE DETECTION

The source of fire in the forest can be detected by flame
or smoke. To train machine learning models, it is necessary
to choose a set of classes of objects of interest, one class is
defined in the simplest case.

Flame and smoke detection is characterized by the follow-
ing features:

• Regardless of the choice of the object, fire source will
be detected in the recognition process.

• The smoke covers more than the flame area in the
frame of video from UAV.

• Smoke can cover the flame, making it impossible for
visual detection.

• Because of the foliage on the trees, small fires can be
difficult to detect. On the other hand, smoke goes up
and can be detected.

• In some cases, there is only smoke without visible fire.

• At night, detection of smoke is difficult.

Based on this, it can be concluded that the optimal object
for detection in terms of speed and visibility of detection
(during daylight hours) is smoke. However, it is preferable to
use hybrid methods, depending on the nature of the monitoring
environment. Further detection will be focused on the search
for smoke.

IV. IMPLEMENTATION AND COMPARISON OF METHODS

Testing equipment:

• OS: Ubuntu 18.04.1 LTS,

• RAM: 32 GiB (for learning),

• processor: Intel Xeon CPU E5-2630 v4 @ 2.20GHz.

Method comparison indicators:

1) the number of positive and negative detection results
with and without error: TP — True Positive, TN —
True Negative, FP — False Positive, FN — False
Negative;

2) precision:
TP

TP+ FP
;

3) recall:
TP

TP+ FN
;

4) accuracy:
TP+ TN

TP+ TN+ FP+ FN
;

5) FPS — frames per second;
6) mAP — mean average precision;
7) IoU (intersection over union) — the relationship

between the intersection area of a real box and a
model box and the total area of a real box and a
model box.

True Positive — real smoke was detected in the frame,
False Positive — there is no smoke, but it is detected, False
Negative — real smoke is not detected in the frame, True
Negative — there is no smoke, and it is not detected.

A. Datasets

The following datasets were used for training:

1) The Real smoke + Forest background dataset —
dataset with 12 000 images of real smoke on the
background of forests [27].

2) The Simulative smoke + Forest background dataset
— dataset with 12 000 simulated images of smoke
[27].

3) Own dataset, developed on the basis of video record-
ings of wildfires made from UAVs. 6600 positive
images, 15600 negative images.
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TABLE I. MODEL PARAMETERS BASED ON THE HAAR AND LBP
CASCADES

Haar LBP

Npos positive samples num 5000 2500

Nneg negative samples num 11368 10000

Nstg learning stages num 15 10

Rbrk acceptance ratio break value 0.001 0.001

W sample width, px 24 24

H sample height, px 24 24

V
min
h hit rate, Vmin

h = 1− FN 0.99 0.99

V
max
a

false alarm detections num before the new

training stage
0.5 0.5

Rtr weight trim rate 0.95 0.95

V
max
wk

num of weak decision trees for learning at

each stage
100 100

TABLE II. TEST RESULTS OF THE HAAR AND LBP CASCADES

Frms TP TN FP FN Prec Recall Acc FPS

Haar 1780 1556 0 224 0 0.874 1 0.874 14.62

LBP 1780 1447 0 283 0 0.813 1 0.813 22.40

B. Testing Classic Machine Learning Methods

Comparison of Haar cascades and LBP cascades (Fig.
1). Training done with own dataset. The minimum size of a
detection object is 100× 100 pixels.

The parameters of the tested models are shown in Table I.

The test results are shown in Table II.

C. Testing Deep Learning Methods

Characteristics of training models of Faster R-CNN, SSD
and YOLO and the results of their verification on test data
(smoke images, Fig. 2) are summarized in Table III.

Since the Faster R-CNN model showed itself better in
terms of total error, its performance was tested on video
records with fires to check the dependence of FPS on video
quality (Table IV).

Fig. 1. Detection result of Haar cascades

TABLE III. COMPARISON OF TRAINING MODELS FASTER R-CNN,
SSD AND YOLO

Faster

R-CNN
SSD Yolo v2

dataset RS+SS RS+SS
RS+SS +

Custom

batch size — samples num per

iteration of training
1 100 16

num of steps 1000 100 2500

time of training, min 433 135 5645

mAP at IoU > 0.5 0.6916 0.1447 —

object classification err 0.133 6.400 —

object localization err 0.1403 3.052 —

total err 0.3611 9.698 1.354

TABLE IV. TESTING THE FASTER R-CNN MODEL ON VIDEO

Dimensions of

videos, px
Duration, sec

Time for detecting,

sec
FPS

240× 240 40 175 5.71

640× 480 40 211 4.74

1440× 1080 40 244 4.10

1920× 1080 60 376 3.83

V. CONCLUSION

The results of classical methods and methods of deep
learning are summarized in Table V. The main findings are
presented below.

• The results show that the best performance is achieved
for classical methods of machine learning, however,
their accuracy is lower than Faster R-CNN and YOLO
models.

• The SSD model showed the worst performance results
and similar accuracy results with classical methods.

• The poor accuracy results of classical methods are
explained by the fact that detection methods with
cascades are more applicable to the recognition of
objects that have a constant shape and color [21].
Smoke (and flame) does not satisfy this condition.
However, Haar and LBP cascades are applicable in
situations, where the frame has a large amount of
smoke.

Fig. 2. Detection result of the Faster R-CNN model
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TABLE V. FINAL RESULTS

Methods Precision Recall Accuracy FPS

LBP 0.813 1 0.813 22.40

Haar 0.874 1 0.874 14.62

YOLO v2 1 0.983 0.983 5.78

Faster R-CNN 1 0.959 0.959 4.10

SSD 0.884 0.907 0.811 1.33

• The results of smoke detection using Faster R-CNN
show that method average performance is 4 FPS, at
that only smoke with a light color shade is detected.

• The YOLO model demonstrated the best accuracy
among all considered models and was the fastest
among deep learning models. Like Faster R-CNN,
YOLO is more suitable for detecting fires at an early
stage. Therefore, this model is optimal for solving
monitoring problems.

The application of machine learning methods requires
compromise between performance and accuracy. Moreover, the
performance can be compensated by changing the flight mode
of the UAV — more drones, longer flights, etc. For example,
this will allow quite successfully apply Faster R-CNN.

On the other hand, deep learning methods for detection
tasks improving permanently, therefore, in the following pa-
pers, perspective modifications of You Only Look Once model
will be investigated. Also, in the future research, the theoretical
base described here will be tested on UAVs in the real time.
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