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Abstract—When developing protection mechanisms of the 
confidential data on mobile devices, a balance of reliability and 
ease of use must be maintained. Such a balance can be provided 
by a biometric authentication system, which is quite easy to use 
while being sufficiently reliable. Introduction of the dynamic 
biometric and behavioral authentication factors into the system 
can further improve its reliability keeping the balance. Most 
smartphones have a touchscreen display, which is proven by the 
previous studies to be able to capture the dynamic biometric and 
behavioral characteristics of users' input events. This paper 
proposes a method of distinguishing a legitimate mobile device 
user from the intruder by analyzing dynamic biometric and 
behavioral characteristics of touch screen input events. 

I. INTRODUCTION 
Numerous studies are devoted to the problem of 

information access control, and a variety of access control 
mechanisms had been adopted over time. However, in cases 
where an attacker can impersonate a legitimate user, the threat 
of unauthorized access to the data remains. This problem is of 
great interest from mobile devices perspective as they usually 
contain plenty of valuable personal information, and at the 
same time, they are likely to be lost or stolen. Many users 
prefer to use passwords as a mean of protection. However, the 
stronger the password, the longer it takes to enter it and the 
higher a chance of an error. A strong password can lower 
consumer qualities of the device. 

Only 47% of smartphone users utilize password-based 
authentication mechanisms thus preferring quality over security 
and not restricting access to their devices [1]. 

This example demonstrates the importance of maintaining a 
balance between the consumer qualities of the device and the 
level of protection of user data. Such a balance can be provided 
by biometric authentication systems when the authenticator is 
the user himself, more precisely, some unique characteristic of 
his body (iris pattern, a papillary pattern on the fingers, etc.). 
Biometric identification has better security/usability balance 
then the password-based one. However, it has inherent flaws. 
For instance, the authenticator can be copied or used against the 
user's will. To address issues with the authentication factor, 
we should introduce multiple authentication factors in the 
system. 

To preserve the balance between device simplicity and the 
reliability of authentication, it makes sense to expand the 
system with dynamic biometric, as well as behavioral 
authentication factors. In other words, this research aims to 
verify the user’s authenticity based on the dynamic 
characteristics of the user (for example, walking parameters) 
and characteristics of relatively stable patterns of user's 
behavior over time. 

To obtain the beforementioned characteristics, we first 
should find a method to convert user interaction with the 
mobile device into a data stream suitable for the feature-
engineering. 

These devices are equipped with a large number of sensors 
and other input devices. The touch-sensitive screen of the 
smartphone is a particularly interesting example of the input 
device. It first was applied on the smartphones in 1992 and has 
evolved into a fairly accurate and responsive input device over 
time. In most modern smartphones, a touchscreen can track up 
to 10 simultaneous touches approximately 60 times a second 
with a precision up to one pixel. This allows to track each user's 
input gesture with high precision. Each gesture entered by a 
user on the touch screen has a set of features reflecting the 
user's unique dynamic biometric and behavioral characteristics 
as proved in the previous study [2]. This makes the touchscreen 
an excellent source for user interaction information to use in 
our study. 

In this study, we collect a large amount of the raw input 
gesture data from the test users with the help of the improved 
version of our tool TouchLogger. Then we process all the 
collected data to normalize it and extract the features which 
may represent users behavior. All the processed data will form 
our dataset used in this study. Then we train the 1-vs-rest 
classifier on the dataset and evaluate its results. In our case, the 
Gradient Boosting classifier showed an average AUC metric of 
0.97 in the task of a 1-vs-rest classification of a user with a 
dataset generated by 10 test users. 

II. RELATED WORKS

The idea of identifying a smartphone user by biometrics is 
not new. It has been adopted in various projects and explored in 
numerous studies. Considering the excellent accuracy of the 
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touch screen, this input device is used quite commonly as a 
biometric sensor in recent studies. Some of them are listed 
below. 

Julio Angulo and Erik Wastlund have used some concepts 
of keystroke dynamics in their touchscreen-based identification 
method [3]. This study aims to enforce overall weak pattern 
locks (i.e., a matrix of dots which user should connect in some 
order to unlock device) with biometric features. Using six 
finger-in-dot variables (amount of time user holds his finger 
inside each dot) and five finger-in-between-dots variables 
(amount of time user connects neighbor dots) for each trial, 
they prepared a total of eleven variables to feed the classifiers. 

A Random Forest was used as a classifier due to its fast 
learning process for large datasets, provided an average EER 
(Equal error rate, the rate at which both acceptance and 
rejection errors are equal) of 10.39% with a standard deviation 
of 3.0%. 

This principle evolves in other works, e.g., in [4] and [5]. In 
former, a touchscreen user interface was designed to collect 
input gesture durations. Giving 80 real attempts and 80 fraud 
attempts from 10 users, researchers achieved EER 2.5% for 
ANFIS (Adaptive-Network-Based Fuzzy Inference System, 
type of classifier). The latter work utilizes and develops 
principles of [3] to create biometrics-enhanced pattern-based 
lock screen. Ala Abdulhakim Alariki et al. provide a 
framework to implement a touch-based biometric identification 
system [6]. 

Other touch-based biometrics approaches implement 
keystroke dynamics algorithms (i.e., they analyze how you 
type) on touchscreen-equipped devices. These algorithms are 
utilized in the problem of user authentication based on 
keyboard input [7], [8], [9]. Kambourakis, Damopoulos, 
Papamartzivanos & Pavlidakis adapt these algorithms for the 
touchscreen in form of the custom onscreen keyboard [10]. 

Christian Holz, Senaka Buthpitiya, and Marius Knaust used 
the touchscreen as a biometric sensor to detect shapes of large 
human body members, e.g., ears, palms, wrists, etc. by pressing 
it against the touchscreen [11]. This research evolved into a 
commercial product called Bodyprint. In evaluation performed 
as part of the research with 12 participants, Bodyprint classified 
body members with 99.98% accuracy and identifies users with 
99.52% accuracy with a false rejection rate of 26.82%. This 
classifies bodyprint as a reliable biometric user authentication 
to a large number of commodity devices. 

Most of the works referenced above utilize active 
identification – i.e., they identify the user once he tries to 
unlock his phone. Unlike those, some papers study different 
approaches to create a continuous identification algorithm [12]. 
Continuous identification is the one which identifies a person in 
the process of using the device. This allows eliminating 
unauthorized access even after the device was unlocked. 

Project Abacus by Google aimed to eliminate passwords by 
substituting it with continuous biometric identification, applies 
a similar principle. Abacus calculates a continuous trust score 
using your location, facial recognition, speech input, keystroke 
dynamics, motion created by how you walk, etc. The Abacus 

demo at Google I/O 2015 showed continuously calculated trust 
score on the scale of 1 to 100. Unfortunately, the exact 
characteristics of the classifier are unknown. The initial goal of 
this project is to provide these features to millions of Android 
users just by the software update. 

III. PROBLEM STATEMENT 
In this work, we aim to develop a method of identification 

of mobile device user based on dynamic biometric and 
behavioral characteristics of touch screen input gestures. 

Just like some related works, our research is aimed to 
provide a reliable authentication method suitable for 
continuous user authentication. This aim irradicates any 
attempts to embed biometric classification inside a regular 
standalone mobile device application like a biometrics-
enhanced lock screen in [5]. Our system should be able to 
collect all input gestures of a user, from all the applications he 
may use. Most, if not all, modern mobile operating systems 
have a strong security model which forbids one application to 
read touchscreen input events intended for another one. This 
architecture makes reading system-wide input gestures a 
complex technical challenge. 

The other challenge is to expand the potential test user base 
as much as possible. We should be able to use the data 
collection software on the large subset of mobile devices. 

To further expand our potential user base, we should be 
able to collect input data remotely, to add input gestures data 
from distant users. To achieve that, we should transmit data 
over the Internet, which implies data encryption as touch 
gestures may contain sensitive information. 

As our test users may have different models of mobile 
devices, with different screen sizes and resolutions, we should 
also take appropriate actions on our side to process all input 
data accordingly, to avoid the cases when our classification 
would train to distinguish screens, not users. 

The next challenge is to capture some extra application 
usage data. We assume that the input gestures characteristics 
of the same user may vary in different applications. Having 
information about the application the user entered a gesture in, 
we may authenticate a user more precisely. 

After we develop the data collection system and run test 
data gathering session with multiple test subjects, we should 
collect all the data, evaluate it, normalize some values and 
extract the features from the input gestures. After that, we 
should train and test our classification on the 1-vs-rest task to 
evaluate its ability to distinguish a legitimate user from a 
potential intruder. 

IV. DATA COLLECTION INFRASTRUCTURE 

A. Client part 
1) General description 

Collecting touch input data from the whole system is a 
challenging task. Some researches overcame this challenge by 
providing their users with special custom smartphones with 
data collection system built-in. This approach may be the 
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simplest, but it prevents the wide audience coverage. Others 
may modify device firmware by installing a custom version of 
the Android operating system on the device to implement data 
collection on the OS level. This approach is more promising as 
Android OS is free and open-source, so any enthusiast can 
implement the desired OS extension. During the research, we 
once decided to follow the same path and had modified 
Android OS in a way that allows us to collect touchscreen 
input gestures system-wide [13]. 

Unfortunately, OS modification implies reinstalling the 
firmware on the device, which is not what any test subject 
would be happy to do. In the previous work, we decided to 
implement our data collection software using ability to run 
code as root (superuser) on so-called “rooted” devices [14]. 
This approach extended the size of a potential user base 
further, but the amount of the rooted android devices isn’t that 
high, so we should adopt a different approach. 

We found a simpler solution which works on any Android 
device with “developer options” enabled (special hidden set of 
tools present on each Android device to help a developer in 
application debugging). When the developer options are 
turned on, a special connection called Android Debug Bridge 
(adb) can be established between PC and Android device. This 
connection offers a command line environment where the 
developer can execute commands with the privileges of a user 
shell. Turns out that this user also has access to the input 
devices, so he can read raw input data from the touchscreen. 
This principle is utilized in the new version of our tool 
Touchlogger [15]. Test subject should install android 
application on the device, establish a connection with the 
device via adb and launch a special payload which will read 
the touch input gestures and pass this data to the main 
application. 

2) The main application
The main application has a very simple interface (see Fig. 

1). It shows the status of the Touchlogger payload (whether it 
is running or not), and also allows the user to control payload 
by pausing or resuming a data collection process. We pay 
attention to the privacy of user data and we use all the 
collected data only for the purposes of the research, but we 
still implemented pausing mechanism to gain users’ 
confidence in the privacy of their data. 

1) The payload part
The payload part collects input gestures by reading them 

from a symbolic device. The raw data from the symbolic 
device is represented in the Linux kernel input event format 
[16]. The new version of the tool can convert this data into 
JSON format for almost any smartphone, not only for the few 
models. Also, it has better multitouch screen support as the 
conversion logic mimics the logic from the Android input 
architecture [17]. 

To achieve the desired ability to collect information about 
the target application where the user has entered the gesture, 
the payload part also runs special dumpsys utility after each 
gesture to extract the information about the top-level 
application. 

Fig. 1. Screenshot of the TouchLogger application user interface 

TouchLogger works in the background collecting the data 
and storing it in the private data directory. After it collects a 
certain amount of input gestures, it encrypts data using 
generated session key, encrypts the session key with the 
private RSA key and sends the data on the server. 

B. Server part 
The server part hasn’t changed since the previous research. 

The tasks of the server-side include receiving data from a 
client, decrypting it and storing it into the database. A server 
receives all data in a format of JSON object and stores this 
object in MongoDB instance. 

C. Data format 
All the input data is represented in JSON format and 

divided into separate gestures. Each gesture has the following 
fields: 

the duration of the gesture in microseconds
maximum pointer (i.e., distinct touch) count during
the gesture
gesture timestamp
device id
device model
application where this gesture was entered
list of input events forming the gesture

Each input event consists of the following fields: 
input event timestamp
type of the event (e.g., DOWN, UP, MOVE,
POINTER_DOWN, etc.)
pointer count in this event
list of the pointers in this event

Each pointer is a distinct touch point on the screen. Modern 
touchscreens support up to 10 pointers. In our research, each 
pointer data structure consists of the following fields: 

id (from 0 to maximum supported by the device)
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pressure
x coordinate
y coordinate

This structure is based on the one used in the previous work 
but has small refinements which help to speed up data analysis 
and feature extraction. 

II. INPUT DATA PROCESSING

A. Collected data statistics 
During the data collection period 14 participants collected 

over 76000 input events in 2 weeks. 

From all the gestures collected, only 0.8% of the input 
events are multi-finger, or multitouch gestures. This correlates 
with the results of a data collection session in the previous 
work (2.3% multitouch events). 

B. Feature extraction 
Unfortunately, while some users collected a descent amount 

of input gestures, others barely sent anything at all (probably 
due to some bug in the application). Table I demonstrates the 
input gestures amount distribution across 14 test users. 

TABLE I. INPUT GESTURES AMOUNT DISTRIBUTION ACROSS TEST USERS

User id 0 1 2 3 4 5 6 

# of 
gestures 

60 10480 1220 3560 4020 15820 3260 

User id 7 8 9 10 11 12 13 

# of 
gestures 

240 100 11760 16400 5920 3520 400 

To achieve fare classification results, we will filter out input 
data from the users 0, 7, 8 and 13 as they sent around 1% of all 
the data. 

In our paper, the vast majority of the features we extract 
from the gestures are quite basic. For instance, knowing first 
and last timestamps of the input events in the gesture, we can 
calculate gesture duration. However, due to some device-
specific system behavior, small fraction of all gestures have 
very long (tens of minutes) or even negative duration. These 
emissions should be filtered out as well. 

Start and end pointer coordinates are also descent features 
of the gesture. However, different devices have different 
screen resolutions. To normalize all the coordinates, we divide 
each x or y coordinate by device screen width or height 
respectively. This lives us with the relative coordinates, 
distributed from 0 to 1. However, some devices may generate 
input events with the coordinates exceeding the screen 
resolution. This can clearly be seen in Fig. 2. The source of 
some scattered events is unknown, but most of them are 
caused by the touchscreen driver implementation in the device. 
For instance, some firmware developers use the touchscreen to 
implement hardware touch-sensitive buttons, e.g., “home”, 
“back” or “recent”. To distinguish hardware button press from 
the usual touchscreen input event, they generate input event 
for the hardware buttons with the coordinates exceeding the 

screen resolution. As these events are not of our interest, we 
can easily discard them. 

The results of the events filtering by the coordinates can be 
seen in Fig. 3. 

This time every gesture is placed inside the square of side 1. 
Also, this time we used a different plotting method to estimate 
a density of gestures on the screen. Please, note that the "y" 
coordinate of the gesture is inverted on the plot. The highest 
gesture density is in the on-screen keyboard area, under the 
location of the right thumb and near the common places for the 
control buttons. 

Fig. 2. Scatter of the normalized gesture coordinates (please note inverted y-
axis)

Fig. 3. Normalized gesture coordinates density (please note inverted y-axis) 
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Another feature is a normalized distance between the first 
and last input events in the gesture, which gives us a gesture 
length. Other features include pointer count, gesture angle 
tangent, start and end coordinates of the gesture, gesture 
curvature (the radius of the circle on which the first, middle 
and last touch points lie) and gesture arc height. 

The novel feature of this research is the tracking of the 
application in which the gesture was entered. From the data 
collection session, we have 129 unique applications where 14 
users were entering the data. To make our classification less 
dependent on this feature alone, we divided all application into 
8 classes, depending on the type of the user interaction with 
them. For instance, category “feed” includes applications with 
scrolling gesture being the most frequent during the using of 
the app. Instagram and Twitter clients are examples of the 
apps in this category. All the classes and the distribution of 
them by the number of gestures is shown in . 

The last step in the feature extraction process is to evaluate 
all the features and discard the statistically dependent ones on 
the other features. To achieve that, we evaluate features 
correlation using the Pearson correlation coefficient. You can 
see the correlation between different features in Fig. 5. 

It is clear that the start and end coordinates of the gesture 
have a strong correlation. The source of such a correlation 
became obvious if we plot gestures distribution by the length 
(Fig. 6). 

We can see that 55% of all input gestures have a length 
close to 0, i.e., they are just simple touches. In this case, start 
input event coordinates match the end ones. To justify end 
coordinates feature presence, we should recalculate all the 
correlation coefficients just for the long motion events. The 
new results can be seen in Fig. 7. 

As we can observe, correlation still remains at a high level 
but x2 and y2 features are suitable for further use. 

Filtering all the data by negative duration, abnormal length, 
etc., leaves 74620 gestures from the initial 76760. 

III. CLASSIFICATOR TRAINING AND EVALUATION

In the classification process we use a 1-vs-rest classifier, 
i.e., we have trained 10 different classifiers, one for each user. 
Each classifier has trained on the 50% of the dataset, where 
gestures of a one user were considered entered by a legitimate 
user, and the gestures of the rest users were considered entered 
by an intruder. Fig. 5. Gestures parameters correlation 

Fig. 6. Gestures distribution by the length 

Fig. 7. Motion gestures parameters correlation 

Fig. 4. Application classes distribution by the amount of input gestures 
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We decided to compare several classification methods. The 
following classification methods were used for the comparison: 

K Nearest Neighbors
Random Forest
Gradient Boosting
Linear Support Vector Machine

In our case, 30 neighbours were used in KNN as with n=30 
log loss is optimal (see Fig. 8). 

To evaluate the classifiers, we divided all dataset of 74620 
gestures into equal parts. The first part was the training dataset, 
the other one was the testing. Each classification method was 
evaluated by avegare AUC value for 10 classifiers in 1-vs-rest 
problem and by its learning time on the train dataset. 
Evaluation process was executed on Intel Core i7 6700K CPU 
with 16gb RAM. Python implementation of classifiers from 
scikit-learn package was used. The evaluation results are listed 
in Table II. 

TABLE II. CLASSIFICATORS COMPARISON BY THE AUC VALUE AND 
LEARNING TIME

Classification 
method 

AUC average 
value 

AUC std 
deviation 

Learning time 
(seconds)

Random Forest 0.9698 0.0002 305 

KNN (n = 30) 0.9091 0.002 12 

Gradient Boosting 0.9692 0.0002 117 

Linear SVM 0.5056 5.98e-05 44 

Our evaluation demonstrates the differences in 
classificators used. While KNN is the fastest to learn,, its AUC 
metric is 6% lower then the one of Random Forest or Gradient 
Boosting. Linear SVM performed the worst for our case, and 
metrics of Random Forest and Gradient Boosting are almost 
match, while the latter performs 2.6 times faster. So, the 
Gradient Boosting method appears to be optimal in our case. 

We evaluated Gradient Boosting classifier for each user 
using the AUC metric and built a ROC curve with the results 
present in . The average AUC value for 10 classifiers is 0.97 
with the standard deviation of 0.0002. 

IV. CONCLUSION

In this paper, we managed to achieve several improvements 
over our previous work and over some related researches. First, 
by extracting new features from our dataset, we’ve achieved 
much more accurate user classification than in previous work. 
Also, this time we used one gesture to extract features from, 
instead of a series of gestures. This is more applicable in the 
real world biometric authentication system as it allows the 
system to react faster. 

The technical part of this project was also improved over 
the previous data collection session. As before, it is 
opensource, so anyone can use our data collection system in 
subsequent researches. 

V. FUTURE WORKS 
In the future, we may further improve the technical part of 

the project to eliminate some bugs which might lead to the 
small amount of data collected from certain users. 

As one may note, we hand-sorted all the applications 
collected into categories. This step can be improved by 
implementing some extra data analysis and machine learning 
techniques to achieve automatic application categorization 
based on the input gesture features. 

Also, we may consider training the classifier on a 
subsequent series of gestures (2, 3, or more) to further improve 
authentication metrics. 
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